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Abstract13

Before the outbreak that reached the Americas in 2015, Zika virus (ZIKV) circulated in14

Asia and the Pacific: these past epidemics can be highly informative on the key parameters15

driving virus transmission, such as the basic reproduction number (R0). We compare16

two compartmental models with different mosquito representations, using surveillance17

and seroprevalence data for several ZIKV outbreaks in Pacific islands (Yap, Micronesia18

2007, Tahiti and Moorea, French Polynesia 2013-2014, New Caledonia 2014). Models are19

estimated in a stochastic framework with state-of-the-art Bayesian techniques. R0 for the20

Pacific ZIKV epidemics is estimated between 1.5 and 4.1, the smallest islands displaying21

higher and more variable values. This relatively low range of R0 suggests that intervention22

strategies developed for other flaviviruses should enable as, if not more effective control23

of ZIKV. Our study also highlights the importance of seroprevalence data for precise24

quantitative analysis of pathogen propagation, to design prevention and control strategies.25
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In May 2015, the first local cases of Zika were recorded in Brazil and by December of the26

same year the number of cases had surpassed 1.5 million. On February 2016, the World27

Health Organization declared Zika as a public health emergency of international concern1
28

and in March 2016, local transmission of Zika was recognized in 34 countries. Previously29

the Zika virus had circulated in Africa and Asia but only sporadic human cases had been30

reported. In 2007 the outbreak on Yap (Micronesia) was the first Zika outbreak outside31

Africa and Asia.2 Since, Zika outbreaks have been also reported in French Polynesia and32

in New Caledonia3;4 between 2013 and 2014 and subsequently, there have been cases of33

Zika disease in the Cook Islands, the Solomon Islands, Samoa, Vanuatu, and Easter Island34

(Chile) (see Fig. 1 in reference5).35

36

Zika virus (ZIKV) is a flavivirus, mostly transmitted via the bites of infected Aedes37

mosquitoes, although non-vector-borne transmission has been documented (sexual and38

maternofoetal transmission, laboratory contamination, transmission through transfusion).639

Themost common clinical manifestations include rash, fever, arthralgia, and conjunctivitis640

but a large proportion of infections are asymptomatic or trigger mild symptoms that can41

remain unnoticed. Nevertheless, the virus may be involved in many severe neurological42

complications, including Guillain-Barre syndrome7 and microcephaly in newborns.8 These43

complications and the impressive speed of its geographically propagation make the Zika44

pandemic a public health threat.1 This reinforces the urgent need to characterize the different45

facets of virus transmission and to evaluate its dispersal capacity. We address this here by46

estimating the key parameters of ZIKV transmission, including the basic reproduction47

number (R0), based on previous epidemics in the Pacific islands.48

49

Defined as the average number of secondary cases caused by one typical infected individual50

in an entirely susceptible population, the basic reproduction number (R0) is a central51

parameter in epidemiology used to quantify the magnitude of ongoing outbreaks and52
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it provides insight when designing control interventions.9 It is nevertheless complex to53

estimate9;10, and therefore, care must be taken when extrapolating the results obtained in54

a specific setting, using a specific mathematical model. In the present study, we explore55

the variability of R0 using two state-of-the-art models in several settings that had Zika56

epidemics in different years and that vary in population size (Yap, Micronesia 2007, Tahiti57

andMoorea, French Polynesia 2013-2014, andNewCaledonia 2014). These three countries58

were successively affected by the virus, resulting in the first significant human outbreaks59

and they differ in several ways, including population size and location specific features.60

Hence, the comparison of their parameter estimates can be highly informative on the61

intrinsic variability of R0. For each setting, we compare two compartmental models using62

different parameters defining the mosquito populations. Both models are considered in a63

stochastic framework, a necessary layer of complexity given the small population size and64

state-of-the-art Bayesian inference techniques11 are used for parameter estimation.65

Results66

Weusemathematical transmissionmodels and data from surveillance systems and seroprevalence67

surveys for several ZIKV outbreaks in Pacific islands (Yap, Micronesia 20072, Tahiti and68

Moorea, French Polynesia 2013-201412–14, New Caledonia 201415) to quantify the ZIKV69

transmission variability.70
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Figure 1 – Graphical representation of compartmental models. Squared boxes and circles
correspond respectively to human and vector compartments. Plain arrows represent transitions from
one state to the next. Dashed arrows indicate interactions between humans and vectors. a) Pandey
model.16 HS susceptible individuals; HE infected (not yet infectious) individuals; HI infectious
individuals; HR recovered individuals; σ is the rate at which HE -individuals move to infectious
class HI ; infectious individuals (HI ) then recover at rate γ; VS susceptible vectors; VE infected (not
yet infectious) vectors; VI infectious vectors; V constant size of total mosquito population; τ is the
rate at which VE -vectors move to infectious class VI ; vectors die at rate µ. b) Laneri model.17 HS

susceptible individuals; HE infected (not yet infectious) individuals; HI infectious individuals; HR

recovered individuals; σ is the rate at which HE -individuals move to infectious class HI ; infectious
individuals (HI ) then recover at rate γ; implicit vector-borne transmission is modeled with the
compartments κ and λ; λ current force of infection; κ latent force of infection reflecting the exposed
state for mosquitoes during the extrinsic incubation period; τ is the transition rate associated to the
extrinsic incubation period.

Two compartmental models with vector-borne transmission are compared (cf. Figure 1).71

Both models use a Susceptible-Exposed-Infected-Resistant (SEIR) framework to describe72

the virus transmission in the human population, but differ in their representation of the73

mosquito population. Figure 1.a. is a schematic representation derived from Pandey et al.1674
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and formulates explicitly the mosquito population, with a Susceptible-Exposed-Infected75

(SEI) dynamic to account for the extrinsic incubation period (time taken for viral dissemination76

within the mosquito).77

78

By contrast, in the second model (Figure 1.b.) based on Laneri et al.17 the vector is modeled79

implicitly: the two compartments κ and λ do not represent the mosquito population but the80

force of infection for vector to human transmission. This force of infection passes through81

two successive stages in order to include the delay associated with the extrinsic incubation82

period: κ stands for this latent phase of the force of infection whereas λ corresponds directly83

to the rate at which susceptible humans become infected.84

85

The basic reproduction number of the models (R0) is calculated using the next Generation86

Matrix method:987

RPandey
0 =

√
βH βV τ

γµ(µ + τ)
88

RLaneri
0 =

√
β

γ

In addition, we consider that only a fraction ρ of the total population is involved in the89

epidemic, due to spatial heterogeneity, immuno-resistance, or cross-immunity. For both90

models we define N = ρ · H with H the total size of the population reported by census.91

92

The dynamics of ZIKV transmission in these islands is highly influenced by several sources93

of uncertainties. In particular, the small population size (less than 7,000 inhabitants in Yap)94

leads to high variability in transmission rates. Therefore all these models are simulated in95

a discrete stochastic framework (Poisson with stochastic rates18), to take this phenomenon96

into account. Stochasticity requires specific inference techniques : thus estimations are97

performed with PMCMC algorithm (particle Markov Chain Monte Carlo11).98

99
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Using declared Zika cases from different settings, the two stochastic models (Fig. 1) were100

fitted (Figs 2-3). These models allow us to describe the course of the observed number101

of cases and estimate the number of secondary cases generated, R0. Our estimates of R0102

lie between 1.6 (1.5-1.7) and 3.2 (2.4-4.1) and vary notably with respect to settings and103

models (Figures 2-3 and Tables 1-2). Strikingly, Yap displays consistently higher values of104

R0 in both models and in general, there is an inverse relationship between island size and105

both the value and variability of R0. This phenomenon may be explained by the higher106

stochasticity and extinction probability associated with smaller populations and can also107

reflect the information contained in the available data. However, the two highly connected108

islands in French Polynesia, Tahiti andMoorea, display similar values despite their differing109

sizes.110
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Figure 2 –Results using the Pandeymodel. Posteriormedian number of observed Zika cases (solid
line), 95% credible intervals (shaded blue area) and data points (black dots). First column: particle
filter fit. Second column: Simulations from the posterior density. Third column: R0 posterior
distribution. a) Yap. b) Moorea. c) Tahiti. d) New Caledonia. The estimated seroprevalences at the
end of the epidemic (with 95% credibility intervals) are: a) 73% (CI95: 68-77, observed 73%); b)
49% (CI95: 45-53, observed 49%); c) 49% (CI95: 45-53, observed 49%); d) 39% (CI95: 8-92).
See Figure 4.
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Figure 3 –Results using the Laneri model. Posterior median number of observed Zika cases (solid
line), 95% credible intervals (shaded blue area) and data points (black dots). First column: particle
filter fit. Second column: Simulations from the posterior density. Third column: R0 posterior
distribution. a) Yap. b) Moorea. c) Tahiti. d) New Caledonia. The estimated seroprevalences at the
end of the epidemic (with 95% credibility intervals) are: a) 72% (CI95: 68-77, observed 73%); b)
49% (CI95: 45-53, observed 49%); c) 49% (CI95: 45-53, observed 49%); d) 65% (CI95: 24-91).
See Figure 5.
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Regarding model variability, R0 estimates are always higher and coarser with the Pandey111

model than with the Laneri model (cf. Tables 1-2). The Pandey model has two additional112

estimated parameters (in particular, the mosquito lifespan), which can explain the higher113

variability of the output. It is worth noting that these parameters are very sensitive (see114

Materials and methods). The difference in R0 may also be linked to the difference in the115

estimated initial number of infected individuals (HI0), which is higher in the Laneri model116

than in the Pandey model. Because of the high proportion of asymptomatic cases (the117

ratio of asymptomatic:symptomatic is estimated to be 1:1.3, V.-M Cao-Lormeau personal118

communication), it is hard to determine which scenario is more realistic, the time between119

introduction of the disease into the island and the first reported symptomatic case being120

unknown in most settings.121

PANDEY MODEL Yap Moorea Tahiti New Caledonia

Population size H 6,892 16,200 178,100 268,767

Basic reproduction number R0 3.2 (2.4 − 4.1) 2.6 (2.2 − 3.3) 2.5 (2.0 − 3.3) 2.0 (1.8 − 2.2)

Observation rate r 0.024 (0.018 − 0.031) 0.058 (0.047 − 0.071) 0.060 (0.048 − 0.072) 0.029 (0.009 − 0.10)

Fraction of population involved ρ 74% (69-79) 50% (46-54) 50% (46-54) 34% (8-91)

Initial number of infected individuals Hi0 2 (1-8) 5 (0-21) 304 (16-1145) 37 (1-386)

Infectious period in human (days) γ−1 5.2 (4.0 − 6.5) 5.2 (4.0 − 6.6) 5.2 (4.0 − 6.5) 5.4 (4.1 − 6.7)

Extrinsic incubation period in mosquito (days) τ−1 10.5 (8.6 − 12.4) 10.5 (8.6 − 12.4) 10.4 (8.5 − 12.5) 10.7 (8.9 − 12.5)

Mosquito lifespan (days) µ−1 15.4 (11.8 − 19.3) 15.3 (11.6 − 19.2) 14.9 (10.9 − 18.8) 15.3 (11.5 − 19.4)

Table 1 – Parameter estimations for the Pandey model. Posterior median (95% credible
intervals). All the posterior parameter distributions are presented in Figures 6-9.
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LANERI MODEL Yap Moorea Tahiti New Caledonia

Population size H 6,892 16,200 178,100 268,767

Basic reproduction number R0 2.2 (1.9 − 2.6) 1.8 (1.6 − 2.0) 1.6 (1.5 − 1.7) 1.6 (1.5 − 1.7)

Observation rate r 0.02 (0.018 − 0.032) 0.057 (0.047 − 0.071) 0.057 (0.048 − 0.068) 0.015 (0.009 − 0.033)

Fraction of population involved ρ 73% (69 − 78) 51% (46 − 54) 54% (49 − 59) 70% (31 − 100)

Initial number of infected individuals Hi0 2 (1 − 10) 9 (1 − 28) 667 (22 − 1570) 82 (2 − 336)

Infectious period in human (days) γ−1 5.3 (4.0 − 6.6) 5.2 (4.0 − 6.6) 5.1 (4.0 − 6.5) 5.4 (4.0 − 6.7)

Extrinsic incubation period in mosquito (days) τ−1 10.6 (8.8 − 12.7) 10.6 (8.6 − 12.6) 10.5 (8.5 − 12.4) 10.8 (8.9 − 12.7)

Table 2 – Parameter estimations for the Laneri model. Posterior median (95% credible
intervals). All the posterior parameter distributions are presented in Figures 10-13.

For the duration of infectious and intrinsic incubation (in human) and extrinsic incubation122

(in mosquito) periods, the posterior density ressembles the informative prior (cf. Figures123

6-13), indicating the models’ incapacity to identify properly these parameters without more124

informative data. Moreover, these parameters have a clear sensitivity (see Materials and125

methods) and precise field measures are therefore crucial for reliable model predictions.126

127

The fraction ρ of the population involved in the epidemic and the observation rate r display128

very large credible intervals when seroprevalence is unknown (New Caledonia). They are129

highly correlated with one another (cf. Figures 17 and 21) and therefore unidentifiable130

without precise information on seroprevalence.131

Discussion132

The reproduction number R0 is a key parameter in epidemiology that characterizes the133

epidemic dynamics and the initial spread of the pathogen at the start of an outbreak in a134

susceptible population. R0 can be used to inform public health authorities on the level135

of risk posed by an infectious disease, vaccination strategy, and the potential effects of136

control interventions19. In the light of the potential public health crisis generated by the137

international propagation of ZIKV, characterization of the potential transmissibility of this138
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pathogen is crucial for predicting epidemic size, rate of spread and efficacy of intervention.139

140

Using data from both surveillance systems and seroprevalence surveys in four different141

geographical settings across the Pacific,2;12–15 we have estimated the basic reproductive142

number R0 (see Figs 2-3 and Tables 1-2). Our estimate of R0 obtained by inference based143

on Particle MCMC11 has values in the range 1.6 (1.5-1.7) - 3.2 (2.4-4.1). Our R0 estimates144

vary notably across settings. Lower and finer R0 values are found in larger islands. This145

phenomenon can at least in part be explained by large spatial heterogeneities and higher146

demographic stochasticity for islands with smaller populations, as well as the influence147

of stochasticity on biological and epidemiological processes linked to virus transmission.148

This phenomenon can also be specific to the selection of the studied island or can reflect149

a highly clustered geographical pattern, the global incidence curve being the smoothed150

overview of a collection of more explosive small size outbreaks. However, it is notable that151

the two French Polynesian islands yield similar estimates of R0 despite differing population152

sizes. Indeed, other important factors differ among French Polynesia, New Caledonia and153

Yap, such as the human genetic background and their immunological history linked to154

the circulation of others arboviruses. Moreover, whilst both New Caledonia and French155

Polynesia populations were infected by the same ZIKV lineage and transmitted by the same156

principle vector species, Aedes aegypti, the epidemic in Yap occurred much earlier with a157

different ZIKV lineage20 and vectored by a different mosquito species Aedes hensilli.21 In158

French Polynesia, the vector Aedes polynesiensis is also present and dominates in Moorea159

with higher densities than in Tahiti. Finally, different vector control measures have been160

conducted in the three countries.161

162

To date, studies investigating Zika outbreaks in the Pacific have always estimated R0 using a163

deterministic framework. Using a similar version of the Pandey model in French Polynesia,164

Kucharski et al.22 estimated R0 between 1.6 and 2.3 (after scaling to square root for165
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comparison) for Tahiti and between 1.8 and 2.9 in Moorea. These estimates are slightly166

lower and less variable than ours. This difference can be explained firstly by the chosen167

priors on mosquito parameters and secondly because our model includes demographic168

stochasticity. Moreover, they predicted a seroprevalence rate at the end of the epidemic169

of 95-97%, far from the 49% measured. In Yap island, a study23 used a very detailed170

deterministic mosquito model, and estimated an R0 for Zika between 2.9 and 8. In this171

case, our lower and less variable estimates may come from the fact that our model is more172

parsimonious in the number of uncertain parameters, especially concerning the mosquito173

population. Finally, a third study24 relied on another method for R0 calculation (based only174

on the early exponential growth rate of the epidemic) in French Polynesia as a whole and175

in Yap. Again, the obtained parameters are lower than ours in French Polynesia and higher176

in Yap. In all these studies a deterministic framework is used excluding the possibility of177

accounting for the high variability of biological and epidemiological processes exacerbated178

by the small size of the population. In these three studies, like in ours, it is worth noting179

that little insight is obtained regarding mosquito parameters. Posterior distribution mimics180

the chosen prior (cf. Figures 6-13). Both the simulation of the epidemics and the estimated181

R0 are highly sensitive to the choice of priors on mosquito parameters, for which precise182

field measures are rare.183

184

In the absence of sufficient data, the modeling of mosquito-borne pathogen transmission185

is a difficult task due to non-linearity and non-stationarity of the involved processes.25186

This work has then several limitations. First, our study is limited by the completeness and187

quality of the data, with regard to both incidence and seroprevalence, but, above all, by the188

scarcity of information available on mosquitoes. Incidence data is aggregated at the island189

scale and cannot disentangle the effects of geography and observation noise to explain190

bimodal curves observed in Yap and New Caledonia. Moreover, although all data came191

from national surveillance systems, we had very little information about the potential degree192
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of under-reporting. Seroprevalence data were gathered from small sample sizes and were193

missing in New Caledonia, which leads to strong correlation between the observation rate194

and the fraction of the population involved in the epidemic. Because of the high proportion195

of asymptomatic or mildly symptomatic cases, the magnitude of the outbreaks is difficult196

to evaluate without precise seroprevalence data26 or detection of mild, asymptomatic or197

pre-symptomatic infections.27 Considering vectors, no demographic data were available198

and this partly explains the large variability of our R0 estimations.199

Secondly, incidence and seroprevalence data were difficult to reconcile; the use of incidence200

data led to higher infection rates than those observed in the seroprevalence data. This201

difficulty has been overcome by considering that only a fraction of the population (ρ)202

is involved in the epidemic and then our model manages to reproduce the observed203

seroprevalence rate. This exposed fraction could be the result of spatial heterogeneity and204

high clustering of cases and transmission, as observed for dengue. Finer scale incidence205

and seroprevalence data would be useful to explore this. Another explanation for higher206

predicted than observed infection rates could be due to interaction with other flaviviruses.207

The Zika outbreak was concomitant with dengue outbreaks in French Polynesia12;13 and208

New Caledonia.15 Examples of coinfection have been reported4 but competition between209

these close pathogens may also have occurred. Finally, mathematical models with vectorial210

transmission may tend to estimate high attack rates, sometimes leading to a contradiction211

between observed incidence and observed seroprevalence. Assumptions on the proportionality212

between infected mosquitoes and the force of infection, as well as the density-dependence213

assumption in these models could be questioned. Indeed even if these assumptions are at the214

heart of the mathematical models of mosquito-borne pathogen transmission28;29 a recent215

review,30 and recent experimental results31;32 question these important points.216

217

On a final note, the estimates of R0 for ZIKV are similar to but generally on the lower side of218

estimates made for two other flaviviruses of medical importance, dengue and Yellow Fever219
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viruses33–35, even though caution is needed in the comparison of studies with differing220

models, methods and data sources. Interventions strategies developed for dengue should221

thus enable as, if not more effective control of ZIKV, with the caveat that ZIKV remains222

principally a mosquito-borne pathogen with little epidemiological significance of the sexual223

transmission route.224

225

In conclusion, using state-of-the art stochastic modeling methods, we have been able to226

determine estimates of R0 for ZIKV with an unexpected relationship with population227

size. Further data from the current Zika epidemic in South America that is caused by228

the same lineage as French Polynesia will enable us to confirm this relationship. Our229

study highlights the importance of gathering seroprevalence data, especially for a virus230

that often leads to an asymptomatic outcome and it would provide a key component for231

precise quantitative analysis of pathogen propagation to enable improved planning and232

implemention of prevention and control strategies.233

Materials and methods234

Data235

During the 2007 outbreak that struck Yap, 108 suspected or confirmed Zika cases (16 per236

1,000 inhabitants) were reported by reviewing medical records and conducting prospective237

surveillance betweenApril 1st and July 29th 2007.2 In FrenchPolynesia, sentinel surveillance238

recorded more than 8,700 suspected cases (32 per 1,000 inhabitants) across the whole239

territory between October 2013 and April 2014.12;13 In New Caledonia, the first Zika240

case was imported from French Polynesia on 2013 November 12th. Approximately 2,500241

cases (9 per 1,000 inhabitants) were reported through surveillance between January (first242

autochtonous case) and August 2014.15243

244

15 page 15/54

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 20, 2016. ; https://doi.org/10.1101/064949doi: bioRxiv preprint 

https://doi.org/10.1101/064949
http://creativecommons.org/licenses/by-nc-nd/4.0/


For Yap and French Polynesia, the post-epidemic seroprevalence was assessed. In Yap, a245

household survey was conducted after the epidemic, yielding an infection rate in the island246

of 73%.2 In French Polynesia, three seroprevalence studies were conducted. The first one247

took place before the Zika outbreak, and concluded that most of the population was naive248

for Zika virus.36 The second seroprevalence survey was conducted between February and249

March 2014, at the end of the outbreak, and reported a seroprevalence rate around 49%.14250

The third one concerned only schoolchildren in Tahiti and was therefore not included in the251

present study.252

253

Demographic data on population sizewere based on censuses fromYap2, FrenchPolynesia37,254

and New Caledonia.38255

Models and inference256

Model equations257

Although themodels are simulated in a stochastic framework, we present themwith ordinary258

differential equations for clarity. The reactions involved in the stochastic models are the259

same as those governed by the deterministic equations, but the simulation process differs260

through the use of discrete compartments. It is described in the next section.261

The equations describing Pandey model are:262
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dHS

dt
= −βHvI HS

dHE

dt
= βHvI HS − σHE

dHI

dt
= σHE − γHI

dHR

dt
= γHI

dvS

dt
= µ −

βV HI

N
vS − µvS

dvE

dt
=
βV HI

N
vS − τvE − µvE

dvI

dt
= τvE − µvI

where vs =
VS

V is the proportion of susceptible mosquitoes, vE =
VE

V the proportion of263

exposed mosquitoes, and vI =
VI

V the proportion of infected mosquitoes. Since we are264

using a discrete model, we cannot use directly the proportions vS, vE and vI whose values265

are smaller than one. Therefore, we rescale using V = H , which leads to V ′S = vS · H ,266

V ′E = vE · H , and V ′I = vI · H .267

In this model, the force of infection for humans is λH = βHvI , and the force of infection for268

mosquitoes is λV = βV
HI

N269

270

The equations describing Laneri model are:271
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dHS

dt
= −λHS

dHE

dt
= λHS − σHE

dHI

dt
= σHE − γHI

dHR

dt
= γHI

dκ
dt
=

2βHIτ

N
− 2τκ

dλ
dt
= 2τκ − 2τλ

In this model, the role of mosquitoes in transmission is represented only through the272

delay they introduce during the extrinsic incubation period (EIP, incubation period in the273

mosquito). For modeling reasons, this delay is included by representing the force of274

infection from infected humans to susceptible humans with two compartments κ and λ:275

in this formalism, the duration between the moment when an exposed individual becomes276

infectious and the moment when another susceptible individual acquires the infection has a277

gammadistribution ofmean τ−1.17;39;40 Therefore, λ represents the current force of infection278

for humans λH = λ . The compartment κ represents the same force of infection but at a279

previous stage, reflecting the exposed phase for mosquitoes during the extrinsic incubation280

period. As an analogy to Pandey model, the force of infection for mosquitoes is λV =
βHI τ
vsN ,281

and therefore, the parameter β can be interpreted as the product of a transmission parameter282

β′ by the proportion of susceptible mosquitoes: β = vs β
′. The force of infection for283

mosquitoes is then similar to Pandey’s : λV = β′τ HI

N .284

Again, since we are using a discrete model, we cannot use directly the proportions λ and κ285

whose values are smaller than one. Therefore, we rescale up to a factor N , which leads to286

L = λN and K = κN .287

288
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Stochastic framework289

Both models are simulated in a stochastic and discrete framework, the Poisson with290

stochastic rates formulation,18 to include the uncertainties related to small population size.291

In this framework, the number of reactions occurring in a time interval dt is approximated292

by a multinomial distribution. In a model with m possible reactions and c compartments,293

zt being the state of the system at time t and θ the model parameters, the probability that294

each reaction r k occurs nk times in dt is calcutated as follows:41295

p(n1, ...nm |zt, θ) =
c∏

i=1




Mi (1 −
∑

X (k)=i

pk )n̄i
∏

X (k)=i

(pk )nk


+ o(dt)

with, z(i)
t being the number of individual in compartment i at time t,296

• pk =
(
1 − exp−

∑
X (l)=i r l (zt, θ)zX (l)

t dt
)

rk (zt,θ)∑
X (l )=i r l (zt,θ)297

298

• n̄i = z(i)
t −

∑
X (k)=i nk (the number of individuals staying in compartment i in dt)299

300

• Mi =
(

z(i)
t

nk X (k )=i n̄i

)
(multinomial coefficient)301

Observation models302

The only observed compartments are the infected humans (incidence measured every week)303

and the recovered humans (seroprevalence at the end of the outbreak when data is available).304

In order to link the model to the data, two observation models, for both incidence and305

seroprevalence data, are needed.306

307
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Observation model on incidence data308

The observed weekly incidence is assumed to follow a negative binomial distribution18
309

whose mean equals the number of new cases predicted by the model times an estimated310

observation rate r .311

312

The observation rate r accounts for non observed cases, due to non reporting from medical313

centers, mild symptoms unseen by health system, and asymptomatic infections. Without314

additional data, it is not possible to make a distinction between these three categories of315

cases. We also implicitely make the assumption that these cases transmit the disease as316

much as reported symptomatic cases.317

318

The observation model for incidence data is therefore :319

Incobs = NegBin(φ−1,
1

1 + φr Inc
)

Incobs being the observed incidence, and Inc the incidence predicted by the model. The320

dispersion parameter18 φ is fixed at 0.1.321

Observation model on seroprevalence data322

Seroprevalence data is fitted for Tahiti, Moorea, and Yap settings. It is assumed that the323

observed seroprevalence at the end of the epidemic follows a normal distribution with fixed324

standard deviation, whose mean equals the number of individuals in the HR compartment325

predicted by the model.326

327

The observation model for seroprevalence data is therefore :328

Hobs
R = Normal (HR,Λ)
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at the last time step, with notations detailed for each model in Table 3.329

Island Date Standard deviation Observed seroprevalence

Λ Hobs
R

Yap 2007-07-29 150 5005 2

Moorea 2014-03-28 325 0.49 × 16200 = 7938 14

Tahiti 2014-03-28 3562 0.49 × 178100 = 87269 14

Table 3 – Details of the observation models for seroprevalence

Prior distributions330

Informative prior distributions are assumed for the mosquito lifespan, the duration of331

infectious period, and both intrinsic and extrinsic incubation periods. The initial numbers of332

infectedmosquitoes and humans are estimated, and the initial number of exposed individuals333

is set to the initial number of infected to reduce parameter space. We assume that involved334

populations are naive to Zika virus prior to the epidemic and set the initial number of335

recovered humans to zero. The other priors and associated references are listed in Table 4.336

337
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Parameters Pandey model Laneri model References

R2
0 squared basic reproduction number Uniform[0, 20] Uniform[0, 20] assumed

βV transmission from human to mosquito Uniform[0, 10] . assumed

γ−1 infectious period (days) Normal(5, 1) in [4, 7] Normal(5, 1) in [4, 7] 13

σ−1 intrinsic incubation period (days) Normal(4, 1) in [2, 7] Normal(4, 1) in [2, 7] 42–44

τ−1 extrinsic incubation period (days) Normal(10.5, 1) in [4, 20] Normal(10.5, 1) in [4, 20] 45;46

µ−1 mosquito lifespan (days) Normal(15, 2) in [4, 30] . 47;48

ρ fraction of population involved Uniform[0, 1] Uniform[0, 1]

Initial conditions (t=0) Pandey model Laneri model

HI 0 Infected humans Uniform[10−6, 1]·N Uniform[10−6, 1]·N

HE 0 exposed humans HI 0 HI 0

HR 0 Recovered humans 0 0

Infected vectors VI 0=Uniform[10−6, 1]·H L0=Uniform[10−6, 1]·N

exposed vectors VE 0 = VI 0 K0=L0

Local conditions Yap Moorea Tahiti New Caledonia References

r Observation rate Uniform[0, 1] Uniform[0, 1] Uniform[0, 0.3] Uniform[0, 0.23] 13;15;49

H Population size 6,892 16,200 178,100 268,767 2;37;38

Table 4 – Prior distributions of parameters. "Uniform[0,20]" indicates a uniform
distribution between in the range [0,20]. "Normal(5,1) in [4,7]" indicates a normal
distribution with mean 5 and standard deviation 1, restricted to the range [4,7].

The range for the prior on observation rate is reduced for Tahiti and New Caledonia, in338

order to reduce the parameter space and facilitate convergence. In both cases, we use the339

information provided with the data source. In French Polynesia, 8,750 cases we reported,340

but according to local health authorities, more than 32,000 people would have attended341

health facilities for Zika13 (8750/32000 ≤ 0.3). In New Caledonia, approximately 2,500342

cases were reported but more than 11,000 cases were estimated by heath authorities49343

(2500/11000 ≤ 0.23). In both cases, these extrapolations are lower bounds on the real344

number of cases (in particular, they do not estimate the number of asymptomatic infections),345

and therefore can be used as upper bounds on the observation rate.346
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Estimations347

Inference with PMCMC348

The complete model is represented using the state space framework, with two equation349

systems: the transition equations refer to the transmission models, and the measurement350

equations are given by the observation models.351

352

In a deterministic framework, this model could be directly estimated using MCMC, with a353

Metropolis-Hastings algorithm targeting the posterior distribution of the parameters. This354

algorithm would require the calculation of the model likelihood at each iteration.355

356

In our stochastic framework, the model output is given only through simulations and the357

likelihood is intractable. In consequence, estimations are performed with the PMCMC358

algorithm (particle Markov Chain Monte Carlo11), in the PMMH version (particle marginal359

Metropolis-Hastings). This algorithm uses the Metropolis-Hastings structure, but replaces360

the real likelihood by its estimation with Sequential Monte Carlo (SMC).361
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Algorithm 1 PMCMC11 (PMMH version, as in SSM41)
In a model with n observations and J particles.

q(.|θ (i)) is the transition kernel.

1: Initialize θ (0).

2: Using SMC algorithm, compute p̂(y1:n |θ (0)) and sample x∗0:n from p̂(x0:n |y1:n, θ (0)).

3: for i = 1...N θ do

4: Sample θ∗ from q(.|θ (i))

5: Using SMC algorithm, compute L(θ∗) = p̂(y1:n |θ∗) and sample x∗0:n from

p̂(x0:n |y1:n, θ∗)

6: Accept θ∗ (et x∗0:n) with probability 1 ∧
L(θ (i) )q( |θ∗)

L(θ∗)q(θ∗ |θ (i) )

7: If accepted, θ (i+1) = θ∗ and x (i+1)
0:n = x∗0:n. Otherwise θ

(i+1) = θ (i) and x (i+1)
0:n = x (i)

0:n.

8: end for

SMC50 is a filtering method that enables to recover the latent variables and estimate the362

likelihood for a given set of parameters. The data is treated sequentially, by adding one more363

data point at each iteration. The initial distribution of the state variables is approximated364

by a sample a particles, and from one iteration to the next, all the particles are projected365

according to the dynamic given by the model. The particles receive a weight according to366

the quality of their prediction regarding the observations. Before the next iteration, all the367

particles are resampled using these weights, in order to eliminate low weight particles and368

concentrate the computational effort in high probability regions. Model likelihood is also369

computed sequentially at each iteration41;51.370
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Algorithm 2 SMC (Sequential Monte Carlo, as implemented in SSM41)
In a model with n observations and J particles.

L is the model likelihood p(y1:T |θ). W ( j)
k is the weight and x ( j)

k is the state associated to

particle j at iteration k.

1: Set L = 1, W ( j)
0 = 1/J.

2: Sample (x ( j)
0 ) j=1:J from p(x |θ0).

3: for k = 0 : n − 1 do

4: for j = 0 : J do

5: Sample (x ( j)
k+1) j=1:J from p(xk+1 |xk, θ)

6: Set α( j) = h(yk+1, x ( j)
k+1, θ)

7: end for

8: Set W ( j)
k+1 =

α( j )∑J
l=1 α

(l ) and L = L 1
J
∑

j α
(l)

9: Resample (x ( j)
0:k+1) j=1:J from W ( j)

k+1

10: end for

A gaussian kernel q(.|θ (i)) is used in the PMCMC algorithm, with mean θ (i) and fixed371

variance Σq (random walk Metropolis Hastings).372

Initialization373

PMCMC algorithm is very sensitive to initialization of both the parameter values θ (0) and374

the covariance matrix Σq. Several steps of initialization are therefore used.375

376

Firstly, parameter values are initialized by maximum likelihood through simplex algorithm377

on a deterministic version of the model. We apply the simplex algorithm to a set of 1000378

points sampled in the prior distributions and we select the parameter set with the highest379

likelihood.380
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381

Secondly, in order to initialise the covariance matrix, an adaptative MCMC (Metropolis382

Hastings) framework is used41;52. It uses the empirical covariance of the chain Σ(i), and383

aims to calibrate the acceptance rate of the algorithm to an optimal value. The transition384

kernel is also mixed (with a probability α = 0.05) with another gaussian using the identity385

matrix to improve mixing properties.386

387

qA(.|x (i)) = αN(x (i), λ
2.382

d
Id) + (1 − α)N(x (i),

2.382

d
Σ

(i))

The parameter λ is approximated by successive iterations using the empirical acceptance388

rate of the chain.389

λi+1 = λiai (AccRatei − 0.234)

390

391

The adaptative PMCMCalgorithm itselfmayhave poormixing propertieswithout initialization.392

A first estimation of the covariance matrix is computed using KMCMC algorithm.41393

In the KMCMC algorithm, the model is simulated with stochastic differential equations394

(intermediate between deterministic and Poisson with stochastic rates frameworks) and the395

SMC part of the adaptative PMCMC is replaced by the extended Kalman filter. When396

convergence is reached with KMCMC, then, adaptative PMCMC is used.397

398

The PMCMC algorithm is finally applied on the output of the adaptative PMCMC, using399

50,000 iterations and 10,000 particles. Calculations are performed with SSM software41400

and R version 3.2.2.401
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R0 calculation402

R0 is calculated using the Next Generation Matrix approach9 (NGM).403

404

R0 calculation in Pandey model405

F =

*..............
,

0 0 0 βH

0 0 0 0

0 βV 0 0

0 0 0 0

+//////////////
-

V =

*..............
,

−σ 0 0 0

σ −γ 0 0

0 0 −(µ + τ) 0

0 0 τ −µ

+//////////////
-

Then we have,406

V−1 =

*..............
,

−1/σ 0 0 0

−1/γ −1/γ 0 0

0 0 −1/(µ + τ) 0

0 0 −τ/[µ(τ + µ)] −1/µ

+//////////////
-

and407

FV−1 =

*..............
,

0 0 −βHτ/[µ(τ + µ)] −βH/µ

0 0 0 0

−βV/γ −βV/γ 0 0

0 0 0 0

+//////////////
-
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We calculate the eigen values α of −FV−1 :408

��������������������

−α 0 βHτ/[µ(τ + µ)] βH/µ

0 −α 0 0

βV/γ βV/γ −α 0

0 0 0 −α

��������������������

= α2
(
α2 −

βH βV τ

γµ(τ + µ)

)
= 0

Then α = 0 or α = ±
√

βH βV τ
γµ(τ+µ) and the highest eigen value is R0 =

√
βH βV τ
γµ(τ+µ) .409

410

This formula defines R0 as "the number of secondary cases per generation"53: i.e R0 can be411

written as the geometric mean R0 =
√

Rv
0Rh

0 , where Rv
0 is the number of infected mosquitoes412

after the introduction of one infected human in a naive population, and Rh
0 is the number of413

infected humans after the introduction of one infected mosquito in a naive population. With414

this definition, herd immunity is reached when (1− R−20 ) of the population is vaccinated53.415

R0 calculation in Laneri model416

Following the analogy with Pandey model, we compute the spectral radius of the NGM for417

the Laneri model.418

F =

*..............
,

0 0 0 1

0 0 0 0

0 βτ 0 0

0 0 0 0

+//////////////
-

V =

*..............
,

−σ 0 0 0

σ −γ 0 0

0 0 −τ 0

0 0 τ −τ

+//////////////
-
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Then we have,419

V−1 =

*..............
,

−1/σ 0 0 0

−1/γ −1/γ 0 0

0 0 −1/τ 0

0 0 −1/τ −1/τ

+//////////////
-

and420

FV−1 =

*..............
,

0 0 −1/τ −1/τ

0 0 0 0

−βτ/γ −βτ/γ 0 0

0 0 0 0

+//////////////
-

We calculate the eigen values α of −FV−1 :421

��������������������

−α 0 1/τ 1/τ

0 −α 0 0

βτ/γ βτ/γ −α 0

0 0 0 −α

��������������������

= α2
(
α2 −

βτ

γτ

)
= 0

Then α = 0 or α = ±
√

β
γ and the highest eigen value is αR =

√
β
γ .422

423

Because λ and κ can be seen as parameters rather than state variables, the interpretation of424

the spectral radius as the R0 of the model is not straightforward. Therefore, we computed425

the R0 of the model through simulations, by counting the number of secondary infections426

after the introduction of a single infected individual in a naive population. Since Laneri427

model is considered here as a vector model, the number of infected humans after the428

introduction of a single infected is considered as R2
0. We simulated 1000 deterministic429
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trajectories, using parameter values sampled in the posterior distributions for all parameters430

except initial conditions. With this method, the confidence intervals for number of infected431

humans (R2
0) are similar to the ones of α2

R estimated by the model. As a consequence,432

R0 was approximated by the spectral radius of the NGM in our results with our stochastic433

framework (cf. Table 5).434

435

As a robustness check, the same method was applied to Pandey model : the confidence436

intervals for the number of secondary cases in simulations are very similar to the ones of437

R2
0 (cf. Table 5).438

Pandey model Laneri model

Yap 3.1 (2.5-4.3) 2.2 (1.9-2.6)

Moorea 2.6 (2.2-3.3) 1.8 (1.6-2.0)

Tahiti 2.5 (2.0-3.3) 1.6 (1.5-1.7)

New Caledonia 2.0 (1.8-2.2) 1.6 (1.5-1.7)

Table 5 – Square root of the number of secondary cases after the introduction of a
single infected individual in a naive population. Median and 95% credible intervals of
1000 deterministic simulations using parameters from the posterior distribution.

Sensitivity analysis439

In order to analyse the influence of parameter values on the model’s outputs, a sensitivity440

analysis was performed, using LHS/PRCC technique54, on Tahiti example. Similar results441

were obtained for the other settings. Three criteria were retained as outputs for the analysis:442

the seroprevalence at the last time point, the intensity of the peak of the outbreak and the443

date of the peak. We used uniform distributions for all parameters, which are listed in444

Tables 6 and 7. For model parameters, we used the same range as for the prior distribution.445

For initial conditions, the observation rate r and the fraction involved in the epidemic ρ,446

we used the 95% confidence interval obtained by PMCMC, in order to avoid unrealistic447

scenarios.448
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449

Parameters Seroprevalence Peak intensity Peak date

Distribution PRCC p-value PRCC p-value PRCC p-value

Model parameters

R2
0 Uniform[0,20] 0.88 <0.001 0.91 <0.001 -0.53 <0.001

βV Uniform[0.1,10] -0.69 <0.001 -0.77 <0.001 0.29 <0.001

γ−1 Uniform[4,7] -0.25 <0.001 0.09 0.003 0.20 <0.001

σ−1 Uniform[2,7] -0.03 0.324 -0.12 <0.001 0.18 <0.001

τ−1 Uniform[4,20] 0.00 0.921 -0.05 0.102 0.08 0.012

µ−1 Uniform[4,30] -0.61 <0.001 -0.75 <0.001 0.51 <0.001

Initial conditions

Hi0 Uniform[2.10−5,0.011] -0.03 0.403 -0.04 0.204 0.03 0.417

Vi0 Uniform[10−4,0.034] 0.06 0.044 -0.03 0.290 -0.24 <0.001

Fraction involved and observation model

ρ Uniform[0.46,0.54] 0.50 <0.001 0.14 <0.001 -0.03 0.307

r Uniform[0.048,0.072] 0.02 0.578 0.03 0.383 0.04 0.250

Table 6 – Sensitivity analysis in Pandey model. Tahiti island. 1000 parameter sets were sampled
with latin hypercube sampling (LHS), using "lhs" R package55. On each parameter set, the model
was simulated deterministically. PRCCwere computed using the "sensitivity" R package.56 P-values
were calculated using the Student distribution approximation provided byBlower andDowlatabadi.54

For all criteria, the key parameters in both models are transmission parameters (R0 and βV ).450

High values for R0 are positively correlated with a large seroprevalence and a high and early451

peak. On the contrary, high values for the parameters introducing a delay in the model, the452

incubation periods in human (σ−1) and in mosquito (τ−1), are associated with a lower and453

later peak, and have no significant effect on seroprevalence. Moreover, the simulations are454

clearly sensitive to the other model parameters, in particular the mosquito lifespan (µ−1) in455

Pandey model.456

Concerning other parameters, the initial conditions have a noticeable effect on the date457

of the peak only. As expected, the fraction involved in the epidemic (ρ) influences the458

magnitude of the outbreak, by calibrating the proportion of people than can be infected, but459

it has no significant effect on the timing of the peak.460
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461

Parameters Seroprevalence Peak intensity Peak date

Distribution PRCC p-value PRCC p-value PRCC p-value

Model parameters

R2
0 Uniform[0,20] 0.62 <0.001 0.93 <0.001 -0.50 <0.001

γ−1 Uniform[4,7] 0.01 0.731 0.62 <0.001 0.15 <0.001

σ−1 Uniform[2,7] -0.03 0.373 -0.54 <0.001 0.21 <0.001

τ−1 Uniform[4,20] -0.03 0.323 -0.70 <0.001 0.47 <0.001

Initial conditions

Hi0 Uniform[10−5,0.015] 0.05 0.135 0.02 0.622 -0.32 <0.001

L0 Uniform[2.10−5,0.004] 0.05 0.133 0.00 0.930 -0.16 <0.001

Fraction involved and observation model

ρ Uniform[0.49,0.59] 0.80 <0.001 0.34 <0.001 0.02 0.558

r Uniform[0.048,0.068] -0.01 0.727 0.01 0.738 -0.02 0.635

Table 7 – Sensitivity analysis in Laneri model. Tahiti island. 1000 parameter sets were sampled
with latin hypercube sampling (LHS), using "lhs" R package55. On each parameter set, the model
was simulated deterministically. PRCCwere computed using the "sensitivity" R package.56 P-values
were calculated using the Student distribution approximation provided byBlower andDowlatabadi.54

Complementary results462

These complementary results include PMCMC results for both models in the four settings:463

the epidemic trajectories regarding the human compartments for infected and recovered464

individuals (Figures 4-5), the detailed posterior distributions for all parameters (Figures465

6-13) and correlation plots for all models (Figures 14-21).466

467
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Infected and recovered468
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Figure 4 – Infected and recovered humans evolution during the outbreak with Pandey model.
Simulations from the posterior density: posteriormedian (solid line), 95% and 50%credible intervals
(shaded blue areas) and observed seroprevalence (black dots). First column: Infected humans (HI ).
Second column: Recovered humans (HR). a) Yap. b) Moorea. c) Tahiti. d) New Caledonia.
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Figure 5 – Infected and recovered humans evolution during the outbreak with Laneri model.
Simulations from the posterior density: posteriormedian (solid line), 95% and 50%credible intervals
(shaded blue areas) and observed seroprevalence (black dots). First column: Infected humans (HI ).
Second column: Recovered humans (HR). a) Yap. b) Moorea. c) Tahiti. d) New Caledonia.
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Posterior distributions469
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Figure 6 – Posterior distributions. Pandey model, Yap island.
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Figure 7 – Posterior distributions. Pandey model, Moorea island.
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Figure 8 – Posterior distributions. Pandey model, Tahiti island.
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Figure 9 – Posterior distributions. Pandey model, New Caledonia.
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Figure 10 – Posterior distributions. Laneri model, Yap island.
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Figure 11 – Posterior distributions. Laneri model, Moorea island.
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Figure 12 – Posterior distributions. Laneri model, Tahiti island.
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Figure 13 – Posterior distributions. Laneri model, New Caledonia.

Correlation between estimated parameters470

The marginal posterior densities (Figures 6-13) do not indicate the correlation between471

parameters, i.e when the observed value of one parameter is highly influenced by the value472

of another one. In some cases, this phenomenon reveals identifiability issues : the model473

manages to estimate only a pair of parameters but cannot identify each one separately. In474

our case, the observation rate and the fraction of the population involved in the epidemic are475

strongly negatively correlated when no information is provided on seroprevalence (Figures476

9 and 13).477
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Figure 14 – Correlation plot of MCMC
output. Pandey model, Yap island.

ρ

r

τ ⁻¹

σ ⁻¹

μ ⁻¹

γ ⁻¹

βᵥ

R₀²

Vi₀

Hi₀

H
i₀ Vi₀

R
₀² βᵥ γ 

⁻¹
μ 
⁻¹

σ 
⁻¹

τ 
⁻¹ r ρ

-1.0

-0.5

0.0

0.5

1.0

Figure 15 – Correlation plot of MCMC
output. Pandey model, Moorea island.
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Figure 16 – Correlation plot of MCMC
output. Pandey model, Tahiti island.
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output. Pandey model, New Caledonia.
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Figure 18 – Correlation plot of MCMC
output. Laneri model, Yap island.

ρ

r

τ ⁻¹

σ ⁻¹

γ ⁻¹

R₀²

L₀

Hi₀

H
i₀ L₀ R

₀²
γ 
⁻¹

σ 
⁻¹

τ 
⁻¹ r ρ

-1.0

-0.5

0.0

0.5

1.0

Figure 19 – Correlation plot of MCMC
output. Laneri model, Moorea island.
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