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Abstract 

Short tandem repeats (STRs) are polymorphic genomic loci valuable for various 

applications such as research, diagnostics and forensics. However, their 

polymorphic nature acts as a double-edged sword, as during in 

vitro amplification STRs undergo mutational processes that cause stutter noise, 

especially in the shorter, more mutable, repeat types. Although it is possible to 

overcome stutter noise by using amplification-free library preparation, such 

protocols are presently incompatible with single cell analysis and with known 

targeted-enrichment protocols. To address this challenge, we have designed a 

method for direct measurement of in vitro noise. Using a synthetic STR 

sequencing library, we have calibrated a proposed Markov model for the 

prediction of stutter patterns at any amplification cycle. By employing this 

model, we have managed to genotype accurately even cases of severe 

amplification noise, where as little as 3% of the reads accurately reflect the 

original STR size. 
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Introduction 

Short tandem repeats (STRs, also known as microsatellites) are repetitive elements of 

1-6 base pairs long that constitute about 3% of the human genome. They are best 

known for their highly mutative properties in vivo, which is due to polymerase 

slippage that results in repeat contraction/expansion. Although their mutation rates 

vary dramatically, even low estimates are 3-4 orders of magnitude larger than of 

random point mutations, highlighting STRs as a tool of growing interest for various 

applications(Ellegren 2004). In disease, STRs are linked to tens of human diseases 

such as Huntington's disease(Mirkin 2007); In several cancer types, mismatch repair 

deficiencies are analyzed utilizing STR polymorphic state, pointing to the disease 

progression(Salipante et al. 2014). In genetics studies, STRs are utilized to study 

population genetics and phylogenetics(Willems et al. 2014; Fungtammasan et al. 

2015). In regulatory genomics, the importance of STRs as regulatory elements was 

recently demonstrated(Gymrek et al. 2016). Recently, due to technological 

advancements in single cell (SC) genomics, SC STR analysis became of research 

interest for applications such as cell lineage phylogenetic analysis within an 

organism(Shapiro et al. 2013)(Biezuner et al., accepted) and for pre-implantation 

genetic diagnosis(Eftedal et al. 2001). 

A key challenge for STR analysis is that they undergo a noisy amplification in vitro, 

similarly to in vivo replication slippage. This noise, often termed “stutter”, is 

commonly manifested by excessive peaks when STR length data is plotted in a 

histogram of repeat numbers (see example in Figure 1B). Despite the value of the 

high polymorphicity of short unit STRs, they are commonly not used due to excessive 

stutter noise. Simple noise models such as highest peak do not apply to polymorphic 

STR since iterative stutter over amplification cycles is likely to result in false 

genotyping. The problem of genotyping highly polymorphic STRs is even more 

difficult when genotyping non-hemizygous loci (such as from autosomal 

chromosomes, X Chromosome in female and in copy number variation (CNV) cases) 

since it is compounded by amplification imbalance of the two alleles. Such 

unbalanced amplification is typical in SC studies, as the starting material for WGA is 

a single copy of each locus. 

With the growing need of in vitro amplification as a tool for basic and applicative 

scientific research, straightforward in vitro STR amplification studies were 
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performed, in order to calibrate amplification factors and conditions(Byrd et al. 1965; 

Hite et al. 1996; Shinde et al. 2003; Fungtammasan et al. 2015). A common STR 

stutter noise rule of thumb is that STR mutation rate both in vivo and in vitro is 

proportional to two main factors: (1) unit type length: short unit STRs (mono- and di-

repeats) are more mutable than longer unit types. (2) STR length: Longer STRs (in 

repeat number) are more mutable than shorter STRs(Ellegren 2004). Nevertheless, 

despite years of STR research, a well-defined stutter behavior model is still lacking. 

The emergence of next generation sequencing (NGS) as a tool for large scale and 

detailed per-base analysis of STRs has re-emphasized the need for bioinformatics 

tools for STR analysis. While most current tools focus on mapping reads to the 

reference genome(Gymrek et al. 2012; Highnam et al. 2013; Fungtammasan et al. 

2015), their stutter error correction algorithms are mainly calibrated with statistical 

models based on indirect measurements such as STR distributions in progenies, in 

populations and/or in user-defined data sets (e.g. hemizygous alleles). Here we 

present a method for controlled measurements of stutter behavior during amplification 

for various STR types and sizes. Utilizing these measurements, we calibrated a 

mathematical model that accurately captures and predicts the stutter pattern of in vitro 

STR amplification. 

 

Results 

Controlled amplification of synthetic STR molecules 

In order to study the stutter pattern as a function of amplification, we have designed 

and ordered a synthetic library of STR plasmids, each containing a unique 

combination of STR type and length, spanning all naturally occurring di- repeats 

(namely: AC, AG, AT) in their full spectrum of their natural genomic 

occurrence(Subramanian et al. 2003) (Supplemental Table S1). The construct within 

each plasmid is sequencing-ready and includes a unique Illumina dual index 

combination. The plasmids served as a template to generate two PCR data sets, which 

correspond to two PCR amplification time points in the following amplification 

timeline (Figure 1A and Methods section):  

T0: Designed sequences without amplification noise as validated by clone Sanger-

sequencing. 
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T1: Amplification-free sequencing observed in the data obtained from Illumina 

sequencers. This is enabled by digestion of the plasmid using a type IIS restriction 

enzyme that cleaves outside of its recognition site, generating a final Illumina 

sequencing ready DNA, once purified. 

T2: A single extension PCR, with primers (see “Outer primers” in Figure 1A) that 

generate an Illumina sequencing library and incorporate a unique sequencing index 

combination to the sample (replacing the template index sequences). 

T3: two sequential PCRs in which the 1st PCR primers (see “Inner primers” in Figure 

1A) generate a partial Illumina sequencing library (without adapters and indexes). The 

output of the 1st PCR is than diluted and used again in a 2nd PCR which is essentially 

the T2 PCR setup (using the “Outer primers”). 

Overall, this experimental setup allows for a controlled amplification and sequencing 

of all highly mutable STRs at two independent time points (T2, T3) with the ability to 

measure the specific sequencing noise of each STR length and type (Figure 1B,C). 

 

 

Figure 1. The synthetic STR experiment summary.  A. Schematic description of the synthetic library. In each 

plasmid, a different synthetic STR construct was designed, synthesized and clone-sequenced for various STR types 

and length (dashed pink line). The STR was designed within a context of an Illumina Truseq-HT dual index library 

to enable for nested PCR amplification at two time points (T2- amplification using outer primers only, T3-

amplification using inner primers followed amplification by outer primers). The library is flanked by BsrDI 

restriction sites to enable direct sequencing of the STR library without amplification (T1). Internal barcode (yellow 

triangle) is a short sequence, unique to each STR length to detect for cross-contamination. See text and methods 

for elaboration and Supplemental Table S1 for the designed constructs. B. AC STR type histograms (normalized 
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by the sum of squares), as were interpreted from sequencing results (T1, T2 and T3), compared to their expected 

length, T0 (designed sequence). C. Sequencing analysis results (bold circles) of each STR type, size and time point 

described as the percentage of expected p signal from overall reads.  

 

Computational methods 

The data generated for the 3 time points (T1, T2, and T3) was then used for the 

calibration of a computational model that predicts the stutter pattern at any theoretical 

amplification cycle given the repeat unit and length of the STR. 

Our goal is to predict the stutter histogram � of repeat numbers for any amplification-

time-point � and for any original length � in repeat units, �������. We label our data 

as t0-t4 in accordance with the amplification steps T0-T4 described above. 

We chose a Markov model for the mutational process the STR undergoes during 

amplification (WGA, PCR and NGS). We model these processes as an iterative 

mutation process with multiple steps. For each of these steps, our genotype can 

contract by up to 3 repeat units or elongate by a single repeat. The probability of such 

a mutation happening is dependent on the STR’s current length. 

We model the probability of each mutation step as a linear function ���� and fit its 

parameters using Broyden–Fletcher–Goldfarb–Shanno (BFGS)(H. Byrd et al. 1994) 

optimization algorithm with the following optimization problem: 

arg max
������,…,������


 
 �����	
���, ��
���, … , �������, ��
��
��

��

��

��

 

With ���� , ��� being the distance between the two histograms. 

We attempted varying numbers of mutational steps and solved each as a similar 

optimization problem. We then assessed which of these steps were negligible and 

restricted our model to only �3, �2, �1, 0, �1 steps. These steps proved sufficient to 

accurately predict the majority of experimental measurements we have encountered 

(Figure 1). We found that our model can effectively predict both AC and AG with the 

same mutational steps and different probabilities, however AT’s self-annealing nature 

as well as the stutter patterns we have measured, suggest a very different set of 

mutational steps such as –n/2 or even a different model. Since the occurrence of AC 

predominates that of AG in the human genome(Subramanian et al. 2003), in the next 

paragraphs we will focus on the analysis of AC. 
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Genotyping 

To confirm the model, we propose R&B, a naïve genotyping algorithm, an exhaustive 

strategy to call the original STR length from a population of reads with different STR 

lengths by scoring it against all possible predicted populations of any amplification 

time and STR length: 

arg max
�

�����	
���, ��
���, … , �������, ��
�� 

We have examined multiple distance metrics for the sake of histogram comparison 

and found correlation (Numpy, Jones et al. 2001) as the most suitable (Supplemental 

Fig S1). 

We than demonstrate the robustness of the model by applying it to an NGS dataset 

generated from a single PCR amplification, as previously described for the T2 

experiment, of 3 different templates: (AC)20, (AC)25 and (AC)30, each using 3 serially 

diluted templates (by 10 fold each). Our model's simulated cycles linearly correlate 

with the actual number of amplification cycles performed on the sample 

(Supplemental Fig S2 A, B). We also validated the model by applying it to an NGS 

dataset generated from a single PCR amplification of the same three templates as 

above, at the same concentration but with different commercially available 

polymerases. We show that the model accurately captures the variability between 

different polymerases within a single degree of freedom, its simulated cycles 

(Supplemental Fig S2 A, C). 

 

We than opted to try and fit biallelic loci that amplified unevenly during the WGA 

process on SCs by extending the exhaustive search to nearly all possible allele 

combinations and at any proportion from the set: 0.1/0.9, 0.2/0.8,…,0.5/0.5…, 0.9/0.1 

(Supplemental Fig S3). In order to assess our ability to accurately discover the true 

alleles that compose a stuttered biallelic histogram, we have selected autosomal loci 

from a SC population of H1 stem cells (Biezuner et al., accepted) that consistently 

presented alleles A and B when genotyped as mono-allelic (Figure 2A,B,C first 

column). Since alleles A and B can appear at any proportion (Figure 2D), we can 

assume these cases presented the biallelic locus’ alleles at a proportion of 0/1 or 1/0 

and that occurrences of this loci that failed to be genotyped as mono-allelic would 

present both alleles A and B. 
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Figure 2. Biallelic genotyping using overlaid model histograms. Figure rows A, B and C show the successful 

genotyping of biallelic loci (AC repeats) within a SC population of H1 stem cells (Biezuner et al., accepted). A, 

Recognizing overlapping alleles spanning 17 and 27 repeats, B, 22 and 27 repeats, and C, 25 and 28 repeats. First 

column – Monoallelic genotypes recognized in the clonal population. Second and third columns – In biallelic SC 

signal: Second column: Heatmap of the correlation scores between the predicted and the measured histograms 

across the space of possible alleles; Third column: Overlaid model prediction (green histogram) on top of the 

measured histogram (blue histogram). The resulting genotypes are marked as vertical green lines that also depict 

the alleles' proportion in their height. D, Examples of asymmetric allele proportions. 

 

Previously published STR genotyping tools (Gymrek et al. 2012; Highnam et al. 

2013; Fungtammasan et al. 2015) faced two distinct problems when trying to 

genotype STRs from NGS data: mapping the reads to the reference genome with 

respect to the mutability of the STR part of the read and genotyping the often noisy 

populations of reads attributed to each locus. The tool "RepeatSeq"(Highnam et al. 

2013), provided the first clear cut between the two problems and systematically 

compared multiple methods for mapping. In the dataset presented by Biezuner et al., 

the mapping issue was tackled using an STR-targeted enrichment panel (rather than 

shotgun sequencing) and mapping the known primers panel to the reads in order to 

identify them. Using this data set, we can isolate the problem of genotyping stutter 

patterns and avoid a possible mapping bias. The dataset contains cells from a 
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controlled ex vivo cell lineage tree experiment, semi-automatically picked while 

documenting the sampling lineage of each analyzed cell. This known topology of 

individually analyzed SCs, provides a solid reference to measure any genotyping tools 

against. To do so, we have devised the following metric to assess the accuracy of 

genotyping algorithms: 

Let � � ��
��
� � � be the set of alleles assigned to the leaves of tree T by a 

genotyping algorithm. ���, �� is the maximum parsimony or the minimal number of 

mutations required to explain set of alleles A on the leaves of tree �. 

 ���� �  �∑ �#�� � 1�����  is the allele diversity. 

We define F as the reference tree fitting: 
 "��, �� � |�| � 1 � ���, �� � ���� 

The reference tree fitness aims to balance the diversity of alleles found within this cell 

group, which provides information describing the topology of T, with the adherence 

of the genotypes to T. We compensate for the fact that diverse genotypes inherently 

have a lower parsimony, even when correct. 

Using this metric, Loci that add valid information regarding the tree will be awarded 

positive scores while loci whose genotyping results contradict the topology will be 

negatively scored. A locus for which there is no relevant information (either no 

genotyping, or a single allele across all cells) will receive a zero score. 

In order to avoid mapping-related bias we have applied our proposed genotyping 

method on two histogram datasets that were calculated based on the ex vivo NGS 

data. To maintain simplicity, we only account for mono-allelic AC loci from the X 

chromosome of the cancerous cell line used in this experiment (human male DU145). 
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Figure 3. Genotyping results. Comparison of the proposed genotyping method, hereby R&B, with the RepeatSeq 

genotyping tool(Highnam et al. 2013). In the first row (A, B, C) we compare our genotyping methods with 

RepeatSeq native histograms: R&B with the data from the ex vivo paper (Biezuner et al., accepted) and RepeatSeq 

with its default mapping parameters. In the second row (D, E, F) we ran both genotyping methods on RepeatSeq’s 

native histograms. In the first column (A, D) we view the sets of cell/locus combinations each genotyping method 

provided. In the second column (B, E) we plot the reference tree fitness scores as a function of the confidence 

score threshold for each genotyper. In the third column (C, F) we show the same score/threshold behavior but this 

time only for the cell/locus combinations that intersect with both genotypers’ results. 

 

Our results show that RepeatSeq discards over 70% of the loci it correctly mapped 

with over 30 reads (Figure 3D) and that the possible set of loci that can be mapped 

using the exhaustive method by R&B is over twice as big (Figure 3A). Both 

genotyping methods, R&B and RepeatSeq, provide a measure of confidence together 

with each locus it attempts to genotype. While these confidence metrics are very 

different and have different distributions across the attempted cells/loci population, 

we can try to compare them by referring to percentiles of the full scores set, the top 

10%, top 50% or any other threshold. We first assessed the absolute performance of 

each tool by scoring its top % best genotyping attempts against the known tree 

topology (Figure 3B,E). We show that for the more confident percentiles, the R&B 

method provides genotypes that corresponds better to the tree’s topology. The 

confidence metric for R&B is plainly the correlation of the predicted histogram with 

the reads population. To compare the lower confidence genotyping attempts of both 

tools despite the large difference in the number of attempts, we compared only the 
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cells/loci combinations where both tools provide a genotyping attempt (Figure 3C,F). 

Here we can see that across all confidence levels, when both tools attempt to provide 

a genotype, the R&B attempts are on average more in line with the known tree 

topology. 

Discussion 

STR usage in scientific research is increasing. High throughput sequencing opens a 

new frontier for STR science, both for basic(Willems et al. 2014; Gymrek et al. 2016) 

and for applicative research(Churchill et al. 2016; Kim et al. 2016). With that 

understanding, in recent years, bioinformatics tools were developed to map and 

genotype STRs in a high-throughput genome-wide scale with improved accuracy and 

speed over standard mapping algorithms(Gymrek et al. 2012; Highnam et al. 2013; 

Fungtammasan et al. 2015). However, current tools still struggle with the in vitro 

amplification stutter noise that is typical to STRs, and in particular to highly mutable 

STRs. Recent biochemical advances have enabled PCR-free protocols that 

substantially decreased the effect of stutter noise in STR analysis(Fungtammasan et 

al. 2015). However, these protocols have some limitations: (1) they require bulk 

amounts of template, making it incompatible with SC analysis, which requires whole 

genome amplification (2). In most cases, only a fraction of the STRs in the genome is 

required for analysis and therefore targeted amplification is required(Mertes et al. 

2011). Overall, this work lays the foundation for a better understanding of STR 

behavior in the NGS era. Although STR enrichment and sequencing kits are now 

available, a comprehensive assessment of the STR sequencing capabilities of extant 

sequencing machine was not systematically carried out, except for known constraints 

of some technologies such as mononucleotides sequencing in pyrosequencing based 

technologies(Huse et al. 2007) and inferred estimation of such noise from old 

Illumina platforms(Albers et al. 2011). Here we provided a controlled measurement of 

noisy sequencing at different amplification conditions and even in amplification free 

STR molecules. 

 

We described here a new stutter model for the highly mutable STRs over in vitro 

amplification. The novelty of this model is that it is calibrated with NGS data 

generated by a controlled amplification of a range of di- repeat STRs of different 

types and sizes (according to their genomic occurrence in human). One key element in 
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our model is that it takes into account that during amplification, the molecule lengths 

stochastic mutations can be accurately predicted, according to its inputs, the STR 

type, and the input length distribution of the previous amplification step. We chose to 

model the STR noise as a discrete-time Markov chain (DTMC). Our model enables 

easy calibration of different types of STRs. However, our data clearly shows a distinct 

and unusual pattern of noisy amplification of AT, which currently cannot be 

determined by either Markovian or binomial models, and may require modified model 

in the future. This variation in mutational mechanism was suggested 

previously(Ellegren 2004).  

 

We provided two types of experimental-based evidence for the effectiveness of our 

model: 

(1) Controlled amplification of STR plasmids. First, by utilizing it to measure an 

accurate amplification difference between known STR templates of various types and 

concentration, and second, by validating it against various types of polymerases. 

These experiments also demonstrate the model robustness, such that although 

calibrated by a specific set of polymerases and conditions can be trustfully used as a 

quantitative tool for analyzing mutational processes by any NGS downstream process. 

Future work will enable a large-scale utilization of this model for assaying and/or 

optimizing better enzymes for WGA and PCR for the purpose of STR analysis. 

(2) Utilization of NGS genomics datasets from SCs by accurately analyzing STRs 

from biallelic histograms, from drifted histogram, unclear determination of single 

peaks, and unbalanced allelic representation. 

We also compared our model to a state-of-the-art genotyping tool(Highnam et al. 

2013) utilizing NGS data from SC targeted enrichment data, originated from an ex 

vivo controlled cell lineage tree (Biezuner et al., accepted). Our model outperforms 

both by the number of STR genotypes and both by the calling confidence, when 

compared with respect to the ex vivo tree.  

 

We acknowledge that the bioinformatics improvement we supply here is the stutter 

model itself, where in shotgun sequencing, highly accurate mapping tools already 

exist. Nevertheless, we recommend this model as an integrative step for STR noise 

analysis, specifically when sequenced samples undergo extensive amplification. The 

tolerance of our model in the analysis of noisy STR signal allows for a more flexible 
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experimental design and opens the gate for highly mutable STR sequencing research. 

In future work we will attempt to model mono repeats using a similar calibration 

method. 

 

 

Methods 

Controlled amplification of a synthetic STR library 

STR plasmid design: Sequence verified cloned plasmids containing synthetic STRs of 

different types and sizes (Supplemental Table S1) were ordered from either IDT or 

GenScript (pIDT-kan and modified puc57-Kan vectors, respectively). Cloning vectors 

were validated to exclude BsrDI restriction sites. STRs were synthesized in the 

context of a complete Illumina NGS library (Truseq-HT) to allow for nested 

amplification, and to enable a direct digestion using the Type IIS restriction enzyme 

BsrDI, thus creating a sequencing ready library. See elaboration in main text and in 

Figure 1. Immediate STR flanking sequences were validated to avoid partial STR 

repeat unit occurrence. Internal 3-mer internal barcodes were inserted to allow for 

cross-contamination detection between samples.  

Experimental procedure 

T1 (No-PCR) control: was performed by pooling all STR plasmid libraries at equal 

concentration and digestion with BsrDI enzyme (NEB) according to manufacturer 

protocol. Digestion was performed at 65℃ for 16 hours, followed by inactivation at 

80℃ for 20 minutes. Reaction was then processed for sequencing (see later 

description in "Pooling and sequencing"). 

T2 and T3 PCR experiments 

In the T3 experiment, each STR plasmid (10-4 µg/µl) was loaded as template in an 

AccessArray (AA) PCR chip. Each primer inlet was loaded with the same primer 

solution ("Inner primers") composed of X1 Access Array Loading Reagent (Fluidigm) 

and primers: Control_Fw: 

5’-CTACACGACGCTCTTCCGATCTTCCTAATCTTACGCGGCCATAAC-3’ and 

Control_Rev: 
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5’-CAGACGTGTGCTCTTCCGATCATGGACAGTCTTTAAGAGCCCATC-

3’(IDT), at a concentration of 1µM each.  PCR reactions and purifications were 

performed as described in (Biezuner et al., accepted): In summary, a 1st PCR of 30 

cycles PCR reaction is performed in the AA chip. Following sample harvesting, 

purification and dilution 1:100, a 2-step 2nd PCR of 17 cycles (5 cycles with annealing 

temperature of 55ºC + 12 cycles with annealing temperature of 70ºC) is performed to 

generate a dual indexed sequencing library (note that the "Outer primers" sequences 

were as described for the 2nd PCR primer sequences in (Biezuner et al., accepted)). 

The 1st PCR (in the AA chip) is done using the manufacture recommended enzyme: 

FastStart High Fidelity PCR System, dNTPack (Roche) while the 2nd PCR is done 

using Q5 Hot Start High-Fidelity DNA Polymerase (NEB) with the addition of SYBR 

green I (LONZA) at a final concentration of X1, to enable real time tracking of 

amplification. Following 2nd PCR, each sample was purified using SPRI beads. 

T2 PCR was performed by using 0.1ng-1ng of each STR plasmid as a template. 

Samples were processed in accordance with the T3 2
nd PCR protocol. 

 

Pooling and sequencing: All samples (T1, T2, T3) were purified and concentrated 

using MinElute PCR purification kit (Qiagen), pooled together and size selected (200-

500bp) using a 2% agarose BluePippin gel cassette (Sage Science) utilizing an 

upgraded software that avoids blue light exposure after markers detection. Products 

were concentrated again (Minelute) and were sequenced by a 2X220bp sequencing 

(Miseq, Illumina) using a manufacture recommended sequencing primers (R1, Index) 

and custom R2 primer 5’-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATC-3’ 

(HPLC grade, IDT). 

Enzyme comparison and serial dilution validation 

5 high fidelity PCR enzymes were used in this study: The two that were described 

above (Q5 High-Fidelity DNA Polymerase and FastStart High Fidelity PCR System, 

dNTPack), Phusion High-Fidelity DNA Polymerase (NEB), KOD Hot Start DNA 

Polymerase (Novagen) and KAPA HiFi HotStart PCR Kit (Kapa Biosystems). 

Reactions were performed as in the 2-step 2nd PCR reaction of step T3, namely 20µl 

reactions in a 96-well format, with real time amplification tracking using SYBR green 

I. The following exceptions were considered: 1) Activation, elongation and final 

elongation were adjusted to fit each enzyme’s recommended protocol. 2) Annealing 
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temperature from the 6th amplification step and on was according to each enzyme’s 

elongation temperature. 3) PCR reaction was stopped when amplification reached a 

plateau. 4) Due to failure of dNTPack to amplify using the standard 2-step PCR 

protocol, we applied the same program as being performed in the 1st PCR of T3 (in the 

AA chip). 5) Reactions mixes were according to manufacturer's protocols, with 

primer concentrations of 0.3-0.5µM, with the exception of dNTPack, which 

composition was according to Fluidigm’s recommended reaction mixture with primer 

concentration of 0.1µM each and a final volume of 10.6µl. 

The template for each PCR was 2µl of 1ng/µl STR plasmids: (AC)20, (AC)25, or 

(AC)30. Each reaction was duplicated to avoid PCR primer sequence effect (using 

different indexes).  Negative control (water) was added to each PCR. In the serial 

dilution validation experiment, Q5 enzyme was used as described above, using the 

same STR plasmids as templates in 3 concentrations: 1 ng/µl (also used for the 

enzyme comparison experiment), 10-2 ng/µl and 10-4 ng/µl. 

All Samples were purified, pooled and sequenced as described above. 
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