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Abstract 
 
A key challenge of single-cell RNASeq (scRNASeq) is the many genes with zero reads in some 
cells, but high expression in others. Modelling zeros using the Michaelis-Menten equation 
provides a superior fit to existing scRNASeq datasets compared to other approaches and 
enables fast and accurate identification of features corresponding to differentially expressed 
genes without prior identification of cell subpopulations. Applying our method to mouse 
preimplantation embryos revealed clusters corresponding to the inner cell mass and 
trophectoderm of the blastocyst. Our feature selection method overcomes batch effects to 
cluster cells from five different datasets by developmental stage rather than experimental origin. 
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Background 
 
Single-cell RNASeq (scRNASeq) has made it possible to analyze the transcriptome from 
individual cells. In a typical scRNASeq experiment for human or mouse, >10,000 genes will be 
detected. Most genes, however, are not relevant for understanding the underlying biological 
processes, and an important computational challenge is to identify the most relevant features. 
For some well-studied systems one can find the most important genes by searching the 
literature, but in most situations it would be more desirable to have an unsupervised approach 
for finding relevant features. However, unsupervised feature selection remains difficult due to 
the high technical variability and low detection rates of scRNASeq experiments. 
 
In recent years, methods for identifying relevant features from scRNASeq data have been 
developed. scLVM ​[1]​ makes it possible to account for the contribution of distinct processes, 
e.g. cell-cycle or apoptosis, but the method requires the user to define the sets of genes related 
to each specific process. By contrast, the highly variable genes (HVG) method ​[2]​ is 
unsupervised as it does not require ​a priori​  knowledge of gene sets, and it automatically 
identifies the set of genes that have a higher degree of variability than expected based on the 
observed technical noise. The biological interpretation and relevance of HVGs remains 
incompletely understood, and a more straightforward concept is that of differentially expressed 
(DE) genes. SCDE ​[3]​ and NODES ​[4]​ compare two sets of cells to identify DE genes, similarly 
to bulk RNASeq methods such as DESeq2 ​[5]​ and EdgeR ​[6]​. Applying these methods to 
scRNASeq data is often challenging due to the difficulty of identifying homogenous 
subpopulations. 
 
A particularly challenging aspect of scRNASeq data is the presence of “dropouts”, i.e. genes 
that are not detected in some cells but highly expressed in others. We demonstrate that the 
dropout rate can be related to the expression level via the Michaelis-Menten equation. We 
utilize the model to develop an unsupervised feature selection algorithm, Michaelis-Menten 
model of dropouts (M3Drop), and we demonstrate that the identified genes correspond to DE 
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genes. Unlike other DE methods, M3Drop does not require prior identification of groups of cells, 
making it significantly easier to apply. Using publicly available data, we demonstrate that 
clustering using the genes identified by M3Drop can reveal new, biologically meaningful groups. 
Finally, we demonstrate that the features identified by M3Drop make it possible to overcome 
batch effects to cluster data from different labs and protocols by biological group rather than 
experiment.  
 
Results 
 
The results from a scRNASeq experiment can be represented as an expression matrix, where 
each row represents a gene and each column represents a cell. The most salient characteristic 
of scRNASeq data is the presence of a large number of zero values (i.e. dropout events). A 
typical scRNA-seq experiment has ~50% dropouts (​Table 1​) ​[3]​, and it has been suggested that 
the large number of dropouts is due to transcripts being lost during the library preparation ​[7]​. 
Based on studies of RT-qPCR assays ​[8]​ ​[9]​, we hypothesize that the main reason for dropouts 
is due to failure of the reverse transcription (RT). Since RT is an enzyme reaction we adapt the 
standard model of enzyme kinetics, the Michaelis-Menten (MM) equation ​[10]​, to propose a 
phenomenological model between the frequency of dropouts and the expression level of genes: 
 

(1) 
 
where S is the average expression of the gene across all cells and K​M​ is the Michaelis constant 
which corresponds to the mean expression level required for a gene to be detected in half of the 
cells (​Supplementary Note 3​), and P​dropout​ represents the probability that the quantity of cDNA 
reaches some experiment-specific threshold of detection in any cell. 
 
Fitting Published Datasets 
 
To evaluate the MM model, we fit it to eight recent scRNASeq datasets (​Table 1​) with different 
biological origins that were analyzed using different experimental and computational 
procedures. We find that the MM model performs better than two previous models (​Figure 1 
A,B​). Pierson and Yau ​[11]​ proposed modeling dropout probability as a function of the squared 
average expression which we find is a poor fit for all the datasets.  Kharchenko et al. ​[7] 
proposed a logistic model which provides a fit similar to the MM model. The logistic model is 
equivalent to:  

(2) 
(i.e. the Hill equation), and by comparing to Eq (1) it is clear that the MM model can be obtained 
by setting n = 1. Due to the high noise levels the logistic regression fits result in a less steep 
curve (​Figure S3H​), and thus the sum of absolute residuals is lowest for the MM model (​Figure 
1​) while the sum of squared residuals is lowest for the logistic regression (​Figure S3I​). The 
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similarity of the MM model and the logistic model is most evident for the Zeisel and Klein 
datasets where the noise is reduced through the use of unique molecular identifiers (​Figure 
S3​).  
 
Differential Expression 
 
By considering deviations from the MM model, biological insights about a scRNASeq dataset 
can be obtained. One assumption of the MM model is that each gene has the same  expression 
in all cells. Consequently, genes located to the right of the fitted curve indicate differences in 
expression across two or more cell subpopulations. The reason why the MM model can be used 
to identify differentially expressed genes is because the dropout rate is a convex function of the 
expression level whereas calculating mean expression and dropout rate are linear functions 
(​Figure 1C, D​). Thus, the fitted curve can serve as a null model, and we can test for genes that 
are further to the right of the curve than expected by chance (​Methods​). We refer to this method 
as M3Drop and it allows us to identify genes that are DE between subsets of cells.  
 
We compared the performance of M3Drop to three existing DE methods: DESeq ​[12]​, DESeq2 
[5]​, and SCDE ​[7]​, in addition to a method for identifying highly variable genes (HVG, ​[2]​). HVG 
is not designed to identify DE genes, but it is similar to M3Drop in that it does not require 
pre-defined groups to select genes. M3Drop and HVG are much faster than the three DE 
methods, each took only a minute to compute for datasets of thousands of cells and over ten 
thousand genes using a single processor (​Figure 2A​) and can be computed for the 44,808 cell 
mouse retina dataset ​[13]​ in less than two minutes. In contrast, DESeq2 and SCDE took several 
hours for datasets with >200 cells. For 5 datasets, DESeq, DESeq2 and SCDE report ~40% of 
genes as DE, many of which are known housekeeping genes (e.g. Psmb2 and Snrpd3) or 
external spike-ins, whereas M3Drop and HVG tend to be more conservative and report ~10% of 
the genes (​Figure 2B​).  
 
To assess the quality of the predictions we defined a set of true positive genes for each dataset 
based on Gene Ontology categories relevant for each context. Similarly, we defined a set of true 
negatives based on spike-ins and housekeeping genes (​Methods​). Our results show that 
M3Drop and HVG have higher enrichments of true positive genes and lower false positive rates 
for six of the datasets (​Figure 2C,D​). The only two datasets where DESeq, DESeq2 and SCDE 
performed better (Buettner and Shalek), examined fewer than 300 cells and relatively small 
biological differences, cell cycle and stimulation with ​lipopolysaccharide respectively. We 
conclude that M3Drop is a fast and accurate method for identifying DE genes. 
 
Reproducibility using pseudoreplicates 
 
To investigate the consistency of the different methods we took advantage of the fact that some 
of the datasets derive from similar tissues; two were mouse neuronal tissue (Usoskin and 
Zeisel), and two come from mouse preimplantation embryos (Deng and Biase). We treat these 
studies as pseudoreplicates, and we asked if similar genes were identified by each method. 
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Genes identified by M3Drop were the most consistent across datasets which examined the 
same biological system (​Figure 3A, B​). The gene sets reported by M3Drop, DESeq2, DESeq, 
and SCDE overlap more than expected by chance within datasets (p < 10​-50​). Whereas, genes 
identified by HVG were only significantly consistent with the other methods for the Deng and 
Usoskin datasets (p < 10​-20​) and there was even a significant depletion of common genes 
between HVG and DESeq2 for the Zeisel and Biase dataset ( p < 10​-30​). M3Drop was 
significantly more reproducible across datasets compared to the other methods with [2.37, 
3.29]-fold enrichment (95% CI) of genes found in both  Deng and Biase datasets compared to 
chance, and [1.99, 2.91]-fold enrichment between Usoskin and Zeisel datasets. DESeq, 
DESeq2, and SCDE were only 1.069 to 1.634 fold enriched between datasets.  HVG showed 
high reproducibility across the developmental datasets, [1.63, 2.96]-fold enrichment, but very 
low reproducibility across the neuronal datasets, [1.01, 1.16]-fold enrichment.  
 
Testing on simulated data 
 
Testing computational methods on real data is difficult since we have very limited knowledge of 
the ground truth. Unlike bulk RNASeq there are no large scale benchmarked datasets available 
[14,15]​. Thus, we generated simulated data using a zero-inflated negative binomial model fitted 
to all genes present in the Buettner dataset (​Table 2, Methods​). This dataset was chosen since 
it appears to be relatively homogenous and it has the fewest DE genes according to all five 
methods (​Figure 2B​). Simulated data consisted of two subpopulations with a subset of genes 
differentially expressed between them (​see Methods​). We simulated ten replicates for each of 
46 sets of model parameters, varying the size of the cell populations, degree of differential 
expression, number of differentially expressed genes, and degree of dispersion.  
 
Simulations show that M3Drop is more accurate than HVG at detecting differentially expressed 
genes (​Figure 4​). Consistent with our results for the real data, we find that M3Drop is 
conservative as it finds no false positives using a 5% FDR. M3Drop fails to detect DE genes 
with very high or very low expression, but our method has good performance for genes detected 
with mean count of 30-2000 (​Figure 4A​). In contrast, HVG identifies many false positives 
among low to moderately expressed genes (0.5-200 counts), which accounts for it’s overall poor 
performance since most genes in scRNASeq experiments fall into this regime (​Figure 4A, S3​). 
We found that HVG only detected DE genes with relatively high overall expression (>100 
counts) 
 
We find that both methods have low sensitivity, with poor performance when the fold change in 
mean expression is less than 5 (​Figure 4B​). Surprisingly, HVG exhibits a decrease in 
performance at very high fold changes (> 50). This may be due to the weakening relationship 
between dispersion and mean expression which counters the increase in variability due to 
difference in mean expression. By contrast, the performance of M3Drop improves with 
increasing fold change. 
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Both methods’ performance improves as the number of cells increases (​Figure S5​). However, 
when considering the proportion of cells with high/low expression of the DE genes, M3Drop is 
symmetric with equal performance, both when only a few cells overexpress the genes and when 
only a few cells have reduced expression. By contrast, HVG is biased towards genes 
overexpressed in a small number of cells (​Figure 4C​). We also found that high transcriptional 
variability may result in an increase in dropouts, even in the absence of differential expression. 
Using simulated data where 10% of genes have 3-fold inflated variability across all cells, we find 
that M3Drop also detects highly variable genes but is less sensitive than the HVG method 
(​Figure S6​).  
 
These results show that a method for detecting highly variable genes fails to identify differential 
expression in a number of situations, such as low expression in a small number of cells or very 
high fold changes, and is prone to identifying false-positives. Although differentially expressed 
genes often exhibit high variability, these two qualities are not synonymous. Genes may exhibit 
high transcriptional variability without being differentially expressed and genes may be 
differentially expressed without exhibiting high overall variability (​Figure 4D​). Indeed, we find 
that observed variability is only weakly correlated with fold-change of differentially expressed 
genes (Pearson correlation = 0.33, mean expression = 100, N = 100) since most of the 
observed variability is due to within-population variability rather than between population 
differences in mean expression. In addition, there is high intrinsic noise in estimating sample 
variability ​[16]​. In contrast, dropout rate is highly correlated with fold-change (Pearson 
correlation = 0.78) and exhibits much lower levels of intrinsic noise (​Figure 4E, S7, S8​). Hence, 
by using dropouts as opposed to variance, M3Drop outperformed HVG in detecting differentially 
expressed genes.  
 
De novo identification of trophectoderm and inner cell mass 
 
The main advantage of using M3Drop to identify DE genes, as opposed to traditional DE 
methods, is that no assumptions about the underlying groups is required. Indeed, M3Drop is 
best described as an unsupervised feature selection method, and the previous section shows 
that the features correspond to DE genes. One application of feature selection is noise 
reduction when identifying subpopulations of cells, and others have used high variability to 
select genes for this purpose ​[1,17–20]​. 
 
We show that the DE genes identified by M3Drop are informative for identifying cell 
subpopulations by applying M3Drop to a set of 255 cells across early mouse development ​[21]​. 
There were 1,478 significantly DE genes identified at 1% FDR (​Figure 1D​). Clustering the cells 
using Ward’s hierarchical clustering ​[22]​ recapitulates the known sampling times of the cells 
(​Figure 5A​). However, the three timepoints of blastocysts (earlyblast, midblast, and lateblast) 
cluster together into two distinct groups. Based on what is known about embryonic 
development, we hypothesized that the two groups correspond to the inner cell mass (ICM), 
which develops into the fetus, and trophectoderm (TE), which develops into the placenta. To 
test this hypothesis, we compared the expression levels of six known marker genes (​Figure 5 
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B-G​). One group had significantly higher expression of Sox2, Oct4, and Nanog which are known 
to be important for the ICM; whereas the other group had significantly higher expression of the 
TE marker Cdx2 and its targets Eomes and Elf5 ​[23​,​24​,​25]​ . This dichotomy was not observed 
when blastocyst cells were grouped by time-point (​Figure S11​). 
 
We identified the top 100 marker genes which distinguish the two blastocyst groups based on 
the extent of overlap between the distribution of expression values across cells in each group 
[26]​. Gene Ontology analysis of these marker genes showed that the putative TE cells 
expresses genes involved in the actin cytoskeleton, cellular adhesion, and vasculature 
development - processes which are important for implantation of the embryo and development 
of the placenta (​Figure 5H, Table S4​). The putative ICM cells expresses genes involved in DNA 
methylation/demethylation, stem cell maintenance, and gastrulation (​Figure 5I, Table S4​), 
consistent with evidence that DNA methylation is reset during the blastocyst stage ​[27]​.  
 
Combining developmental datasets 
 
As an additional application of M3Drop feature selection, we consider the problem of merging 
datasets from different labs. Merging datasets generated by different labs is complicated not 
only by the use of different sample preparation methods and protocols, but also by the presence 
of batch effects that can affect samples that were processed in the same way ​[28​,​14]​. One 
consequence of this technical variability is that samples will often show statistically significant 
differences, even though the biological origins are identical.  
 
We obtained three additional mouse preimplantation datasets ​[29​-​31​] and we pooled those cells 
with the Deng and the Biase datasets to obtain a set of 521 cells (​Methods​). Using only the 316 
genes identified as DE by M3Drop in both the Deng and the Biase dataset (​Table S5​), we found 
that cells cluster by embryonic stage rather than dataset of origin (​Figure 6​). By contrast, using 
the genes identified by HVG failed to cleanly separate the stages and using the full set of genes 
results in a clustering where the cells are grouped by batch instead (​Figure 6,S13,S14​). 
Consistent with these results, we find that using SC3 the correct number of clusters can be 
estimated from the M3Drop DE genes, 7 clusters, whereas using all genes gives an estimate of 
14 clusters, and HVG genes gives an estimate of 4 clusters. We conclude that batch effects are 
not a significant barrier provided that one can focus on the most biologically informative genes. 
 
Importantly, the 316 genes identified by M3Drop include many that are known to be important 
for early embryonic development, such as: Zscan4d, which is known to have highly specific 
expression in 2-cell embryos ​[32]​, H1foo, an oocyte-specific histone, Tdgf1 which is required for 
gastrulation ​[33]​, the oocyte-specific growth factor Bmp15 ​[34]​ and Bhmt which are involved in 
mouse embryonic methylation ​[35]​. Four of the six Obox gene family members which have been 
previously associated with oogenesis ​[36]​ were amongst this set of genes, Obox1, Obox3, 
Obox5, and Obox6. However, only Obox1 and Obox5 were preferentially expressed among 
zygotes and oocytes (​Figure S16​). By contrast, Obox6 was most highly expressed among 4-cell 
to 8-cell embryos and Obox3 was more than 20-fold more highly expressed among 2-cell 
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embryos than any other stage. Taken together, these results highlight the utility of M3Drop for 
identifying reproducible features that make it possible to integrate different scRNASeq 
experiments. 
 
Discussion 
 
M3Drop is a powerful new unsupervised feature selection method for scRNASeq data. We have 
demonstrated that the genes identified by M3Drop correspond to DE genes. Unlike traditional 
DE methods, M3Drop can identify differentially expressed genes without ​a priori​  identification of 
biological conditions. For many single-cell experiments the biologically relevant groups are 
unknown, making it hard to apply traditional DE methods. We demonstrated that the genes 
identified by M3Drop can reveal biologically meaningful clusters and that they allow us to 
overcome batch effects when merging datasets.  
 
Our results reveal the utility of modelling scRNASeq as an enzyme reaction where a fixed but 
unknown amount of product (cDNA) is required for detection. The MM model identifies 
consistent differences between different protocols and our results show that when the reverse 
transcription and pre-amplification occur in small volumes prior to pooling (e.g. Fluidigm C1), 
then detection rates are higher compared to methods where one or both of these steps occur 
after pooling multiple cells together, e.g. CEL-Seq, Drop-Seq (​Figure S2​) ​[37,38]​. This result 
highlights an intrinsic advantage of using small reaction volumes, and it should be an important 
consideration when evaluating different protocols. 
 
The most commonly used feature selection criterion for scRNASeq data is high gene expression 
variability ​[1,17–20]​. Our simulation studies reveal that M3Drop is less prone than HVG ​[2]​ to 
identifying false-positives among lowly expressed genes, and that the number of false positives 
can be more than an order of magnitude lower (​Figure 4A​). On average 60% of genes detected 
by HVG were false positives whereas only 0.1% of genes detected by M3Drop were false 
positives. Since false positives occur due to random chance it is unlikely that the same genes 
will be identified across different datasets which explains the low concordance observed 
between the pseudoreplicates. When comparing to the HVG method on published datasets, we 
found that M3Drop is more reproducible (​Figure 3A,B​).  
 
For both high variance genes and differentially expressed genes we observe that high sampling 
noise affects observed variances (​Figure S7, S9​). High sampling noise is an intrinsic property of 
sample variance ​[16]​. Its effect evident in the weak of correlation between variance and fold 
change for samples of fewer than 1,000 cells (​Figure S8, S10​). Dropout rates, are much more 
robust to sampling noise and they consistently show high correlations with fold change even for 
small sample sizes (​Figure S8, S10​). 
 
The fundamental reason why the HVG method performs poorly is due to the fact that 
(normalized) variance is a poor metric for discriminating features in scRNASeq data (​Figure 
S7,S8​). Current protocols and sequencing depths result in the majority of expression 
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measurements being dropouts. As a result, the first principal component of variability across 
genes is more strongly correlated with the dropout rate than with the variance. In addition, for 
most genes, the within population variance is similar to the between population variance even 
for large fold-changes in mean expression. Thus, dropout rate is a better indicator of different 
subsets of cells since it has a cleaner relationship with differential expression.  
 
Conclusion 
 
We introduce a novel unsupervised feature selection method, M3Drop, based on a 
Michaelis-Menten model of the dropout rate in scRNASeq datasets. We show M3Drop can 
reproducibly identify DE genes in both real and simulated single-cell RNASeq datasets without ​a 
priori​  determination of experimental groups. Moreover, the features identified by M3Drop allows 
us to overcome batch effects when combining data from different studies.  
 
Methods 
 
Single-cell RNASeq datasets 
 
We considered eight public scRNASeq datasets (​Table 1​). These were chosen to reflect a 
range of different dataset sizes, sequencing methods and cell-types. Datasets where the 
expression matrix consisted of raw read counts (or UMI counts) were converted to counts per 
million. Quality control was performed prior to all analyses as follows. First, all genes annotated 
as processed pseudogenes in Ensembl (version 80) were removed and cells with fewer than 
2000 detected genes were removed. Genes detected in fewer than 4 cells or with average 
normalized expression < 10​-5​ were excluded from consideration. For the Deng data, only single 
mouse embryo cells analyzed using the SmartSeq protocol were considered to avoid technical 
artefacts. To facilitate the identification of true positive DE genes only the two replicates of 
Unstimulated and after 4h LPS stimulation were considered for the Shalek dataset; in addition 
technical artefacts as described by the authors were removed ​[39]​. 
 
Fitting Dropout Models 
  
The expression of each gene was averaged across all cells including those with zero reads for a 
particular gene (S) (See ​Supplementary Note 2​). Dropout rate was calculated as the proportion 
of cells with zero reads for that gene (P​dropout​). The three models were fit using these values. The 
Michaelis-Menten equation: 

 
was fitted using maximum likelihood estimation as implemented by the ​mle2 ​function in the 
bbmle ​R package. The logistic regression ​[7]​: 
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was fitted using the ​glm ​ R function. Comparing to Equation (2), we note that ​a ​ = log(K​d​) and ​b ​ = 
-n.The double exponential model ​[11]​ was fit by log transforming the equation then using the lm 
R function to fit the coefficient to the resulting quadratic model:  

 

 
 
We also considered a double MM model: 

  
 where ​, ​ > 0. For all datasets except Zeisel, however, ​ was almost identical to  
while ​ was < 0.001 (​Table S1​).  
 
 
Differential Expression (DE) 
 
Rearranging the general Michaelis-Menten equation to solve for the Michaelis-Menten constant 
K gives:  
 

 (1) 
 
This is used to calculate the value specific to each gene, K​j ​; the variance for each K​j ​ estimate 
was calculated using error propagation rules to combine errors on observed S and P: 
 

 (2) 
 
Where ​ is the sample standard deviation of S and ​ is the sample standard deviation of P. 
The K​j ​’s were assumed to be log-normally distributed and we tested each one against the global 
K​M​ that was fit to the entire dataset using a one-sided Z-test: 
 

 (3) 

 was estimated as the standard error of the residuals and added to   
 

 (4) 
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 (5) 

 
Differential expression was also calculated using DESeq (version 1.22.1) and DESeq2 (version 
1.10.1) and SCDE (version 1.2.1) for every pair of groups for each dataset (​Supplementary 
Note 3​). DESeq was run on a single processor and all cells in each dataset. DESeq2 was run 
on 10 processors and datasets containing more than 1,000 cells were downsampled to 1,000 
cells to reduce runtimes. SCDE was run on 10 processors and datasets containing more than 
500 cells were downsampled to 500 cells, while ensuring equal coverage for all groups.  SCDE 
was run with  ​max.pairs ​ set to 500, ​min.pairs.per.cell ​ set to 1, using threshold segmentation, 
and the original fitting method. All other methods were run with default parameters. DE genes 
were corrected for multiple testing using the Benjamini-Hochberg procedure with a 1% FDR.  
 
To reduce the number of pairwise comparisons between groups tested using classical DE 
methods we merged cell subpopulations into coarse-level labels (​Table S2​). The eleven 
different cell-lines of the Pollen dataset were merged into 4 groups based on the tissue of origin. 
Similarly, the nine different neuronal subtypes of the Zeisel dataset: Interneurons (N), S1 
Pyramidal (N), CA1 Pyramidal (N), Oligodendrocyte (G), Astrocyte (G), Ependymal (G), 
Microglia, Endothelial (Non) and Mural (Non), were merged into four broad categories: Neuron 
(N), Glia (G), Microglia, and Non-Neuronal (Non). Sequential developmental stages in the Deng 
dataset were merged to increase sample sizes, e.g. the dataset contained only 14 cells in the 4 
cell stage after quality control.  
 
Highly Variable Genes (HVG) were calculated using the published method ​[2]​. However, rather 
than fitting the model to the spike-ins, of which there were fewer than 10 in many datasets, the 
model was fit using all genes. Significantly variable genes were those passing a 1% FDR and 
minimum 50% biological dispersion. 
  
Quality of Differentially Expressed Genes 
 
Accuracy of DE was evaluated using the known marker genes for each of the 6 cell-type 
datasets: Deng, Usoskin, Klein, Zeisel, Pollen and Biase (​Table S3​). For the Shalek dataset we 
compared the two replicates of unstimulated cells to the two replicates of LPS stimulated cells 
and used all 990 genes with the Gene Ontology annotation “immune response” as true 
positives. For the cell-cycle dataset (Buettner, ​[1]​) we used the list of 892 known cell-cycle 
genes from the Gene Ontology and Cyclebase provided with the original publication. For true 
negatives any spiked-in RNAs for each dataset was combined with 11 lowly variable 
housekeeping genes identified by Eisenberg and Levanon ​[40]​. 
 
Reproducibility of DE genes was measured as the number of genes identified by two different 
methods applied to the same dataset or by the same method applied to two different datasets. 
The intersection of the two lists of DE genes was compared to the number that would be 
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expected by chance given the number of all detected genes ( ​) that were identified as DE in 
each case ( ​), where the index ​k​  represents either a dataset or a method.  
 

 
Significance was evaluated using Fisher’s exact test. 
 
Synthetic Data 
 
Synthetic data was generated using a zero-inflated negative binomial distribution. The 
relationship between mean and dispersion parameters (CV2 as defined in ​[2]​) was estimated 
using a power law from the Buettner dataset, ​.​ ​ We chose to use this 
dataset since it exhibits only minor biological variability due to the cell cycle ( ​[1​,​41]​, ​Figure S3​). 
Based on a binomial distribution where the parameter is determined by the MM model fit to the 
experimental data​ (K = 10.3, ​Table S1​). The resulting synthetic expression matrices 
approximated observed single-cell data (​Figure S4​). Genes where every entry was a zero or 
where no entries were zero were excluded since neither can be detected by M3Drop. 
 
When comparing overall accuracy of the different methods (​Figure 4B & C,S6​), gene-specific 
mean expression was drawn from a truncated log normal distribution (mean=sd=1) which 
approximated observed values (​Figure S4D​). Genes were ranked by reported p-values from 
M3Drop and HVG ​[2]​. Ranks were used to calculate the area under the ROC curve (AUC) for 
each method.  
 
When considering accuracy across expression levels (​Figure 4A,S7​), log mean expression 
values for 25,000 genes were drawn from a uniform distribution over the interval [-2, 4]. A 5% 
FDR multiple testing correction was applied to the p-values reported by M3Drop and HVG. 
Accuracy was evaluated for bins spanning one order of magnitude. We calculated the observed 
false discovery rate (FDR), the proportion of genes deemed significant by the respective method 
(positives) that were not simulated with differential expression/high variance (true positives), and 
false negative rate (FNR), the proportion of true positives not found to be significant by the 
respective method (negatives).  
 
To further examine the effect of differential expression on observed variance and dropout rate, 
we simulated a single gene differentially expressed in two equally sized subpopulations with 
fixed overall mean expression while varying fold-change from 1-100 across the two 
subpopulations. Observed sample variance and dropout rate and Pearson correlations were 
calculated using standard methods. 
 
Preimplantation Mouse Development 
 
M3Drop was applied to the 255 cells of the Deng dataset. Cells were clustered using Ward’s 
hierarchical clustering ​[22]​, the resulting tree was cut to give five groups, which corresponds to 
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the first division of the blastocyst group. Normalized expression of three markers of the Inner 
cell mass (ICM) and trophectoderm (TE) was compared for the two groups of blastocyst cells 
using a Wilcoxon rank-sum test. Novel markers were ranked according the the area under the 
ROC curve when each gene was used to predict to which of the blastocyst groups each cell 
belonged ​[26]​. Gene Ontology annotations were obtained from Ensembl80, terms annotated to 
more than 50% of detected genes were excluded from consideration. Enrichments among the 
top 100 marker genes for the ICM and TE clusters were determined using a hypergeometric test 
and Bonferroni multiple testing correction. 
 
Combining Datasets 
 
We combined the two mouse development datasets, Deng and Biase, with three additional 
publicly available datasets  ​[29​-​31]​ . Each dataset was filtered for quality using identical criteria 
as described above : all genes annotated as processed pseudogenes in Ensembl (version 80) 
were excluded, cells with fewer than 2000 detected genes were removed, and genes detected 
in fewer than 4 cells or with average normalized expression < 10​-5​ were excluded from 
consideration. The Deng and Goolam data was normalized using CPM, all other datasets were 
already FPKM/RPKM normalized. No other correction for batch effects was applied.  
 
We compared feature selection using M3Drop or HVG on both the Deng and Biase datasets to 
no feature selection. Only genes detected in 4 or more cells and with expression > 10​-5​ in all 
four datasets were considered. This left 316 M3Drop genes, 67 HVG genes, and 11,440 genes 
total across the datasets. Cluster number estimation on the combined dataset was performed 
using SC3 version 1.1.8 ​[26]​. 
 
Individual cells from all datasets were clustered together using complete linkage hierarchical 
clustering. The resulting hierarchy was cut at every level and the resulting clusters were 
compared to the consensus stages: zygote (incl. oocytes), 2-cell, 4-cell, 16-cell (incl. morula), 
and either general blastocyst or TE and ICM stages. ICM and TE labels for the Deng data were 
derived from the clustering described above. The similarity between the stage labels and each 
clustering was quantified using the adjusted Rand index (ARI) ​[42]​.  
 
ARI is calculated as the proportion of all possible pairs of cells which are consistently in the 
same group ( ​) or in different groups ( ​) in both clusterings. This is then normalized to 
account for the proportions expected by chance given the number and size of the detected 
clusters. The maximum adjusted Rand index across all seven possible clusterings was reported: 
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Tables 

Table 1​: Eight publicly available datasets. 

Dataset Cell-types Original Labels Method N % Zero Source 

Buettner Mouse ESC Cell-cycle 
stage 

Smartseq 
Counts -> (CPM) 

279 51% [1] 
E-MTAB-2805 

Deng Mouse 
embryos 

Developmental 
timepoint 

Smartseq 
Counts -> (CPM) 

255 50% [21] 
GSE45719 

Usoskin Mouse 
neurons 

PCA-based 
clustering 

5’ Seq 
Counts -> (CPM) 

530 73% [43] 
GSE59739 

Klein Mouse ESC Differentiation CEL-Seq  2448 63% [44] 
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timepoint UMIs -> (CPM) GSE65525 

Zeisel Mouse brain BackSPIN 
clustering 

5’ Seq  
UMIs -> (CPM) 

2542 77% [45] 
GSE60361 

Shalek Mouse bone 
marrow 

Stimulated & 
unstimulated 

Smartseq 
FPKMs 

173 66% [39] 
GSE48968 

Pollen Human cell 
lines & 
tissues 

Cell line 
identity 

Smartseq 
FPKMs 

301 60% [46] 
SRP041736** 

Biase Mouse 
embryos 

Developmental 
stage 

Smartseq 
FPKMs 

56 38% [47] 
GSE57249 

*UMI = Unique Molecular Identifier; FPKM = fragments per kilobase per million; CPM = count 
per million 
** Processed data was provided by the authors 
 
Table 2: ​Simulation parameters 

Parameter Description Default value 

n Number of genes 25,000 

N Number of cells 300 

Fc Fold change in expression between subpopulations 10 

Pc Proportion of genes that are DE 10% 

Ps Proportion of cells in the subpopulation (higher expression) 50% 

d Fold increase in dispersion over fitted values 1 (no change) 

K Parameter of Michaelis-Menten dropouts 10.3 

 
Figure Captions 
Figure 1:​ ​Michaelis-Menten model of dropouts.​ (A) The Michaelis-Menten (solid black), 
logistic (dashed purple), and double exponential (dotted blue) models are fit to the Deng dataset 
[21]​. Expression (counts per million) was averaged across all cells for each gene (points) and 
the proportion of expression values that were zero was calculated. ERCC spike-ins are shown 
as open black circles. (B) Michaelis-Menten had the smallest sum of absolute residuals (SAr) 
across all eight datasets considered.​ ​(C) Since the Michaelis-Menten equation (black) is a 
convex function, genes that are expressed at different levels in different cell types (light grey 
points) become outliers (dark grey point) when averaging across a mixed population. (D) 1,478 
significant outliers (purple) from the Michaelis-Menten equation (black line) were identified at 1% 
FDR in the Deng dataset.  
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Figure 2: Quality of differential gene detection on real datasets.​ (A) HVG and M3Drop are 
the most computationally efficient methods. SCDE was limited to 500 cells and DESeq2 was 
limited to 1000 cells both were run in parallel on 10 processors. DESeq, HVG and M3Drop were 
run on the full datasets on a single processor. (B) Proportion of all detected genes that were 
called as DE (1% FDR). (C) Fold enrichment of true positive (cell-type markers or members of 
relevant pathways) among DE genes for each dataset. (D) Proportion of housekeeping genes 
and spike-ins called as DE (conservative estimate of false positive rate) for each method.  
 
Figure 3:​  ​Michaelis-Menten identifies reproducibly differentially expressed genes. ​(A & B) 
The ratio of Observed/Expected overlaps (given the number of genes called as DE) between 
DE genes identified using different methods/datasets. Ratios of observed to expected overlap 
controlling for the number of detected genes and number of DE genes for each method are 
presented for the Biase (A green lower triangle), Deng (A blue upper triangle), Zeisel (B green 
lower triangle), and Usoskin (B blue upper triangle). The diagonals (purple) show the value for 
comparisons for the same DE method across two datasets on early embryonic development in 
mice (A) and two datasets collected from mouse neuronal tissue (B). Cells in white are not 
significantly different from chance (obs/exp = 1) based on Fisher’s exact test.  
 
Figure 4​: ​Dropouts are more informative of DE than variability.​ (A) Quality of calls for 
M3Drop and HVG for genes 10-fold differentially expressed in 50% of cells across a range of 
expression values representative for many datasets. Grey indicates distribution of observed 
mean expression values in Buettner dataset. Red dashed line indicates FDR used in 
multiple-testing correction. Note that the solid black line is at 0 for all expression levels. (B-C) 
Area under the ROC curve when genes are ranked by p-value for HVG (green) and M3Drop 
(black) as it relates to fold-change of DE genes (B) and proportion of cells overexpressing the 
genes (C). (D-E) Relationship between fold change and observed variance (D) and observed 
dropout rate (E) when overall mean expression is fixed at 100, in a population of 50 low and 50 
high expression cells.  
 
Figure 5:​ ​Identification of biologically relevant clusters from a development time-course. 
(A) Expression of the 1,478 DE genes identified by M3Drop (1% FDR) in the Deng dataset 
reveals two clusters of cells across all three blastocyst timepoints using Ward’s hierarchical 
clustering. (B-D) Expression of markers of the inner cell mass (ICM) for the two blastocyst 
clusters, all show significant upregulation in Group 5 (Wilcox rank-sum test, p < 0.0001). Star 
indicates that Sox2 was identified as DE by M3Drop. (E-G) Expression of markers of the 
trophectoderm (TE), all show significant upregulation in Group 4 (Wilcox rank-sum test, p < 
0.00001) and all were identified as DE by M3Drop. (H & I) Gene Ontology enrichments among 
the top 100 marker genes for group 4 and 5 respectively, all categories are significant with p < 
0.01​ ​using hypergeometric test and Bonferroni correction. 
 
Figure 6:​ ​M3Drop marker genes makes it possible to merge datasets from different 
experiments. ​(A) Clustering 521 cells from four different datasets using genes selected by 
M3Drop (black), HVG (red) or all detected genes (blue). Clusters were compared to the true 
developmental stages: zygote, 2-cell, 4-cell, 8-cell, 16-cell, and blastocyst. Random chance: 
ARI = 0, identical clustering: ARI = 1. (B-D)​ ​Principal component analysis based on the genes 
detected by M3Drop (B) or HVG (C) in both Deng and Biase datasets or all detected genes (D).  
 
Figures 
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