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Abstract

The identification of disease-causing genes in Mendelian disorders has been facilitated by the
detection of rare disease-causing variation through exome sequencing experiments. These studies
rely on population databases to filter a majority of the putatively neutral variation in the genome
and additional filtering steps using either cohorts of diseased individuals or familial information to
narrow down the list of candidate variants. Recently, new computational methods have been
proposed to prioritize variants by scoring them not only based on their potential impact on protein
function but also on their relevance given the available information on the disease under study.
Usually these diseases comprise several phenotypic presentations, which are separately prioritized
and then aggregated into a global score. In this study we compare several simple (e.g. maximum and
mean score) and more complex aggregation methods (e.g. order statistics, parametric modeling) in
order to obtain the best possible prioritization performance. We show that all methods perform
reasonably well (median rank below 20 out of more than 8000 variants) and that the selection of an
optimal aggregation method depends strongly on the fraction of uninformative phenotypes. Finally,
we propose guidelines as to how to select an appropriate aggregation method based on knowledge
of the phenotype under study.

Introduction

In recent years, whole-exome sequencing has facilitated the discovery of genes underlying rare
Mendelian disease by allowing the identification of disease-causing genomic variation [1-6]. Several
different strategies have been proposed to sift through the thousands of variants identified in a
single human exome in order to retain a handful of meaningful candidate variants for further
downstream functional validation studies[7]. These strategies usually start by filtering variants with a
higher potential for disturbing gene function, such as gaining a stop-codon, resulting in a frameshift,
changing the amino-acid sequence of the protein or interfering with a splice site. In this first filtering
step intergenic, intronic and synonymous mutations are discarded. A second filtering step removes
all variants present under a certain minor allele frequency (e.g. the variant occurs in less than 1% of
the population) in commonly used population databases such as the 1000 Genomes Project[8] or the
NHLBI Exome Sequencing Project[9]. This step relies on the assumption that variants causing rare
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disease, following either dominant or recessive inheritance patterns, would not be present in high
frequencies in populations of healthy individuals. Even after such filtering several hundreds of
potential candidate variants remain and additional filtering is required. At this point strategies
diverge depending on the available data. If familial samples are available, linkage analysis or
searching for de novo variants can sufficiently narrow down the list to only a couple of variants[10].
Another strategy is to sequence a number of unrelated individuals exhibiting very similar
phenotypical presentations and looking for common genes struck by variants in several of these
individuals[2,3]. This strategy usually assumes a monogenic inheritance pattern in order to have
sufficient signal to overcome the noise of neutral genomic variation. Additionally, acquiring sufficient
samples is difficult as patient recruitment usually has to happen across several clinical institutions
due to the rarity of the disorder in any given population.

In order to assist in this process, several computational methods have been developed to predict
the impact of a given variant based on various biochemical, structural and evolutionary
properties[11-13]. Although these methods provide reasonable performance in predicting variants
affecting protein function, they lack the specificity to identify true disease-causing variants as the
human genome is riddled with mildly deleterious variation unrelated to the specific phenotype
under study[14—-16]. In order to remedy this, new computational approaches were proposed which
consider not only functional impact but also phenotypic relevance[17,18]. In a recent study we
proposed a method, named eXtasy, that integrates deleteriousness and haploinsufficiency
prediction with phenotype-specific gene prioritization through genomic data fusion[19]. This
approach relies on the similarity across several data sources (e.g. gene expression, protein-protein
interactions, sequence similarity) between known phenotype-associated genes and the mutated
gene[20,21]. This process aids in discriminating variants in genes likely to be involved in the
phenotype and variants in genes which might contain functional variants but for which there is no
evidence of the genes being involved in the disease.

In this study we elaborate on the problem of aggregating across different prioritizations when the
observed clinical presentation is an agglomeration of different phenotypes, as is often the case in
rare Mendelian disorders. For example, Miller syndrome, one of the first Mendelian diseases
elucidated by massively parallel exome sequencing[3], comprises a combination of craniofacial
abnormalities, postaxial limb deformities and sometimes internal malformations. It would be
reasonable to assume that some of these phenotypes would be more informative than others when
considering them for variant prioritization, as some of them might be better understood in the
current literature, they might show less complex known underlying molecular mechanisms or due to
the inherent phenotypic variability of the disease. Yet to estimate their relative informativeness
would require extremely in-depth knowledge of these properties. To circumvent this problem in
eXtasy, we opted to use the maximum score obtained from any single variant prioritization for a
given variant. This garantueed that if one of the phenotypes delivered an informative prioritization
this would be taken into account (increasing sensitivity of the method), yet potentially also inflated
our scores of non-disease causing variants, leading to increased false positive rates. Using the
maximum essentially discards information when more than one informative phenotype is used for
prioritization as only the best phenotype is considered. In this study we propose 3 alternative ways
of aggregating over multiple phenotype-specific prioritizations using either classical order
statistics[20,22], robust rank aggregation[23] and statistical modeling of score distributions. To
estimate and compare their performance we also adapt our benchmarking scheme to resemble a
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more real-life application of variant prioritization. We conclude by showing that although in most
cases the maximum outperforms the other aggregation methods, using more complex aggregation
methods is usually the best when phenotypes are carefully selected. These methods also offer the
added benefit of obtaining probabilistic outcomes which could be integrated further in other
statistical frameworks, such as case/control association studies.

Material and Methods

Benchmark

In order to compare the performance of the different aggregation methods we set up a benchmark
which closely resembles a real-life application of variant prioritization using whole exome
sequencing. We first generated 10000 synthetic exomes by randomly sampling nonsynonymous
variants from the 1000Genomes Project. For every nonsynonymous variant in the 1000Genomes
Project (October 2012 release) a random number between 0 and 2184 (the maximum number of
times an allele could be present in the 1092 diploid individuals) was generated and divided by 2184.
If this randomly generated number was smaller than the observed global minor allele frequency for
that variant, then this variant was included in the synthetic exome. We chose the Human Gene
Mutation Database[24] as a set of disease-causing variants, and selected 16272 nonsynonymous
variants which were suitable for variant prioritization and studying phenotype aggregation (having at
least 3 different phenotypes with at least 3 known gene-phenotype associations each). For each of
these variants we randomly selected one of the 10000 synthetic exomes and injected that disease-
causing variant into the exome. We then ran these synthetic exomes containing one disease-causing
nonsynonymous mutation through eXtasy for each phenotype describing the disease. For each
exome we aggregated the resulting scores of the different prioritization either using the maximum,
mean, the median, classic and robust order statistics and a statistical modelling approach. We then
obtained the rank of the injected disease-causing variant in the synthetic exome for each
aggregation method (Figure 1). We additionally computed the fraction of informative phenotypes
for a disease-causing variant as the number of phenotypes with an eXtasy score > 0.5 over the the
total number of phenotypes prioritized. This threshold is the same at which a variant is considered
disease-causing in the original eXtasy paper and corresponds to the majority vote of trees in the
Random Forest model.
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Figure 1: Schematic representation of the benchmarking scheme: Nonsynonymous variants are first sampled from
1000Genomes Project data based on their respective minor allele frequency, generating a synthetic control exome.
Then, one disease-causing variant from HGMD is added to a single synthetic control exome and eXtasy prioritizations
are performed for each phenotype annotated to the disease-causing variant in that exome. The different phenotype-
specific prioritizations are then combined into a single score using different aggregation schemes and the ranks for the
injected disease-causing variant is compared across the different methods. This process is repeated for each of the
16272 nonsynonymous HGMD variants.

Non-parametric Order Statistics

Nonparametric order statistics have been previously used to aggregate rankings of genes obtained
from different experiments or data sources[20,22]. These methods estimate the probability of a
given combination of ranks under the null hypothesis that the ranks were randomly drawn. These
methods have the benefit if being robust to non-informative rankings, for example adding an
erroneous phenotype in the variant prioritization, without losing the added power of additional
informative rankings (which are lost by aggregating using the maximum score). In an initial
formulation of a gene rank aggregation algorithm, an algorithm was proposed which estimates the
cumulative density function of the order statistic under the null hypothesis using a recursive
formulation. This algorithm was computationally prohibitive for moderate numbers of ranked lists
and was further refined by Aerts et al. (2006) decreasing the algorithmic complexity and thus
computational time. Both formulations assume the null hypothesis that all ranked lists are
potentially informative. Another computationally efficient formulation called Robust Rank
Aggregation (RRA) was proposed[23] where a fraction of the ranked lists is allowed to be
uninformative. In their benchmarks they showed that both RRA and the Aerts et al. formulation
perform similarly but that the latter algorithm becomes unstable for large numbers of ranked lists (N
> 40), but it is unlikely that such numbers of phenotypes would need to be integrated in variant
prioritization experiments. In this study we use the R package (RobustRankAggreg) implemented by
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Kolde et al. which implements both algorithmic order statistic formulations and apply both of them
to our benchmark to rank variants according to their estimated significance.

Parametric Modelling

Order statistic approaches are extremely generalizable as they don’t make any assumptions of the
underlying score distributions by transforming the data into rankings. Although this is extremely
useful in many situations, such nonparametric approaches are usually less powerful than their
parametric counterparts that take these distributions into account. While studying the eXtasy output
score distributions we observed highly reproducible non-Gaussian density functions skewed towards
0 and with long tails towards higher scores, which can be best fitted using a Gamma distribution
model. In order to come up with an aggregate score across different eXtasy prioritizations we
developed a parametrical statistical approach and applied it to our benchmark. Assume n
prioritizations N; for i = 1..mn each containing a set of scores s;, with k = 1..K where K is the
number of variants under study. For each N; we robustly fitted a Gamma distribution I; with
parameters k; and 6; representing the shape and scale of the distribution using the robust package
in R. We then computed the probability p;  of seeing a score equally or more extreme as s; x given
the cumulative density function of I;. To aggregate these individual probabilities into a single
probability of seeing a score as extreme as s; x across the n different distributions we compute the
Fisher’s omnibus meta-analysis statistic r, = —2 ¥.7"; In p; , [25]. This allows us to compute the
global probability of seeing such a combination of eXtasy scores by computing the probability of
given the cumulative density function of a y2 distribution with 2n degrees of freedom. Because of
the large number of variants tested we correct these probabilities using Benjamini-Hochberg False
Discovery Rate correction. We then rank the variants for each synthetic exome in our benchmark
given the aggregated multiple testing corrected p-value.

Results

In contrast with the previously reported eXtasy case-control classification benchmark, our goal with
the synthetic exome benchmark was to simulate a real-life situations where variant prioritization
would be used and resembles the validation benchmark proposed by Robinson et al. [18]. Our
exome generation algorithm generated exomes containing an average of 8399 nonsynonymous
variants (n=10000, sd=242). This number is higher than the roughly 6000 variants reported from
large-scale exome sequencing projects[9], but is in line with whole-genome sequencing studies[8,26]
which do not face the same difficulties that exome-capturing techniques due to coverage variability.
As an indication of real-life performance we describe the rank of the injected disease-causing variant
as a performance metric, as opposed to classical metrics (e.g. precision/recall), to compare
aggregation schemes for multiphenotype variant prioritization using eXtasy.

Overall, we observe that all aggregation methods perform reasonably well (Table 1), having a
median rank for the disease-causing mutation in the top 20 and a below the top 100 in 75% of the
cases (with the exception of the median eXtasy score and RRA). Looking at the cumulative
distribution functions of the ranks of the different methods (Figure 2), we can see that using the
maximum eXtasy score (as used in the original eXtasy publication) delivers the best rankings
compared to the other methods. Aggregation using the average eXtasy score or the more involved
parametric and nonparametric methods seem to show similar performance. Finally, RRA and the
median eXtasy score provide the worst performance out of all the aggregation schemes. These
results indicate that uninformative or incorrectly prioritized phenotypes might affect the global
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ranking significantly, which might explain why using the maximum score (being the most robust
method) generally outperforms other aggregation schemes. In order to further investigate this
hypothesis, we looked at how varying degrees of uninformative phenotypes affect the different
aggregation schemes by stratifying our benchmark according to the fraction of individual
phenotypes correctly prioritized.
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Figure 2: Empirical Cumulative Distribution Function (ECDF) of ranks comparing different aggregation schemes: This
chart shows the proportion of variants out of all disease-causing variants (n=16272) with global ranks after aggregation
lower or equal than the rank shown on the x-axis.

Table 1: Summary statistics for the overall comparison of different aggregation methods: This table shows the mean,
median, 25%-quantile (Q1) and 75%-quantile of the global ranks of disease-causing variants (n=16272) using different
aggregation schemes.

Aggregation Method Q1 Median  Mean Q3

Average eXtasy Score 3 10 59 39

Maximum eXtasy Score 1 5 41 28

Nonparametric Order Statistics: Stuart et al. 3 10 64 42
Nonparametric Order Statistics: RRA 5 20 102 126
Parametric Modelling 2 9 111 37

After stratification into low (n=5862), moderate (n=8559) and high (n=1837) fractions of informative
phenotypes we observe that no single aggregation method performs best across the three classes
(Figure 3). When only less than a third of phenotypes are informative, the average rank of the
disease-causing variants degrades significantly independently of the aggregation method (Table 2).
In this scenario, aggregation using the maximum eXtasy score delivers the best ranking compared to
all other methods, while all other methods show nearly equal performance (with the exception of
RRA, showing significantly lower performance). When roughly halve the phenotypes are informative,
all aggregation methods (except RRA) perform reasonably well (average rank lower in 10, and 75% of
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variants ranked below 12). Additionally, methods which leverage information across different
phenotypes (mean score, order statistics, parametric modelling) perform slightly better than
aggregation using the maximum score. In the case where more than two-thirds of the phenotypes
are informative 75% of the disease-causing variants are in the top 3 ranked mutations for all
methods except aggregation by maximum score (75% of variants in the top 10).
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Figure 3: Empirical Cumulative Distribution Function (ECDF) of ranks by fraction of informative phenotypes comparing
different aggregation schemes: This chart shows the proportion of variants out of all disease-causing variants for
fractions of informative phenotypes divided into 3 classes: Low (n=5862), Moderate (n=8559) and High (n=1837) with
respectively 0%-33%, 33%-66% and 66%-100% of phenotypes showing an eXtasy score > 0.5 for the prioritized disease-
causing variant.
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Table 2: Summary statistics for the comparison of different aggregation schemes by fraction of informative phenotypes:
Analogous to Table 1, this table shows summary statistics for the ranks of disease-causing mutation but after
stratification into 3 classes representing different fractions of informative phenotypes: low (0%-33%), moderate (33%-

66%) and high (66%-100%) number of informative phenotypes showing an eXtasy score > 0.5 for the prioritized disease-
causing variant.

Class Aggregation Method Ql Median Mean Q3
Average eXtasy Score 31 66 152 218
3 2’5 Maximum eXtasy Score 3 26 95 102
E 3 Nonparametric Order Statistics: Stuart et al. 30 69 158 224
?3_ Nonparametric Order Statistics: RRA 64 162 243 347
Parametric Modelling 29 67 295 222
. Average eXtasy Score 2 5 8 12
% § Maximum eXtasy Score 1 3 11 12
E :’i; Nonparametric Order Statistics: Stuart et al. 2 5 10 11
§ 8 Nonparametric Order Statistics: RRA 3 10 26 31
Parametric Modelling 1 5 8 10
= Average eXtasy Score 1 1 2 3
- § Maximum eXtasy Score 1 2 11 10
:‘I’-:" g Nonparametric Order Statistics: Stuart et al. 1 1 11 3
:Lg Nonparametric Order Statistics: RRA 1 3 3 5
= Parametric Modelling 1 1 2 3



https://doi.org/10.1101/064899
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/064899; this version posted July 20, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Discussion

In this study we investigate the performance of different aggregation schemes when dealing with
multiphenotype exomic variant prioritization. We benchmark these methods mimicking a real-life
application by generating synthetic healthy exomes and injecting single known disease-causing
nonsynonymous mutations from HGMD. By comparing different aggregation schemes, ranging from
simple metrics to more involved nonparametric and parametric methods, we show that no single
method is optimal for all cases and that performance depends on the expected fraction of
informative phenotypes.

Not unsurprisingly, the optimal aggregation method is dependent on the signal-to-noise ratio
originating from the underlying individual prioritizations. Any prioritization for a specific phenotype
can add noise to the global prioritization for two reasons. First, the specific phenotype might not be
biologically well-suited to describe the disease under study. This can for example be attributed to
phenotypic variability of the disease (e.g. some of the phenotypes might not always be present in all
patients showing the disease). This problem can relatively easily be managed by clinical knowledge
of the disease, and thus be avoided in real-life applications. In our benchmark this is more difficult to
address due to the sheer number of included diseases/phenotypes where disease terms are linked
to phenotypic ontologies automatically. Secondly, the gene prioritization step can be noisy due to
the selected set of training genes. For example, certain phenotypes could be overly general (e.g.
intellectual disability, abnormality of the face) and have many heterogeneous underlying molecular
mechanisms. Using all known genes in the gene prioritization step for such phenotypes results in
uninformative prioritizations due to a dilution of the signal where similarity is estimated to an
extremely diverse group of genes and thus leads to reduced performance. The inverse problem also
exists where too little is known about the phenotype, biasing the prioritization towards certain
training genes which might not necessarily be similar to the as-of-yet undiscovered causative gene.
Predicting a priori the performance of the gene prioritization is difficult and requires a good
understanding of the underlying data being used.

Because of these problems, it is important to use aggregation methods which can handle these
uninformative or erroneous prioritizations robustly. Aggregating using the maximum score is a
simple and intuitive robust solution and performs well in our previous and current benchmark,
especially in low signal-to-noise situations. The drawback of using the maximum is that it ignores
information from additional phenotypes, which could be quite powerful in increasing the
performance of a global prioritization. This is indicated by the better performance of methods which
take advantage of these phenotypes (mean, order statistics and parametric modelling) when better
signal-to-noise ratios are observed. It is important to remark that uninformative phenotypes are
likely overrepresented in our benchmark, compared to real-life applications, because of the
automatic mappings generated between disease-variants and phenotypic ontologies and the lack of
clinical expertise for each evaluated disease. Considering this, it is likely that using these methods
will result in better variant prioritizations if the phenotypes are carefully selected.

Here we show that choosing a suitable aggregation method in multiphenotype variant prioritization
can affect the results of the resulting global prioritization. We demonstrate this by using simple
aggregation methods such as the maximum score and the mean score. Additionally we show that
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more involved nonparametric and parametric statistical methods offer similar performance with the
added benefit of providing estimates of significance which could in future studies could easily be
used in broader statistical frameworks such as those used in weighted association or familial studies
[27,28]. We do remark that these methods assume independence of the individual prioritizations, an
assumption which is likely not true due to the usage of phenotype-aspecific data sources in eXtasy.
This might not greatly influence their performance in a ranking scenario but result in biased
estimates of significance. Several methods have been proposed which handle these dependencies
[29,30]but were not considered in this study due to the unavailability of usable implementations,
but should be considered when true statistical significance is of importance.

Although currently we rely on the user to select an appropriate aggregation method given his
experience on how well-characterised the phenotype under study is. In future work we hope to
partially or fully automate this process by trying to evaluate training gene set heterogeneity and
gene prioritization performance through cross-validation. By gradually improving variant
prioritization performance and usability we hope to aid clinical geneticists in discovering disease-
causing mutations for their respective phenotypes of interest.

We currently offer all the proposed aggregation schemes in the current version of eXtasy
(http://homes.esat.kuleuven.be/~bioiuser/eXtasy/). We also publicly provide the benchmark data

for further development or benchmarking of other score/rank aggregation methodology
(http://homes.esat.kuleuven.be/~bioiuser/eXtasy/aggregation.tar.gz).
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