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interactions. 42 
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Abstract 94 

Plant disease symptoms exhibit complex spatial and temporal patterns that are 95 

challenging to quantify. Image-based phenotyping approaches enable multi-dimensional 96 

characterization of host-microbe interactions and are well suited to capture spatial and 97 

temporal data that are key to understanding disease progression. We applied image-based 98 

methods to investigate cassava bacterial blight, which is caused by the pathogen 99 

Xanthomonas axonopodis pv. manihotis (Xam). We generated Xam strains in which 100 

individual predicted type III effector (T3E) genes were mutated and applied multiple 101 

imaging approaches to investigate the role of these proteins in bacterial virulence. 102 

Specifically, we quantified bacterial populations, water-soaking disease symptoms, and 103 

pathogen spread from the site of inoculation over time for strains with mutations in 104 

avrBs2, xopX, and xopK as compared to wild-type Xam. ∆avrBs2 and ∆xopX both 105 

showed reduced growth in planta and delayed spread through the vasculature system of 106 

cassava. ∆avrBs2 exhibited reduced water-soaking symptoms at the site of inoculation. In 107 

contrast, ∆xopK exhibited enhanced induction of disease symptoms at the site of 108 

inoculation but reduced spread through the vasculature. Our results highlight the 109 

importance of adopting a multi-pronged approach to plant disease phenotyping to more 110 

fully understand the roles of T3Es in virulence. Finally, we demonstrate that the 111 

approaches used in this study can be extended to many host-microbe systems and 112 

increase the dimensions of phenotype that can be explored.  113 
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 125 

Introduction  126 

Plant diseases are responsible for significant reductions in agricultural 127 

productivity worldwide, and for many diseases, control strategies are not available 128 

(Chakraborty and Newton, 2011). Elucidating the molecular mechanisms that govern 129 

host-microbe interactions has a robust track record of leading to the development of new 130 

and effective resistance strategies. For example, plant innate immunity employs several 131 

tiers of receptors that, at least in some instances, can be transferred among species (Tai et 132 

al., 1999; Zhao et al., 2005; Lacombe et al., 2010; Tripathi et al., 2014; Schoonbeek et al., 133 

2015). Similarly, molecular dissection of the mechanisms used by pathogens to induce 134 

susceptibility has led to the development of biotechnology methods for blocking 135 

pathogenesis (Li et al., 2012; Strauß et al., 2012; Boch et al., 2014). A more complete 136 

understanding of the mechanisms used by plant pathogens to cause disease is likely to 137 

lead to the development of additional strategies with potential for translation to the field. 138 

Collectively, research conducted over the past few decades has revealed a 139 

complicated web of crosstalk that forms our current multi-tiered model of plant-pathogen 140 

interactions. Plant pattern recognition receptors (PRRs) initiate immune responses after 141 

recognition of conserved microbial features, such as flagellin and EF-Tu for bacteria and 142 

chitin for fungi (Macho and Zipfel, 2014). Successful pathogens have evolved effector 143 

proteins to suppress defenses and induce susceptibility within their hosts (Win et al., 144 

2012). Resistant hosts may recognize these effectors or their action to trigger robust 145 

immune responses (Stam et al., 2014; Khan et al., 2016). Type III effectors (T3Es) 146 

secreted into host cells by Gram-negative bacteria are among the most intensely studied 147 

pathogen effector proteins, and yet, the function of most T3Es remains unknown. 148 

Members of the Xanthomonas and Pseudomonas genera are among the most common 149 

bacterial disease-causing agents and are known to have large and variable effector 150 

repertoires (White et al., 2009; Lindeberg et al., 2012; Schornack et al., 2013). Efforts to 151 

deduce the role of individual T3Es in bacterial virulence through characterization of 152 

effector knockouts have concluded that while collectively important, many individual 153 

effectors do not contribute substantially to virulence (Castañeda et al., 2005; Kvitko et 154 

al., 2009; Cunnac et al., 2011; Dunger et al., 2012; Xie et al., 2012). 155 
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Advances in DNA sequencing technologies have provided a wealth of genomic 156 

resources for bacterial species. Using genomics data generated from pathogenic bacteria, 157 

we are able to predict T3E repertoires, and the function of individual effectors can then 158 

be investigated with genetic knockouts (Baltrus et al., 2011; Bart et al., 2012; Roux et al., 159 

2015; Wei et al., 2015; Teper et al., 2016). Traditional plant disease phenotyping methods 160 

have relied on visual assessment of symptoms (Bock et al., 2010) and quantification of 161 

pathogen growth in host tissue (Whalen et al., 1991; Tornero and Dangl, 2001; Liu et al., 162 

2015). Visual inspection and scoring of symptoms are likely to be translatable to disease 163 

progression within field settings. Inspection and scoring, however, are subject to surveyor 164 

bias and may not capture subtle differences in disease severity (Poland and Nelson, 165 

2011). Quantification of pathogen growth is a tractable system for comparison, but fails 166 

to provide information regarding the complex spatial patterns of diseases that progress 167 

over time. Thus, genetic studies of T3E mutants have likely missed phenotypes that are 168 

difficult to measure with traditional methods, and new approaches are needed for 169 

exploring additional dimensions of disease phenotypes. 170 

High-throughput, image-based phenotyping methods are revolutionizing many 171 

areas of plant biology research (Furbank and Tester, 2011; Fiorani and Schurr, 2013; 172 

Araus and Cairns, 2014; Granier and Vile, 2014; Fahlgren et al., 2015; Zaman-Allah et 173 

al., 2015). Analysis of plant phenotypes, such as size, shape, color, growth, and leaf area 174 

altered by herbivory, can be automatically extracted from image data to observe how 175 

such traits change over time (Green et al., 2012; Lamari, 2008). Image-based methods are 176 

well suited to characterize the spatial and temporal dimensions of disease symptoms and 177 

have been applied to several host-pathogen systems (Mahlein et al., 2012; Rousseau et 178 

al., 2013; Bauriegel and Herppich, 2014; Baranowski et al., 2015; Li et al., 2015; Raza et 179 

al., 2015). These studies illustrate the range of imaging data that can be generated to 180 

automate and quantify detection of disease symptoms. Additionally, these studies 181 

emphasize that each imaging assay must be calibrated to detect the critical aspects of the 182 

pathosystem being studied.  183 

Cassava (Manihot esculenta) is a major staple crop for an estimated 800 million 184 

people in Africa, South America, and Asia (FAO, 2013) and is prized as a drought-185 

tolerant plant that is able to thrive on marginal lands. Among the diseases that impact this 186 
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crop is cassava bacterial blight (CBB), which is caused by the Gram-negative bacterial 187 

pathogen Xanthomonas axonopodis pv. manihotis (Xam). CBB disease symptoms are 188 

characterized at early stages by water-soaked lesions on leaves and at later stages of 189 

infection by wilting and defoliation (Lozano, 1986). Currently, no disease resistance 190 

genes have been demonstrated to be effective against CBB, and chemical methods are not 191 

an economically feasible form of control for smallholder farmers. Consequently, novel, 192 

genetically encoded methods of achieving plant immunity to CBB must be developed. 193 

T3Es that are both conserved in Xam populations and important for virulence represent 194 

possible targets for engineering durable resistance. Previously, the T3E repertoires for 65 195 

Xam strains were predicted based on their genomic sequences (Bart et al., 2012). This 196 

study predicted 13 to 23 effectors in each strain based on homology to proteins from 197 

other systems, excluding the transcriptional activator-like (TAL) effectors that are not 198 

resolved by Illumina short read technology. Currently, only a few TAL effectors have 199 

been functionally characterized in Xam (Castiblanco et al., 2013; Cohn et al., 2014). 200 

Notably, several recent studies have explored the use of alternate assays to elucidate the 201 

role of T3Es in pathogen virulence (Castiblanco et al., 2013; Cernadas et al., 2014; Cohn 202 

et al., 2014).  203 

For this study, we focused on homologs of two previously characterized T3Es, 204 

AvrBs2 and XopX, and one predicted T3E, XopK, whose role in virulence is unclear. 205 

AvrBs2 contains a glycerol phosphodiesterase domain that is required for its virulence 206 

functions in other Xanthomonas pathovars (Kearney and Staskawicz, 1990; Tai et al., 207 

1999; Zhao et al., 2011; Li et al., 2015). XopX is involved in suppressing pathogen-208 

triggered immunity (Metz et al., 2005; Sinha et al., 2013; Stork et al., 2015). XopK was 209 

first identified in the rice pathogen Xanthomonas oryzae pv. oryzae (Xoo) (Furutani et al., 210 

2006). Previous data indicated that XopK is secreted through the type III secretion system 211 

(T3SS) into host cells (Furutani et al., 2009; Schulze et al., 2012). Although the xopK 212 

gene is conserved in many Xanthomonas species, its role in virulence is unknown 213 

(Bogdanove et al., 2011; Potnis et al., 2011; Bart et al., 2012; Schulze et al., 2012; 214 

Arrieta-Ortiz et al., 2013; Jalan et al., 2013). 215 

Our efforts to phenotypically characterize these Xam mutants began with standard 216 

methods such as visual monitoring of symptom development and quantifying bacterial 217 
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growth in planta over the course of several days. These methods were limited in 218 

resolution, consistency between experiments, and robustness. Consequently, we sought to 219 

apply image-based phenotyping methods to study this pathosystem. The first method 220 

addresses issues of human bias during scoring by using a low-cost, Raspberry Pi 221 

computer and camera to capture and quantify infection over time. The second approach 222 

leverages a bioluminescent reporter system within the bacteria to non-invasively monitor 223 

pathogen spread throughout the plant (Meyer et al., 2005; Xu et al., 2010). The 224 

combination of these methods achieved unprecedented resolution and sensitivity for 225 

quantifying the spatial and temporal dynamics of disease progression within the 226 

laboratory setting. The results of this study highlight the importance of adopting a holistic 227 

approach to phenotyping plant-pathogen interactions to reveal biological functions of 228 

virulence proteins and inform development of disease control strategies. 229 

 230 

Results 231 

Pathogen growth levels and symptom development for Xam type III effector mutants 232 

 To investigate the virulence functions of predicted Xam T3Es, we generated 233 

mutations in genes homologous to avrBs2, xopX, and xopK. Full gene deletions were 234 

created by homologous recombination and initial analysis of pathogen growth levels and 235 

symptom development were performed using standard methods (see Materials and 236 

Methods) (Whalen et al., 1991; Liu et al., 2015). When inoculated by syringe infiltration 237 

in a cassava leaf, wild-type Xam populations increased to high levels and caused dark 238 

water-soaking symptoms that developed within days of inoculation (Fig. 1). In contrast, 239 

mutation of the hrpF gene, which encodes a translocon protein required for type III 240 

secretion (Buttner et al., 2002), caused a 2-log reduction in pathogen growth levels (Fig. 241 

1, A-B) relative to the wild-type strain and eliminated water-soaking disease symptoms 242 

(Fig. 1C). For the ΔavrBs2 and ΔxopX mutants, we observed slightly decreased growth 243 

levels compared with wild-type over a total of four independent experiments (Fig. 1A, 244 

Supplemental Fig. S1). A generalized linear mixed model (GLMM) adjusted by 245 

experiment and technical replicates indicated significant differences in pathogen growth 246 

at 5 days post inoculation (dpi) for the ΔhrpF (p < 0.001, α = 0.05), ΔavrBs2 (p < 0.001, 247 

α = 0.05), and ΔxopX mutants (p = 0.0155, α = 0.05), relative to wild-type. At 6 dpi, the 248 
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ΔavrBs2 mutant exhibited a reduction in disease symptoms (Fig. 1C). There were no 249 

obvious differences, however, in disease symptom production between the ΔxopX mutant 250 

and wild-type at 6 dpi (Fig. 1C).  251 

In contrast to the ΔavrBs2 and ΔxopX mutants, we observed that the ΔxopK 252 

mutant exhibited pathogen growth levels that were either similar to or elevated compared 253 

to wild-type across four experiments (Fig. 1B, Supplemental Fig. S1). A GLMM 254 

indicated the growth differences observed for the ΔxopK mutant at 5 dpi were not 255 

significantly different from wild-type (p = 0.655, α = 0.05). However, water-soaking 256 

disease symptoms caused by the ΔxopK mutant appeared enhanced at 6 dpi (Fig. 1C). To 257 

address the limitations of visual assessment of disease and to better understand the 258 

temporal dimension of this phenotype, we sought to develop a quantitative method of 259 

assessing symptom development with increased time resolution. 260 

 261 

Image-based quantification of disease symptom development 262 

To develop a low-cost imaging system for semi-automated quantification of 263 

disease symptom development, we used Raspberry Pi microcomputers and camera boards 264 

to image the abaxial side of the leaf during symptom development (Fig. 2A). Following 265 

data collection, regions of interest (ROI) were selected manually from the image stacks 266 

that contained each inoculated spot, and image analysis was performed using an ImageJ 267 

macro script (Fig. 2A, Supplemental Fig. S2). 268 

We quantified water-soaking disease symptoms caused by wild-type Xam, along 269 

with the ΔxopK and the ∆hrpF mutants (Fig. 2B). For the wild-type strain, disease 270 

symptoms began appearing at approximately 100 hours post inoculation. As expected, the 271 

ΔhrpF mutant did not produce disease symptoms throughout the course of the 272 

experiment. For the ∆xopK mutant, an increased rate of symptom accumulation was 273 

observed relative to the wild-type strain in the initial phase of disease appearance over 274 

four separate experiments (Fig. 2B, Supplemental Fig. S3). To compare the rates of 275 

symptom accumulation for these strains, we performed a GLMM analysis, adjusted by 276 

experiment and technical replicates. Additionally, we adjusted for heteroskedasticity by 277 

allowing the variance to be exponentially related to time. This analysis indicated that 278 

slopes for both the ∆hrpF (p < 0.0001, α = 0.05) and ∆xopK (p = 0.0476, α = 0.05) 279 
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mutants were significantly different from wild-type. Thus, despite being a predicted T3E, 280 

mutation of the xopK gene induces disease symptoms more rapidly during infection than 281 

wild-type Xam.   282 

To further investigate the impacts of other T3E mutations on disease symptom 283 

progression, we performed imaging of cassava leaves inoculated with the Xam ∆avrBs2 284 

and ∆xopX mutants (Fig. 2C, D). As with the experiments involving the ∆xopK mutant, 285 

we used GLMM, adjusted by experiment, technical replicates, and heteroskedasticity. 286 

The ∆avrBs2 mutant exhibited significantly decreased disease symptom progression 287 

relative to wild-type (p < 0.0001, α = 0.05), consistent with visual observations of disease 288 

(Fig 1). For the ∆xopX mutant, while symptom progression appeared slightly delayed 289 

compared to wild-type, this effect was not significantly different from wild-type across 290 

all experiments (p = 0.1447, α = 0.05). Thus, in the T3E repertoire of Xam, AvrBs2 has a 291 

greater contribution to early symptom progression than XopX.  292 

 293 

Characterizing bacterial spread in host tissue 294 

To observe the ability of T3E mutants to spread systemically during infection, we 295 

developed a method to track bacterial spread in planta. This is particularly important for 296 

Xam because it spreads through the host vascular system to cause disease (Lozano, 1986). 297 

Therefore, bacterial growth and symptom development at the site of inoculation are 298 

descriptive of only a small part of pathogenesis. It has been shown that bioluminescent 299 

bacterial strains can be used to detect pathogen presence in host tissue (Bogs et al., 1998; 300 

Meyer et al., 2005; Xu et al., 2010).  301 

To determine if we could detect Xam and visualize spread from an initial infection 302 

site in planta, we generated bioluminescent strains by introducing a plasmid driving 303 

constitutive expression of the LUX operon into Xam and the T3E mutants by conjugation. 304 

The inoculated areas were imaged in a dark chamber to detect the bioluminescence signal 305 

after syringe inoculation of LUX strains into cassava leaves. Local areas infiltrated with 306 

wild-type Xam exhibited a circular region of bioluminescence that appeared by 4 dpi, 307 

followed by spread into surrounding tissues (Fig. 3). This spread extended beyond the 308 

visible area of water-soaking symptoms observed at 9 dpi. These results indicate Xam 309 

proliferates locally at the site of inoculation before invading into the nearby vasculature, 310 
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and that bacterial spread can be observed in regions of the plant that do not yet exhibit 311 

visible symptoms.  312 

To quantify the changes in bacterial luminescence observed from these images, 313 

we applied image analysis methods for measuring both the convex hull area and 314 

maximum span across the convex hull, which estimate the total area invaded and the 315 

maximum linear distance of spread by the pathogen, respectively. Compared to wild-type 316 

Xam, the ∆xopX mutant exhibited reduced spread, observed in five independent 317 

experiments (Fig. 3, Supplemental Fig. S4). A GLMM, adjusted by experiment and 318 

technical replicates, indicated at 9 dpi this reduction in spread quantified by convex hull 319 

area was statistically significant (p < 0.0001, α = 0.05). We observed significant 320 

reduction in pathogen spread for the ∆avrBs2 (p = 0.0388, α = 0.05) and ∆xopK mutants 321 

(p = 0.0257, α = 0.05). Further consideration of these data revealed that experimental 322 

noise reflected the timing of pathogen entry into the plant vasculature (Fig. 3, 323 

Supplemental Fig. S4). These results highlight the importance of invasion into host 324 

vasculature by Xam for virulence and the power of image-based phenotyping assays for 325 

visualizing this dynamic process.  326 

 327 

Characterizing bacterial spread in vitro 328 

Given the phenotype observed for reduced spread in host tissue, next we 329 

examined if any of the T3E mutants affected motility in vitro (Supplemental Fig. S5). 330 

Bacteria were plated at the center of soft agar plates, which allowed them to spread across 331 

the surface of the media (Lee et al., 2003; Tian et al., 2015). Using a Raspberry Pi-332 

controlled camera, images of the plates were taken for several days, and the area of 333 

bacterial spread was quantified (Supplemental Fig. S5). We observed that the ∆hrpF, 334 

∆avrBs2, ∆xopX, and ∆xopK mutants do not have any apparent motility defects on soft 335 

agar. These results suggest that observed defects in mutant movement through host 336 

vascular tissue are due to factors other than intrinsic bacterial motility.  337 

 338 

Imaging bacterial colonization in other pathosystems  339 

 Since tracking bacterial colonization with a bioluminescent reporter was 340 

successful in cassava, we wanted to expand the use of this method to other pathosystems. 341 
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To explore this, we generated bioluminescent Xanthomonas campestris pv. campestris 342 

(Xcc) and Xanthomonas euvesicatoria (Xe) by conjugation. Following syringe inoculation 343 

of bioluminescent Xam and Xcc, bacteria can be visualized near the site of infection and, 344 

in the case of Xam, at distal sites following spread into the vasculature (Fig. 4). Since Xe 345 

infection in pepper and tomato results in leaf spot disease, dip inoculations were used for 346 

this strain to mimic field infections. Bioluminescent Xe could be readily detected in 347 

distinct puncta across the leaf following dip inoculation (Fig. 4). These results 348 

demonstrate the utility of bioluminescent technologies to track pathogens in diverse crop 349 

plants.  350 

 351 

Discussion 352 

 In complex interactions between hosts and pathogens, T3Es are key targets for 353 

resistance strategies. The specific virulence functions of T3Es, however, can be difficult 354 

to determine, and their characterization remains a primary goal of researchers within the 355 

plant-microbe interaction field. Traditionally, relative virulence of pathogen strains is 356 

quantified through visual assessment of plant symptoms and destructive harvesting to 357 

measure pathogen populations over time. However, these methods alone often do not 358 

provide enough information to make conclusions about T3E functions during infection. 359 

Furthermore, CBB has a number of challenges for experimental study. For example, Xam 360 

is able to spread in planta through both mesophyll and vascular tissue (Boher and 361 

Verdier, 1994). The pattern of colonization for these distinct tissue types likely 362 

contributes to observed experimental noise. Furthermore, cassava plants are propagated 363 

from vegetative cuttings, so it is difficult to obtain plants that are developmentally 364 

synchronized and physiological aspects of cassava plants such as latex content of leaves 365 

may vary from one experiment to another. Finally, it is notable that cassava is a field 366 

grown crop with a long generation time (12 months) and development of phenotyping 367 

methods from which observations will translate to field setting is desirable.  368 

To address these limitations, we applied image-based phenotyping methods that 369 

enable quantification of spatial and temporal dynamics for plant-pathogen interactions 370 

(Figure 5). Measuring symptom area with increased time resolution, enabled by 371 

automated imaging, allowed us to observe an enhanced rate of early disease accumulation 372 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 22, 2016. ; https://doi.org/10.1101/064980doi: bioRxiv preprint 

https://doi.org/10.1101/064980
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 13

for the ∆xopK mutant. This phenotype demonstrates the importance of a pathogen’s 373 

ability to establish infection for overall virulence. While XopK is a predicted T3E 374 

effector that carries the hallmarks of a secreted virulence factor (Furutani et al., 2006; 375 

Furutani et al., 2009; Schulze et al., 2012), its roles during infection appear to be 376 

complex. The XopK protein sequence contains 54% hydrophobic residues and several 377 

predicted transmembrane domains. Thus, it is possible this protein is associated with host 378 

cell membranes following secretion. Our observations for XopK are contrasted with the 379 

roles of AvrBs2 and XopX, which exhibit reduced virulence phenotypes, consistent with 380 

previous studies (Kearney and Staskawicz, 1990; Metz et al., 2005; Zhao et al., 2011; 381 

Sinha et al., 2013; Li et al., 2015; Stork et al., 2015). Our results further illustrate that 382 

T3E mutants may impact certain aspects of host-pathogen interactions more than others. 383 

For example, XopX contributes more to Xam proliferation in the host than to disease 384 

symptom progression, while AvrBs2 contributes significantly to both aspects of infection. 385 

Thus, combining data from several phenotyping approaches is necessary for determining 386 

the roles of T3Es in virulence (Table 1). 387 

Another challenge of studying plant-pathogen interactions is visualizing and 388 

quantifying a pathogen’s location and movement in host tissue. As we observed imaging 389 

Xam strains in cassava, bioluminescence is a powerful tool for studying the spatial and 390 

temporal dimensions of pathogen spread in host tissue. Previously, bioluminescent 391 

bacterial strains were used to visualize Xcc infection in Arabidopsis thaliana (Meyer et 392 

al., 2005). Also bioluminescent strains of the tomato pathogen Clavibacter michiganensis 393 

were used to track bacterial movement following grafting and during germination (Xu et 394 

al., 2010). Imaging of bioluminescence with increased spatial resolution allows for 395 

quantification of patterns of pathogen spread, as we observed for Xam infection in 396 

cassava leaves. Our studies visualized the process by which Xam invades host 397 

vasculature. The experimental variation we observed suggests this is a dynamic process 398 

impacted by a range of factors, such as proximity to primary and secondary leaf veins, 399 

leaf developmental status, and environmental conditions. These variables can be 400 

investigated using our imaging approaches. In particular, environmental factors such as 401 

humidity and heat are known to be important for CBB severity in the field (Boher and 402 

Verdier, 1994). How these conditions promote disease severity is currently unknown but 403 
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may be related to mechanisms of pathogen spread in host tissue. These factors can be 404 

readily explored by direct imaging using an environmentally controlled chamber. 405 

While image-based phenotyping approaches offer great promise, characterizing 406 

plant-pathogen interactions with such methods also has many challenges, in part due to 407 

the diverse range of symptoms and multiple scales at which disease occurs. For each 408 

pathosystem, one must first identify the relevant aspects of the infection that can be 409 

imaged and the relevant metrics that are needed to characterize the system. This initial 410 

study relied on visible light imaging. In future studies, other wavelengths of the 411 

electromagnetic spectrum that provide additional information for characterizing disease 412 

will be considered. Hyperspectral imaging, which collects spectral data for every pixel, 413 

has been used to classify and quantify several diseases that infect sugar beet (Mahlein et 414 

al., 2012; Leucker et al., 2016). Thermal imaging offers another approach for detecting 415 

disease in plant canopies, since many diseases impact transpiration rates and, therefore, 416 

plant surface temperature. While environmental variation can introduce challenges into 417 

thermal imaging, Raza et al. addressed this issue by using a combination of thermal and 418 

visible light imaging, along with depth estimation, to detect diseased tomato plants using 419 

a machine learning approach (Raza et al., 2015). In a laboratory context, fine-scale 420 

imaging of disease symptoms on a single leaf may be the optimal approach for 421 

investigating certain experimental questions, while whole-plant or field-scale imaging 422 

would be necessary for detecting disease in an agricultural context. Unmanned aerial 423 

vehicles performing multispectral imaging were used at the field scale to examine abiotic 424 

stress in maize (Zaman-Allah et al., 2015). Biotic stresses likely could be detected using 425 

similar signatures from aerial imaging. 426 

This study presents a new approach to investigation of plant-pathogen 427 

interactions. Inspired by the advances of image-based phenotyping methods in other areas 428 

of plant biology, we have applied similar methods to quantifying spatial and temporal 429 

dimensions of disease development. This approach expands the potential range of 430 

phenotypes that can be explored, enabling insights that are difficult to obtain by 431 

traditional methods. Since many smallholder farmers in the developing world rely on 432 

cassava for food security, low-cost monitoring devices that enable rapid detection of 433 

disease outbreaks in the field would be beneficial. In an ideal scenario, monitoring 434 
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devices would be deployed to cassava fields in disease-prone regions and transmit data 435 

over wireless networks to give farmers early warning of disease outbreaks. Many 436 

technical and logistical challenges would need to be overcome to achieve this goal. 437 

However, our image-based methods for detecting disease represent a first step in 438 

developing capabilities for such a device. Remote detection of disease through imaging 439 

or other means is a promising approach for plant pathology research that can be translated 440 

from the laboratory to the field. While characterizing each plant-pathogen system has its 441 

own unique challenges, image-based phenotyping methods can be adapted for many 442 

systems and offer the potential to revolutionize plant disease identification and 443 

quantification.  444 

 445 

Materials and methods 446 

Bacterial strains and plant varieties 447 

The following strains of Xanthomonas axonopodis pv. manihotis (Xam) were used: 448 

Xam668, Xam668 ∆avrBs2, Xam668 ∆hrpF, Xam668 ∆xopK, and Xam668 ∆xopX. For 449 

experiments performed in cassava (Manihot esculenta), variety 60444 was used, except 450 

in experiments noted were variety TME7 was used. Strains used for other pathosystems 451 

include: Xanthomonas euvesicatoria (Xe 85-10) and Xanthomonas campestris pv. 452 

campestris (Xcc 8004). For experiments in pepper, Capsicum annuum variety ECW was 453 

used. For experiments in tomato, Solanum lycopersicum variety M82 was used. For 454 

experiments in broccoli, Brassica oleracea, was used. 455 

 456 

Generation of bacterial mutants 457 

 To generate gene deletion mutants in bacteria, we used a homologous 458 

recombination strategy, in which genomic regions flanking each gene of interest were 459 

first cloned into the pENTR-d-TOPO vector (Invitrogen). Blunt-end cloning of the PCR 460 

products was performed to introduce the PCR fragments into pENTR-d-TOPO. 461 

Restriction sites added with the primers were used to create a version of the vector with 5' 462 

and 3' flanking regions adjacent to each other. Gateway cloning was used to transfer this 463 

cassette into the pLVC18-sacBR vector, which enabled a sucrose counter-selection 464 

approach to be used in creating unmarked gene deletions (Logue et al., 2009). This vector 465 
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was conjugated into Xam using a triparental mating system, with an E. coli helper strain 466 

containing the pRK600 plasmid. Mutants with the unmarked gene knockout were 467 

confirmed with PCR.  468 

 469 

Bacterial inoculations and growth monitoring in planta 470 

To quantify bacterial growth in plant tissue, leaves were inoculated with solutions 471 

of bacterial strains (OD600 = 0.0001) re-suspended in 10 mM MgCl2. Prior to inoculation, 472 

the leaf was wounded with a razor blade, and the bacterial solutions were injected into the 473 

leaf with a needleless 1-mL syringe. Approximately 0.1 mL of bacterial solution was 474 

injected at each inoculation site.  475 

For each time point that bacterial growth was monitored, leaf punches were taken 476 

from inoculated regions. A 1-cm diameter cork borer was used to excise a leaf disk, 477 

which was then ground with a tungsten carbide bead in 200 μL of 10 mM MgCl2 using a 478 

TissueLyser (Qiagen). Dilutions of the leaf lysate were then plated on NYG agar media 479 

with 100 μg μL-1 rifampicin, and Xam colonies were counted to estimate the number of 480 

bacteria in the original leaf sample. 481 

 482 

Image acquisition and analysis for quantification of disease symptoms 483 

Leaves were inoculated with solutions of bacterial strains (OD600 = 0.001). The 484 

leaves were then taped to a black surface, such that the abaxial side of the leaf faced 485 

downward toward a camera. Images of disease symptoms were taken with Raspberry Pi 486 

5MP camera boards controlled by Raspberry Pi Model B microcomputers. Hourly 487 

automated image collection was done with Cron. For all experiments shown, images were 488 

taken hourly. Image stacks were analyzed with FIJI, running ImageJ version 2.0.0-rc-489 

30/1.49v (Schindelin et al., 2012; Schindelin et al., 2015). The scale of the image stacks 490 

was determined with a ruler included in the image, enabling unit conversion from pixels 491 

to cm.  492 

A region of interest (ROI) was selected that contained each inoculated area. An 493 

ImageJ macro script was used to select and quantify the area of water-soaking symptoms 494 

for each ROI (Supplemental File S1). The ROI stacks were converted to HSB (hue-495 

saturation-brightness) color space. After selecting the saturation channel, a background 496 
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subtraction was performed. Then, the area of disease was selected by creating a binary 497 

image with black pixels representing symptomatic regions and white pixels representing 498 

non-symptomatic tissue. The binary images were created by applying a threshold 499 

calculated by the following, 500  ݐ = ߤ  −  ߪ݊

where ݐ  = threshold, ߤ  = mean saturation value of the ROI stack, and ߪ  = standard 501 

deviation of saturation values for the ROI stack. For the variable ݊, a range of values 502 

were tested to determine the appropriate threshold for selecting disease symptoms. The 503 

area of black pixels in the binary images was then quantified to determine the area of 504 

disease symptoms for each ROI. 505 

 506 

Bioluminescence imaging and analysis 507 

Bioluminescent bacteria were generated by conjugating the pLUX plasmid into 508 

Xanthomonas strains of interest. Leaves were inoculated with solutions of these strains 509 

(OD600 = 0.01), with one strain inoculated per leaf lobe. Images were taken using a Star I 510 

CCD digital camera system (Photometrics Ltd.) or a PIXIS 1024B (Princeton 511 

Instruments) that was contained in a blackout chamber. The cameras were operated with 512 

WinView/32 software version 2.5.22.0 (Princeton Instruments) or µManager v1.4.22 513 

(Open Imaging), respectively.  514 

Using ImageJ, each image was converted to an 8-bit TIFF file. Then, the Auto 515 

Enhance Contrast function was applied, and a binary image was created with the Auto 516 

Threshold function using the MaxEntropy algorithm (Kapur et al., 1985). Next, the 517 

Despeckle and Invert functions were applied to create an image in which the 518 

bioluminescent signal was represented by black pixels. Finally, the Hull and Circle plugin 519 

v2.1b (http://rsb.info.nih.gov/ij/plugins/hull-circle.html) was used to select and quantify 520 

the convex hull for each shape representing the bioluminescence signal.  521 

 522 

In vitro bacterial motility assays 523 

 The ability of Xam strains to spread in vitro was observed on NYG media 524 

containing 0.25% agar and 100 μg μL-1 rifampicin. 10 μL of a bacterial solution (OD600 = 525 

0.1) was spotted in the center of each plate. A Raspberry Pi camera was set to image the 526 
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plates from a top-view. Images of the plates were taken over several days, as the bacteria 527 

spread from the center of the plates. The ROI containing the bacterial colony on each 528 

plate was selected, and an ImageJ macro script was used to create a binary image where 529 

black pixels represented the area of the bacterial colony (Supplemental File S2). The 530 

number of black pixels was then quantified to determine the bacterial area on the plate. 531 

 532 

Data and statistical analysis 533 

All graphs and data analyses were generated with R version 3.1.3 (R Core Team, 534 

2015), using the following packages: ggplot2 version 1.0.1 (Wickham, 2009), knitr 535 

version 1.11 (Xie, 2015), lme4 version 1.1-11 (Bates et al., 2015), lsmeans version 2.20-536 

23 (Lenth, 2015), multcomp version 1.4-4 (Hothorn et al., 2008), nlme version 3.1-128 537 

(Pinheiro et al. 2016), plyr version 1.8.3 (Wickham, 2011), reshape2 version 1.4.1 538 

(Wickham, 2007), and scales version 0.3.0 (Wickham, 2015). For each data set, a 539 

generalized linear mixed model was used to assess the responses as a function of different 540 

bacterial strains and over time while adjusting for correlation structures due to repeated 541 

measures and cross-experimental variation. After the models were fit and checked for 542 

underlying assumptions, statistical contrasts were implemented using a post hoc Tukey’s 543 

t test to compare the effect of interest across the different bacterial strains using an α level 544 

of 0.05 as the cutoff for statistical significance. 545 

 546 

Supplemental material 547 

The following supplemental materials are available. 548 

 549 

Supplemental Figure S1. Replicate experiments for analysis of Xam T3E mutant growth 550 

in planta shown in Fig. 1. 551 

 552 

Supplemental Figure S2. Image analysis optimization for water-soaking disease 553 

symptoms caused by Xam. 554 

 555 

Supplemental Figure S3. Replicate experiments for analysis of water-soaking symptoms 556 

shown in Fig. 2. 557 
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 558 

Supplemental Figure S4. Replicate experiments for analysis of Xam spread in leaves 559 

using bioluminescence imaging shown in Fig. 4. 560 

 561 

Supplemental Figure S5. In vitro motility of Xam T3E mutants. 562 

 563 

Supplemental File S1. ImageJ macro script used to quantify water-soaking disease 564 

symptoms. 565 

 566 

Supplemental File S2. ImageJ macro script used to quantify bacterial spread on soft agar 567 

plates. 568 

 569 
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 573 

Figure legends 574 

Figure 1. Disease symptom development and growth levels for Xam type III effector 575 

(T3E) mutants in cassava. A-B, Growth levels of Xam wild-type, ∆hrpF, ∆avrBs2, 576 

∆xopX, and ∆xopK mutants following syringe infiltration in leaves (OD600 = 0.0001). 577 

Median, first and third quartiles are shown. The whiskers extend to the highest and lowest 578 

data point falling within 1.5*IQR (inter-quartile range). Dots represent outliers that fall 579 

outside 1.5*IQR. Each experiment was repeated three additional times (see Supplemental 580 

Fig. S1). C, Comparison of disease symptoms caused by T3E mutants on leaves at 6 days 581 

after syringe infiltration (OD600 = 0.0001). D, Results of generalized linear mixed model 582 

analysis, combining bacterial growth data from all replicate experiments. Combined 583 

estimated means and standard error (SE) are presented, as well as the difference between 584 

the means and the p-values for each pairwise statistical contrast.  585 

 586 

Figure 2. Quantification of disease symptoms caused by Xam on cassava leaves using 587 

imaging. A, Illustration of the imaging set-up. Leaves were syringe infiltrated with 588 
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bacterial solutions (OD600 = 0.001) and taped to a black surface for imaging of the abaxial 589 

side of the leaf. Raspberry Pi microcomputer with attached camera collected images once 590 

per hour. Image analysis steps in ImageJ are shown and described in Materials and 591 

Methods. The number of black pixels was quantified to determine the area of disease. B-592 

D, Quantification of water-soaking symptoms caused by the Xam wild-type strain and 593 

three mutants over time. Dots represent individual measurements determined from image 594 

analysis, and local regression fitted curves are plotted for each bacterial strain. Shaded 595 

areas represent the 95% confidence interval for each curve. The experiment was repeated 596 

three additional times with similar results (see Supplemental Fig. S3). E, Results of 597 

generalized linear mixed model analysis, combining data from all replicate experiments. 598 

Combined estimated slopes and standard error (SE) are presented, as well as p values for 599 

each pairwise statistical contrast.  600 

 601 

Figure 3. Bioluminescence imaging of Xam spread in cassava leaves. A, The 602 

bioluminescence reporter pLUX plasmid was introduced into Xam strains. Leaves were 603 

inoculated with bacterial solutions (OD600 = 0.01) using syringe infiltration. RGB images 604 

of inoculated leaves reveal symptom development. Bioluminescence was visualized in a 605 

dark chamber with a 5-10 min exposure. Image processing was performed with ImageJ to 606 

select the area of bioluminescence and the convex hull of the resulting shapes were 607 

analyzed. B, Representative quantification of convex hull for wildtype Xam and three 608 

mutants. Additional replicate experiments are shown in Supplemental Fig. S4. C, Results 609 

of generalized linear mixed model analysis of convex hull area, combining data from all 610 

replicate experiments. Combined estimated means and standard error (SE) are presented, 611 

as well as the difference between the means and the p-values for each pairwise statistical 612 

contrast.  613 

 614 

Figure 4. Comparison of vascular and leaf spot pathogens. Xam and Xcc were visualized 615 

following syringe inoculation (OD600 = 0.01) at 18 days post inoculation (dpi) and 12 dpi, 616 

respectively. Bacterial spot on pepper and tomato were visualized following dip 617 

inoculation (OD600 = 0.5) of Xe at 9 dpi.  618 

 619 
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Figure 5. Summary for type III effector mutant phenotypes as revealed by different 620 

phenotyping methods. 621 

 622 

Supplemental Figure S1. Replicate experiments for analysis of Xam T3E mutant growth 623 

in planta shown in Figure 1. A-C, Three additional experiments to quantify growth levels 624 

of the Xam wild type strain, and the Xam ∆hrpF, ∆avrBs2, and ∆xopX mutants following 625 

syringe infiltration in leaves (OD600 = 0.0001). D-F, Three additional experiments to 626 

quantify growth levels of wild-type Xam, and the ∆hrpF and ∆xopK mutants following 627 

syringe infiltration in leaves (OD600 = 0.0001). 628 

 629 

Supplemental Figure S2. Image analysis optimization for water-soaking disease 630 

symptoms caused by Xam. Following conversion of regions of interest (ROI) to hue-631 

saturation-brightness (HSB) color space and background subtraction, the distributions of 632 

pixel values for each channel were examined. Disease symptoms are best represented by 633 

pixel values in the lower tail of the distribution for the saturation channel. A range of 634 

threshold values were applied to the images to create binary images, according to the 635 

formula t = μ – nσ, where t = threshold, μ = mean saturation value for the image stack, 636 

and σ = standard deviation of saturation values for the image stack. Graphs show 637 

example thresholds where n = 3 (blue line), n = 2.5 (red line), and n = 2 (green line). The 638 

binary images on the right show the results of applying the n = 3 threshold. 639 

 640 

Supplemental Figure S3. Three additional replicate experiments for analysis of water-641 

soaking symptoms shown in Fig. 2. Dots represent individual measurements determined 642 

from image analysis, and local regression fitted curves are plotted for each bacterial 643 

strain. Shaded areas represent the 95% confidence interval for each curve. For the 644 

experiment shown in A, the image distances were not scaled to cm, so values are reported 645 

in pixels. Experiments shown in panels D-F and H-I were performed with cassava variety 646 

TME7. 647 

 648 

Supplemental Figure S4. Replicate experiments for analysis of Xam spread in leaves 649 

using bioluminescence imaging shown in Fig. 3. Three additional experiments 650 
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quantifying the convex hull area for the Xam ∆xopX (A-C), ∆avrBs2 (D-F), and ∆xopK 651 

(G-I) mutants. Quantification of the maximum span across the convex hull for the same 652 

experiments (K-S). Quantification of the convex hull area (T) and maximum span (U) for 653 

a fourth replicate experiment including the three mutants. Dots represent individual 654 

measurements; lines connect the mean at each time point. V, Results of generalized linear 655 

mixed model analysis for maximum span results, combining data from all replicate 656 

experiments. Combined estimated means and standard error (SE) are presented, as well as 657 

p values for each pairwise statistical contrast. 658 

 659 

Supplemental Figure S5. In vitro motility of Xam T3E mutants. Bacteria were spotted in 660 

the center of plates containing NYG media with 0.25% agar. Images were taken of the 661 

plates over several days, and the area of bacterial spread was quantified using ImageJ. A, 662 

Example of binary thresholding used to select the area of bacterial spread from the 663 

images. B-D, Quantification of bacterial spread for the Xam T3E mutants, relative to the 664 

wild-type strain. Dots represent individual data points, and local regression fitted curves 665 

are plotted for each bacterial strain. Shaded areas represent the 95% confidence interval 666 

for each strain. 667 

 668 
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