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Abstract

Cells express thousands of transcripts that show weak coding potential. Known as

long non-coding RNAs (lncRNAs), they typically contain short open reading frames

(ORFs) having no homology with known proteins. Recent studies have reported that

a significant proportion of lncRNAs are translated, challenging the view that they

are essentially non-coding. These results are based on the selective sequencing of

ribosome-protected fragments, or ribosome profiling. The present study used

ribosome profiling data from eight mouse tissues and cell types, combined with

~330,000 synonymous and non-synonymous single nucleotide variants, to dissect

the biological implications of lncRNA translation. Using the three-nucleotide read

periodicity that characterizes actively translated regions, we found that about 23%

of the transcribed lncRNAs was translated (1,365 out of 6,390). About one fourth of

the translated sequences (350 lncRNAs) showed conservation in humans; this is

likely to produce functional micropeptides, including the recently discovered

myoregulin. For other lncRNAs, the ORF codon usage bias distinguishes between

two classes. The first has significant coding scores and contains functional proteins

which are not conserved in humans. The second large class, comprising >500

lncRNAs, produces proteins that show no significant purifying selection signatures.

We showed that the neutral translation of these lncRNAs depends on the transcript

expression level and the chance occurrence of ORFs with a favorable codon

composition. This provides the first evidence to data that many lncRNAs produce

non-functional proteins. 
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Introduction

In recent years, the use of transcriptomics has revealed that, in addition to classical

protein-coding transcripts, the cell expresses thousands of long transcripts with

weak coding potential (Okazaki et al. 2002; Carninci et al. 2005; Kapranov et al.

2007; Ponjavic et al. 2007; Djebali et al. 2012). Some of these transcripts, known

as long non-coding RNAs (lncRNAs), have well-established roles in gene regulation;

for example, Air is an Igf2r antisense lncRNA involved in silencing the paternal Igf2r

allele in cis. (Rinn and Chang 2012; Ulitsky and Bartel 2013). However, the vast

majority of them remain functionally uncharacterized. While some lncRNAs have

nuclear roles, the majority are polyadenylated and accumulate in the cytoplasm

(van Heesch et al. 2014). In addition, many lncRNAs are expressed at low levels

and have a limited phylogenetic distribution (Derrien et al. 2012; Necsulea et al.

2014).

In 2009, Nicholas Ingolia and co-workers published the results of a new technique

to measure translation of mRNAs by deep sequencing of ribosome-protected RNA

fragments, called ribosome profiling (Ingolia et al. 2009). This method permits the

detection of lowly abundant small proteins, which may be difficult to detect by

standard proteomics approaches. In addition, the three-nucleotide periodicity of the

reads, resulting from the movement of the ribosome along the coding sequence,

differentiates translated sequences from other possible RNA protein complexes. A

growing number of studies based on this technique have reported that a significant

proportion of lncRNAs are translated (Ingolia et al. 2011, 2014; Juntawong et al.

2014; Ruiz-Orera et al. 2014; Raj et al. 2016; Ji et al. 2015; Chew et al. 2013).

However, the functional significance of this finding is not yet clear. Some of the

translated lncRNAs may be mis-annotated protein coding genes that encode

micropeptides (< 100 amino acids) which, due to their short size, have not been

correctly predicted by bioinformatics algorithms (Mackowiak et al. 2015; Bazzini et

al. 2014; Crappé et al. 2013). This is likely to include some recently evolved

proteins that lack homologues in other species and which are even harder to detect

than conserved peptides (Ruiz-Orera et al. 2014). 

One striking feature of the proteins produced by lncRNAs is that, in general, they

appear to be under lower selective constraints than standard proteins (Ruiz-Orera

et al., 2014). This raises the possibility that a large fraction of them encode

proteins that, despite being translated in a stable manner, are not functional. The
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present study is aimed at testing this hypothesis.

Non-synonymous and synonymous single nucleotide polymorphisms in coding

sequences provide useful information to distinguish between neutrally evolving

proteins and proteins under purifying or negative selection. Under no selection,

both kinds of variants accumulate at the same rate, whereas under selection there

is a deficit of non-synonymous variants (Nei and Gojobori 1986). The detection of

selection signatures provides strong evidence of functionality, whereas non-

functional proteins evolve neutrally. The present study takes advantage of the

existing nucleotide variation data for the domestic mouse (Mus musculus) to

investigate the selective patterns of proteins translated by lncRNAs. We use this

information to distinguish between function and non-functional classes of lncRNA

translated products.

Results

Identification of translated sequences 

We sought to identify translated open reading frames (ORFs) in a comprehensive

set of long non-coding RNAs (lncRNAs) and protein-coding genes from mouse,

using ribosome profiling RNA sequencing (Ribo-Seq) data from eight different

tissues and cell types (Table 1 and references therein). In contrast to RNA

sequencing (RNA-Seq) reads, which are expected to cover the complete transcript,

Ribo-Seq reads are specific to regions bound by ribosomes. We mapped the RNA-

Seq and Ribo-Seq reads of each experiment to a mouse transcriptome that included

all Ensembl mouse gene annotations, including both coding genes and lncRNAs, as

well as thousands of additional de novo assembled polyadenylated transcripts

derived from non-annotated expressed loci. For the assembly, we used more than

1.5 billion strand-specific RNA sequencing reads from mouse (Ruiz-Orera et al.

2015). 

We developed a method based on the well-known three-nucleotide periodicity of

Ribo-Seq reads in actively translated regions (Ingolia et al. 2009; Bazzini et al.

2014; Ji et al. 2015) in order to very precisely identify translated sequences.  First,

we selected all expressed transcripts containing at least one ORF encoding a

putative protein of 24 amino acids or longer. Then, for each experiment, we defined

translated ORFs as those covered by 10 or more Ribo-Seq reads, of which at least

60% matched the expected frame (in-frame, Figure 1A). To avoid redundancy in

4

70

75

80

85

90

95

100

105

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 21, 2016. ; https://doi.org/10.1101/064915doi: bioRxiv preprint 

https://doi.org/10.1101/064915
http://creativecommons.org/licenses/by-nc-nd/4.0/


subsequent gene-focused analyses, we selected the longest translated ORF when

several existed. The vast majority of ORFs detected by ribosome profiling had clear

three-nucleotide periodicity (Figure 1B), regardless of whether they were in coding

genes (codRNA) or in lncRNAs (Supplemental file 1 Figure S1). To determine how

often this bias occurs by chance alone, we randomized the position of each read in

the ORFs. This random model estimated a false positive rate <5% (Figure 1B). In

ORFs classified as translated, the Ribo-Seq reads typically covered the complete

ORF (Figure 1C), providing additional support for our method. We defined non-

translated transcripts as those transcribed at significant levels but showing a

ribosome profiling signal that was either very weak or nonexistent (<10 Ribo-Seq

reads). 

This method identified translated ORFs in ~23% of lncRNAs (1,365 lncRNAs,

including novel assembled ones) and ~92% of the coding genes (15,588 codRNAs)

among genes expressed at significant levels in at least one sample (Table 1 and

Figure 1C, Methods). Most coding genes were transcribed and translated in several

samples, whereas lncRNAs tended to be sample-specific (Supplemental file 1 Fig

S2). About 70% of the translated lncRNAs encoded proteins shorter than 100 amino

acids (small ORFs or smORFs). The number of translated transcripts, and the size of

the translated products, was very similar for annotated lncRNAs and for novel

expressed loci (Figure 1D and 1E). Therefore, these two types of transcripts were

merged into a single class (lncRNA) for most analyses.

Table 1

Tissue/cell GEO
(reference)

Annotated codRNA Annotated lncRNA Novel lncRNA

# transcribed # translated # transcribed # translated #transcribed #translated

Brain GSE51424(1) 12,689 11,127 1,141 83 1,614 139

Testis GSE50983(2) 13,094 10,477 1,251 67 2,176 98

Neutrophils GSE22001(3) 8,917 7,736 414 23 961 60

Heart GSE41426 11,009 8,868 652 4 1,062 47

Skeletal Muscle GSE41426 10,352 8,392 548 3 1,000 37

Splenic B cells GSE62134(4) 9,504 7,694 871 38 1,129 46

Neural ES cells GSE72064(5) 13,289 11,879 1,508 201 2,644 231

Hippocampus GSE72064(5) 13,963 13,258 1,724 469 2,819 638

Integrated - 17,319 15,588 2,598 616 3,792 749

Table 1. Number of transcribed and translated loci. Integrated refers to the number

transcribed/translated in at least one sample. GEO: Gene Expression Omnibus. codRNA:

coding gene. ES cells: embryonic stem cells. (1) (Gonzalez et al. 2014), (2) (Castañeda et al.
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2014), (3) (Guo et al. 2010), (4) (Diaz-Munoz et al. 2015), (5) (Cho et al. 2015)

Figure 1

Figure 1. Detection of translated ORFs. A Workflow to identify translated ORFs.

Ribosome profiling (Ribo-Seq) reads, corresponding to ribosome-protected fragments, are

mapped to all predicted ORFs in transcripts. This is performed with single-nucleotide

resolution after computing the read P-site per each read length. In each ORF, reads per

frame are counted and compared to the random expectation.  B. Relationship between the

number of reads in a given frame and the number of Ribo-Seq reads that map to the ORF.

Data shown are for the hippocampus sample; similar results were obtained in other samples.

Only ORFs of 24 amino acids or longer were interrogated. ORFs: real data; random: the

position of the reads in each ORF was randomized. The ORFs were classified as in-frame

when ≥60% reads mapped to the predefined frame (red) or off-frame when <60% reads

mapped to that frame or when they mapped to another frame (blue). The in-frame ORFs in

the random control indicate the false positive rate (<5%). C. Number of translated and not

translated expressed transcripts belonging to different classes. When a transcript contained

several translated ORFs we selected the longest one. For non-translated transcripts, we took

the longest ORF (Met to STOP). The translated ORFs have been divided into small ORFs (<

100 aa) and long ORFs (≥ 100 aa). Off-frame genes were not considered. D. Density plot

showing the fraction of nucleotide positions in the ORF covered by Ribo-Seq reads, for in-

frame and off-frame cases. E. Length of translated ORFs for different gene types in

logarithmic scale: coding (codRNA), annotated long non-coding RNA (lncRNA) and non-
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annotated assembled transcripts (novel). The ORFs in the latter two classes were

significantly shorter than in codRNAs (Wilcoxon test, p-value < 10-5). 

Detection of translated transcripts across experiments 

The number of transcribed and translated genes varied substantially depending on

the sample, especially for lncRNAs and smORFs (Table 1, Figure 2A, Supplemental

file 1 Figure S3). We detected the highest number of translated genes in

hippocampus, followed by embryonic stem cells. In order to test whether this was

due to genuine differences between the biological samples or to differences in the

Ribo-Seq sequencing coverage, we randomly selected 10 million reads from each

sample and recalculated the number of translated transcripts. This resulted in a

much more similar number of translated transcripts in different samples, indicating

that sequencing depth was the main cause of the original differences across

samples (Supplemental file 1 Figure S3, smORFs). This suggested that the

experimental translation signal was not saturated and that the true number of

translated lncRNAs may be higher than was estimated here.

Figure 2
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Figure 2. Features of translated transcripts. A. Number of transcribed or translated

genes (Y-axis) in relation to the number of sequencing reads (RNAseq or Riboseq) mapped to

the transcripts in the different experiments (X-axis). B. Relationship between ORF length and

RNA abundance in codRNA and lncRNA for translated and non-translated genes. RNA

abundance is defined as the maximum FPKM value across the 8 samples. 

Protein-coding genes for which we detected translation were expressed at higher

levels and contained longer ORFs than those for which we did not detect translation

(Figure 2B). In general, lncRNAs were expressed at much lower levels than coding

genes (Figure 2B, lncRNA versus coding), which is consistent with previous reports

(Cabili et al. 2011; Derrien et al. 2012). Translated lncRNAs were also expressed at

significantly higher levels, and contained longer ORFs, than non-translated lncRNAs

(Wilcoxon test, p-value < 10-5). 

A subset of lncRNAs encodes functional micropeptides

LncRNAs conserved across species are more likely to be functional than those which

are not conserved. This is supported by studies measuring the sequence constraints

of lncRNAs with different degrees of phylogenetic conservation (Kutter et al. 2012;

Wiberg et al. 2015). Here we examined which fraction of the mouse lncRNAs were

conserved in humans. First we generated a de novo human transcriptome assembly

of a quality similar to that used for mouse (Methods). As we were interested in

protein translation, conservation was assessed using ORF-based sequence similarity

searches (see Methods).

Whereas the vast majority (~98%) of mouse protein coding genes were conserved

in the human model, we detected conservation for only about 25% of the translated

lncRNAs (Figure 3A). This is not surprising given previous observations that

lncRNAs tend to have a limited phylogenetic distribution (Hezroni et al. 2015;

Kutter et al. 2012; Necsulea et al. 2014).

A key question was whether or not the proteins produced by conserved lncRNAs

were functional. We addressed it by using a very large number of mouse single

nucleotide polymorphism (SNP) variants from dbSNP (Sherry et al. 2001) –157,029

non-synonymous SNPs (PN) and 179,825 synonymous SNPs (PS)– that mapped to

the ORFs in our dataset. It is well known that there are approximately three times

more non-synonymous than synonymous positions in coding sequences. For this

reason, we expect PN/PS ~3 in neutrally evolving sequences, which accept all
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mutations (Nei and Gojobori 1986). Values significantly lower than this indicate less

tolerance for mutations at non-synonymous positions than at synonymous ones,

consistent with negative or purifying selection at the protein level.

Figure 3

Figure 3. Different classes of translated ORFs. A. Number of translated ORFs that are

conserved in human (C), not conserved but showing a high coding score (NC-HS, coding

score > 0.049, significant at p-value < 0.05) and neutral (NC-N, coding score ≤ 0.049).

First, ORFs are divided into codRNA and lncRNA, and second, into long (length ≥ 100 amino

acids) and small ORFs (smORFs, length  < 100 amino acids). B. Analysis of selective

constraints in translated ORFs. PN/PS refers to the ratio between non-synonymous (PN) and

synonymous (PS) single nucleotide variants. Conserved and high-score ORFs show significant

purifying selection signatures independently of transcript type. Non-conserved ORFs with low

coding scores do not show evidence of purifying selection at the protein level, indicating lack

of functionality. Significant differences between PN/PS ratios are indicated. Fisher test *p-

value < 0.05, **p- value < 0.005, ***, p-value < 10-5. Error bars represent the 95%

confidence interval. C. Distribution of Ribo-seq reads in Myoregulin, which encodes a recently

discovered micropeptide. Another well-known micropeptide-containing gene, Stannin, is

shown for comparison. The data is from hippocampus (hc) ribosome profiling experiments.
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We found that conserved translated transcripts, both codRNAs and lncRNA, had

PN/PS values significantly lower than the neutral expectation (Fisher test p-value <

10-5, Figure 3B, Supplemental file 1 Table S1). This strongly suggests that most of

the 350 lncRNAs in this group are in fact protein-coding genes that produce

functional small proteins or micropeptides (smORFs). The computational

identification of smORFs is especially challenging because they can randomly occur

in any part of the genome (Dinger et al. 2008). Therefore, it is not surprising that

some remain hidden in the vast ocean of transcripts annotated as non-coding. For

instance, the recently discovered peptide Myoregulin, which is only 46 amino acids

long, regulates muscle performance (Anderson et al. 2015) (Figure 3C). Myoregulin

was annotated as non-coding when we initiated the study although it has now been

re-classified as protein-coding. Many similar cases are expected to emerge in the

next years.

Many lncRNAs produce non-functional proteins

The prediction of coding sequences usually takes into account features such as

codon frequencies, ORF length, and sequence conservation (Kong et al. 2007;

Wang et al. 2013). In the case of non-conserved short ORFs we can only apply

measures based on codon composition. We previously implemented a metric based

on the differences in dicodon (hexamer) frequencies between coding and non-

coding sequences, which we used to calculate length-independent coding scores for

translated and non-translated ORFs (Ruiz-Orera et al. 2014). Based on this metric,

we developed a computational tool to identify ORFs with significant coding scores in

any set of sequences (evolutionarygenomics.imim.es/CIPHER). 

When the CIPHER program was applied to our dataset, translated codRNAs had

higher coding scores than non-translated ones (Supplemental file 1 Figure S4). A

similar result was observed in the lncRNA set, both for smORFs and for ORFs ≥ 100

amino acids. Using this method, we also found that conserved ORFs had

significantly higher coding scores than non-conserved ORFs, both for coding genes

and lncRNAs (Figure 4A). We then used CIPHER to divide the non-conserved genes

into a group with high coding scores (NC-HS, coding score >0.049, significant at p-

value <0.05) and another group with lower coding scores (≤0.049). The first group

showed weaker purifying selection that the conserved genes discussed in the

previous section. However, PN/PS was still significantly lower than the neutral

expectation (Fisher test, p-value <0.005), indicating that this class of genes

includes a number of mouse genes coding for proteins that, despite not being
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conserved in humans, are functional.  In contrast, the PN/PS value in the group of

non-conserved genes with low coding scores (NC-N) was consistent with neutral

evolution (Figure  3B, Supplemental file 1 Table S1). In addition, the PN/PS ratio in

this group was not significantly different than the PN/PS in the control group of

non-translated ORFs with otherwise similar characteristics. These observations

strongly argue against protein functionality. The lncRNAs encoding non-functional

proteins comprised about 40% of the lncRNAs with evidence of translation; a very

small percentage of codRNAs had the same characteristics (~1%). Altogether, this

class comprised 686 genes. The Ribo-Seq reads mapping to the corresponding

ORFs had clear frame bias (Figure 4B), which was highly consistent across different

tissues (Figure 4C); this provided additional evidence that they were indeed

translated.

The group of lncRNAs producing proteins with no selection signatures included

several with known non-coding functions, such as Malat1, Neat1, Jpx, and Cyrano.

These genes are involved in several cellular processes: Cyrano is involved in the

regulation of embryogenesis (Ulitsky et al. 2011), Jpx functions in X chromosome

inactivation (Tian et al. 2010), Neat1 has a role in the maintenance and assembly

of paraspeckles (Clemson et al. 2009), and Malat1  regulates the expression of

other genes (Tripathi et al. 2010). Our results support the targeting of lncRNAs by

the translational machinery, probably as a result of promiscuous activity of the

ribosome rather than any important role of these proteins in the cell. 

A key question was why we detected translation of some lncRNAs but not of others.

This is especially relevant for lncRNAs that translate non-functional proteins, as

presumably no selective forces are involved. One obvious likely factor is the gene

expression level. This is supported by the observation that translated lncRNAs were

expressed at higher levels than non-translated lncRNAs (Figure 2B) and that

experimental samples with more sequencing coverage yielded a larger number of

translated products than other samples (Figure 2A). 

We hypothesized that the ORF coding score could also affect the translatability of

the transcript, because codons that are abundant in coding sequences are expected

to be more efficiently translated than other, more rare, codons. We indeed found

that, for non-functional proteins, the translated ORFs exhibited higher coding scores

than non-translated ORFs (Figure 4D, Wilcoxon test p-value <10-5). Importantly,

we obtained a similar result after controlling for transcript abundance (Figure 4E for

hippocampus, Wilcoxon test p-value <10-5; Supplemental file 1 Figure S5 for
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embryonic stem cells). This is consistent with codon composition having an effect

per se in ORF translation. Controlling by coding score confirmed that transcript

abundance is positively related to the capacity to detect translation (Figure 4F for

hippocampus and Supplemental file 1 Figure S5 for embryonic stem cells). In

contrast, although translated ORFs tend to be longer than non-translated ORFs

(Figure 2B), ORF length had no effect other than that already explained by the

coding score (Figure 4F). 

Figure 4

Figure 4. Factors influencing the translatability of lncRNAs. A. Differences in coding

score for conserved (C) and non-conserved ORFs (NC). Conserved ORFs showed significantly

higher coding score values than non-conserved ones; Wilcoxon test; ***, p-value < 10 -5.

Blue line indicates the coding score value used to separate non-conserved ORFs with high

coding scores (NC-HS) to the rest of non-conserved ORFs. B . Relationship between the

number of reads in a given frame and the number of Ribo-Seq reads that map to the ORF for

non-conserved neutral ORFs (NC-N) for the hippocampus sample. Data is for real transcripts

and for controls in which the position of the reads was randomized (random). C. Relationship
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between the percentage of reads falling in a frame in brain and hippocampus samples, for

NC-N ORFs. Data is for real transcripts and for controls in which the position of the reads was

randomized (random). D. Influence of coding score in the translatability of non-conserved

neutral ORFs (NC-N). Intronic ORFs are shown for comparison. Translated ORFs showed

significantly higher coding score than non-translated ORFs; Wilcoxon test; ***, p-value < 10-

5. E . Influence of coding score in the translatability of non-conserved neutral ORFs

normalized by FPKM expression in hippocampus (median FPKM value = 0.225). Translated

ORFs showed significantly higher coding score values than non-translated ORFs; Wilcoxon

test; ***, p-value < 10-5. F . Influence of FPKM expression and ORF length in the

translatability of non-conserved neutral ORFs normalized by coding score in hippocampus

(median coding score value = -0.022). Translated ORFs showed significantly higher FPKM

values; Wilcoxon test, ***, p-value < 10-5.  

DISCUSSION

There is mounting evidence that many lncRNAs translate small proteins (Bazzini et

al., 2014; Calviello et al., 2016; Ingolia et al., 2014, 2011; Ji et al., 2015; Raj et

al., 2016; Ruiz-Orera et al., 2014; this study). This is supported by three-

nucleotide periodicity of the Ribo-Seq reads, high translational efficiency values

(number of Ribo-Seq reads with respect to transcript abundance), and signatures of

ribosome release after the STOP codon. Hundreds or even thousands of lncRNAs

with patterns consistent with translation were detected in each of those studies. In

comparing data from different mouse experiments, we observed that the number of

translated lncRNAs detected depends not only on the stringency of the method but

also on the sequencing depth. 

The recent discovery that a large number of lncRNAs show ribosome profiling

patterns consistent with translation has puzzled many scientists (Housman G and

Ulitsky I 2016). Most are not conserved across mammals or vertebrates, which

limits the use of substitution-based methods to infer selection. Methods based on

the number of non-synonymous and synonymous nucleotide polymorphisms (PN

and PS, respectively) detect selection at the population level and can be applied to

both conserved and non-conserved ORFs. The analysis is undertaken for predefined

groups of genes, as individual coding sequences do not usually contain enough

polymorphims for sound statistical analysis (Gayà-Vidal and Albà 2014). In a

previous study using ribosome profiling experiments from several species, we found

that, in general, ORFs with evidence of translation in lncRNAs have weak but

significant purifying selection signatures (Ruiz-Orera et al. 2014). Together with

previous observations that lncRNAs tend to be lineage-specific (Necsulea et al.
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2014) and that young proteins evolve under relaxed purifying selection (Cai and

Petrov 2010), this finding led us to suggest that lncRNAs are enriched in young

protein-coding genes. Taking one step further, in the present study we employed

recently generated mouse and human deep transcriptomes data, together with

extensive mouse variation data, to delineate the exact nature of the relationship

between species conservation and function of the translated ORFs. This resulted in

the identification of three broad classes of translated lncRNAs: conserved and

functional, non-conserved and functional (but with low constraints), and non-

conserved and non-functional. 

We estimate that about 5% of the analyzed lncRNAs encode functional

micropeptides (smORFs) that are conserved in humans. Standard proteomics

techniques have important limitations for the detection of micropeptides and it is

likely that the smORFs currently annotated in databases are only a small part of the

complete set (Crappé et al. 2015; Slavoff et al. 2013; Saghatelian and Couso 2015;

Pauli et al. 2015). As shown here, and in other recent studies (Bazzini et al. 2014;

Mackowiak et al. 2015), computational prediction of ORFs coupled with ribosome

profiling is a promising new avenue to unveil many of these peptides.  In our study,

the majority of transcripts encoding micropeptides were not annotated as coding,

emphasizing the power of using whole transcriptome analysis instead of only

annotated genes to characterize the so-called smORFome. Analysis of other tissues,

and case-by-case experimental validation, will no doubt lead to a sustained

increase in the number of micropeptides with important functions. Remarkably, the

largest class of lncRNAs appears to translate non-functional proteins. These ORFs

can be distinguished from the rest because they are not conserved across species

and have low coding scores. Although the existence of non-functional proteins may

seem counterintuitive at first, we have to consider that most lncRNAs tend to be

expressed at low levels and so the associated energy costs may be negligible. It

has also been estimated that the cost of transcription and translation in

multicellular organisms is probably too small to overcome genetic drift (Lynch and

Marinov 2015). In other words, provided the peptides are not toxic, the negative

selection coefficient associated with the cost of producing them may be too low for

natural selection to effectively remove them. We observed that the translation

patterns of many of these peptides were similar across tissues, indicating that their

translation is relatively stable and reproducible. The neutral translation of lncRNAs

provides an answer for the conundrum of why transcripts that have been

considered to be non-coding appear to be coding when viewed through the lens of

ribosome profiling. 
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According to our results, the neutral translation of certain lncRNAs, but not others,

may be due to the chance existence of ORFs with a favorable codon composition.

This is consistent with the observation that abundant codons enhance translation

elongation (Yu et al. 2015). Other researchers have hypothesized that the

distinction between translated and non-translated lncRNAs may be related to the

relative amount of the lncRNA in the nucleus and the cytoplasm (Ji et al. 2015).

However, we found evidence that some lncRNAs with nuclear functions, such as

Malat1 and Neat1, are translated, suggesting that the cytosolic fraction of any

lncRNA may be translated independently of the role or preferred location of the

transcript. In the absence of experimental evidence, the codon composition of an

ORF can provide a first indication of whether the ORF will be translated or not.

Differences in codon frequencies between genes reflect the specific amino acid

abundance as well as the codon usage bias, which is the differential use of

synonymous codons. These differences can arise from a combination of selection,

mutation, and drift (dos Reis and Wernisch 2009; Doherty and McInerney 2013).

Algorithms to predict coding sequences often use dicodon instead of codon

frequencies, as the former also capture dependencies between adjacent amino

acids or nucleotide triplets. We found that ORFs with very low coding scores are in

general not translated. One example of this sort was the previously described de

novo gene Poldi (Heinen et al. 2009). The group of ORFs that had high coding

scores, but lacked conservation in humans had significant purifying selection

signatures. This was independent of the annotated coding status of the transcript,

reinforcing the idea that the differences between coding and non-coding genes in

this group are very tenuous (Ruiz-Orera et al., 2014).

There is accumulating evidence that some protein-coding genes have originated de

novo from previously non-functional genomic regions (Reinhardt et al. 2013; Toll-

Riera et al. 2009; McLysaght and Guerzoni 2015; Carvunis et al. 2012; Knowles

and McLysaght 2009). These de novo genes encode proteins with unique sequences

that may have played a role in lineage-specific adaptations. It has been

hypothesized that many of these genes originated from lncRNAs (Xie et al. 2012;

Chen et al. 2015; Ruiz-Orera et al. 2015), which would be consistent with the large

number of species-specific transcripts with lncRNA features identified in

comparative transcriptomics studies (Palmieri et al. 2014; Zhao et al. 2014; Neme

and Tautz 2016; Ruiz-Orera et al. 2015). The discovery that some non-coding RNAs

are translated makes the transition from non-coding/non-functional to

coding/functional more probable than previously anticipated. (Wilson and Masel
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2011). This is because the translation products, even if generated by pure accident,

can be tested for useful functions. However, the observation that lncRNAs are

translated is by itself inconclusive, as one could also argue that translated lncRNAs

are simply mis-annotated functional protein-coding genes. Here we have shown

that, for the bulk of translated lncRNAs, this is not the case. Therefore, the

unproductive translation of lncRNAs can be regarded as the missing link between

transcribed genomic regions with no coding function and the eventual birth of

proteins with new functions.

In conclusion, our data support the notion that the analysis of lncRNA translation

patterns is expected to lead to many new discoveries related to the world of

micropeptides. We also observed that many lncRNAs produce small proteins that

lack a function; these peptides can serve as raw material for the evolution of new

protein-coding genes. We have found that the translated ORFs in these lncRNAs are

enriched in coding-like hexamers when compared to non-translated or intronic

ORFs, which implies that the sequences available for the formation of new proteins

are not random but have coding-like features from the start. 

METHODS

Transcriptome assembly

The polyA+ RNA-Seq from mouse comprised 18 strand-specific paired end data

publicly available in the Gene Expression Omnibus under accession numbers

GSE69241 (Ruiz-Orera et al. 2015), GSE43721 (Soumillon et al. 2013), and

GSE43520 (Necsulea et al. 2014). Data corresponded to 5 brain, 2 liver, 1 heart, 3

testis, 3 ovary and 4 placenta samples. 

The polyA+ RNA-Seq from human comprised 8 strand-specific paired end data

publicly available in the Gene Expression Omnibus under accession number

GSE69241 (Ruiz-Orera et al. 2015). Data corresponded to 2 brain, 2 liver, 2 heart

and 2 testis samples. 

RNA-seq reads were filtered by length and quality. We retrieved genome sequences

and gene annotations from Ensembl v. 75. We aligned the reads to the

correspondent reference species genome with Tophat (v. 2.0.8, –N 3, -a 5 and –m

1 ) (Kim et al. 2013). Multiple mapping to several locations in the genome was

allowed unless otherwise stated.
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We assembled the transcriptome with Stringtie (Pertea et al. 2015) merging the

reads from all the samples, with parameters -f 0.01, and -M 0.2. We used the

species transcriptome as guide (Ensembl v.75) but permitting the assembly of

annotated and novel isoforms and genes as well. We selected genes with a

minimum size of 300 nucleotides. To eliminate potential pseudogenes we discarded

genes that showed exonic overlap with annotated pseudogenes or which contained

small ORFs that had significant sequence similarity to proteins. We selected genes

with a per-nucleotide read coverage ≥ 5 in at least one sample. This ensures a high

degree of transcript completeness, as shown in Ruiz-Orera et al. (2015). 

Ribosome profiling data

We used 8 different data sets that included both strand-specific ribosome profiling

(Ribo-seq) and RNA-seq experiments that we obtained from Gene Expression

Omnibus under accession numbers GSE51424 (Gonzalez et al. 2014), GSE50983

(Castañeda et al. 2014), GSE22001 (Guo et al. 2010), GSE62134 (Diaz-Munoz et

al. 2015), GSE72064 (Cho et al. 2015), and GSE41426. Data corresponded to

brain, testis, neutrophils, splenic B cells, ES cells, hippocampus, heart and skeletal

muscle (Table 1).

Reads were filtered as in the previous datasets and Ribo-seq data sets were

depleted of anomalous reads (length < 26 or > 33 nt) and small RNAs after

discarding reads that mapped to annotated rRNAs and tRNAs. Next, reads were

mapped to the assembled mouse transcriptome with Bowtie (v. 0.12.7, -k 1 -m 20

-n 1 --best --strata –norc).

We used the mapping of the Ribo-seq reads to the complete set of annotated

coding sequences in mouse again to define the exact read point that corresponds to

the ribosome and compute the offset position (P-site) for each read length (≥45%

total reads), as in other studies (Calviello et al. 2016; Ji et al. 2015; Bazzini et al.

2014; Ingolia et al. 2009). If no offset was clear for a specific length, reads with

that length were not considered for subsequent analysis.

Detection of translated ORFs

For each ribosome profiling experiment, we calculated the minimum gene

expression level that was required to detect translation using the distribution of

fragments per Kilobase per Million reads (FPKM) of coding sequence genes together
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with information on the samples in which we detected translation. We built a null

model in which failure to detect translation of a protein-coding gene in a sample

was attributed to poor sequencing coverage, provided that its translation was

detected in at least three other samples. Then we chose the FPKM cutoff that

corresponded to a p-value of less than 5% using the previously defined model. This

minimum gene expression level was determined in a sample-based manner to

accommodate differences in the sequencing depth of the Ribo-Seq experiments. 

We predicted all possible ORFs in every transcript (ATG to TGA/TAA/TAG) with a

minimum length of 24 amino acids. For every gene, we selected the longest ORF

across all transcripts and the longest in-frame ORF, if any translated. We used

these selected ORFs to perform all gene-based analyses. Genes with smORFs were

defined as having <100 amino acids in the longest ORF. These criteria excluded

non-canonical ORFs, secondary translated ORFs, or translated short isoforms. 

ORFs with fewer than 10 mapped reads were classified as non-translated.

Otherwise, we analyzed whether ≥60% of the Ribo-seq reads were classified in the

correct frame, with a minimum of 10 mapped reads (in-frame). Ambiguous cases

with ill-defined frames were not considered in subsequent analyses (off-frame).

This approach correctly classified 97.73% of translated protein-coding genes with

more than 10 mapped reads as in-frame. As a control, the position of the reads in

each ORF was randomized and the false positive rate of our pipeline was estimated

in the different experiments; the rate was <5% in all cases. 

Sequence conservation

We searched for homologues of the mouse ORFs in the human transcript assembly

using TBLASTN (limited to one strand, e-value < 10-4) (Altschul et al. 1997). In the

case of non-translated ORFs the longest ORF per gene was taken. The longest

translated ORF was used for translated genes. In some instances we detected

homology even if the ORF was not translated (i.e. conserved non-translated). In

these cases we may have indirectly captured sequence similarity at the DNA level

or, alternatively, similarity between proteins that were not translated in the tissues

analyzed. 

Single nucleotide polymorphism data

The SNPs were extracted from dbSNP Build 138 (Sherry et al. 2001), which
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includes data from 56 different sources. We classified SNPs in ORFs as non-

synonymous (PN, amino acid altering) and synonymous (PS, not amino-acid

altering). We calculated the PN/PS ratio in each ORF group by using the sum of PN

and PS in all the sequences. In general, estimation of PN/PS ratios of individual

sequences was not reliable due to lack of sufficient SNP data per ORF. We obtained

confidence intervals (95%) using the proportion test. We calculated a neutrally

expected (NE) PN/PS for each ORF set by counting the number of nonsynonymous

and synonymous positions in the sequences. We also estimated a normalized NE

considering a transition to transversion ratio of 1.5 (k=1.5). We used the k value to

give different weights to the non-synonymous and synonymous positions depending

on whether they were transitions or transversions.

Computation of coding scores with CIPHER

For each hexanucleotide (hexamer), we calculated the relative frequency of the

hexamer in the complete set of mouse annotated coding sequences encoding

experimentally validated proteins and in the ORFs of a large set of randomly

selected intronic sequences (Ruiz-Orera et al. 2014). Hexamer frequencies were

calculated in frame, using a sliding window and 3 nucleotide steps. Subsequently,

we obtained the logarithm of each hexamer frequency in coding sequences divided

by the frequency in non-coding sequences. This log likelihood ratio was calculated

for each possible hexamer i and termed CShexamer(i). The coding score of an ORF

(CSORF) was defined as the average of the hexamer coding scores in the ORF. 

The following equations were employed:

We have developed a computational tool, CIPHER, that uses this metric to calculate

the coding score of the ORFs in any set of sequences. It also predicts the subset of

ORFs that are likely to be translated by performing an empirical calculation of p-

values derived from the distribution of coding scores in ORFs from introns. Specific

parameters have been derived for several eukaryotic species. The code and
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executable file is freely available at https://github.com/jorruior/CIPHER. The

program can also be accessed at  http://evolutionarygenomics.imim.es/cipher/.

Using this metric, we divided the set of non-conserved genes into a group of genes

with high coding score (NC-HS) and a group of genes with low coding score (NC-N).

The coding score was measured on the longest ORF with evidence of translation.

Genes in the NC-HS group were defined as those with a coding score > 0.049. This

group has a lower  PN/PS ratio than the NC-N group.

Statistical data analyses

The generation of plots and statistical tests was performed with the R package (R

Development Core Team 2016). 

DATA ACCESS

Transcript assemblies and ribosome profiling-based translation predictions have

been deposited at figshare (http://dx.doi.org/10.6084/m9.figshare.3486503).

Supplemental file 2 contains detailed information on the translated and non-

translated ORFs. 
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