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Abstract 

Studies on plant electrophysiology are mostly focused on specific traits of action 

potentials (APs) and/or variation potentials (VPs), often in single cells. Inspired by 

the complexity of the signaling network in plants and by analogies with some traits of 

neurons in human brains, we have sought for evidences of high complexity in the 

electrical dynamics of plant signaling, beyond APs and VPs responses. Thus, from 

EEG-like data analyses of soybean plants, we showed consistent evidences of chaotic 

dynamics in the electrical time series. Furthermore, we have found that the dynamic 

complexity of electrical signals is affected by the plant physiological conditions, 

decreasing when plant was stressed. Surprisingly, but not unlikely, we have observed 

that, after stimuli, electrical spikes arise following a power law distribution, which is 

indicative of self-organized criticality (SOC). Since, as far as we know, these were the 

first evidences of chaos and SOC in plant electrophysiology, we have asked follow-up 

questions and we have proposed new hypotheses, seeking for improving our 

understanding about these findings. 

 

Introduction 
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Because of the sessile and modular nature and the continuing challenges on their 

surviving, the plants must be able to perceive, interpret and respond to various 

environmental stimuli by integrating the signals received by many different sensors in 

the cells. To this end, they use a system that involves a complex network of signal 

transduction, involving cell-cell and long distance communication, enabling 

integration of their body parts (modules) as a whole, providing the ability to adjust 

their phenotype to different environmental conditions1,2,3.  

Different types of signals, such as hormones, ROS, Ca2+ and electrical signals, 

compose the plant’s signaling network3,4. Specifically, there are three types of 

electrical signals in plants: APs (action potentials), VPs (variation potentials), and SPs 

(system potentials). Strong evidences have demonstrated that these signals play 

central role in both cell-cell and long-distance communication in plants5-8.  

 APs are characterized by spike-like changes of the resting membrane potential 

and, independent of the stimulus strength, starts propagating through the plant with a 

defined amplitude and velocity. Like in animals, APs seem to be all-or-nothing 

events9,10. VPs differ from APs in various ways. VPs do not obey the all-or-nothing 

law, they are known as slow wave potentials (SWPs) with variable shape, amplitude 

and time frame. Moreover, the signals are related with the stimulus strength, and last 

for periods of 10 s up to 30 min11,12. System potentials (SPs), in contrast to APs and 

VPs, reflect a systemic self-propagating hyperpolarization of the plasma membrane or 

depolarization of the apoplastic voltage. Like VPs, SPs have a magnitude and 

duration that are depended on the stimulus, but they are initiated via membrane 

hyperpolarization through the sustained activation of the proton pump. SPs are 

dependent of experimental conditions, and then they may occur under a very specific 

set of environmental conditions4,11. 
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 Despite of different induction mechanisms, the electrical signals are able to 

inform distant cells about local stimuli, triggering proper physiological responses to a 

multitude of environmental stimuli6. As far as we know, the studies linking electrical 

signaling with physiological responses to environmental cues are based on the 

analysis of APs or VPs waves, taking into account only parameters as frequency, 

amplitude, distance of propagation and time frame6,8,12,13.  

 However, quite often mixed electrical potential waves (EPWs) are recorded, 

for instance, as result of overlapping APs and VPs, which impedes proper signal 

analysis14. It is also important to note that even though APs, VPs and SPs most likely 

occur through distinct molecular mechanisms, these phenomena can arise within 

similar temporal scales, creating a complex web of systemic information in which 

several electrical signals may be layered on top of each other in time and space4. 

Accordingly, Masi et al. (ref 15) have reported strong evidence of synchronization of 

electrical spikes among different cells in the maize root apex, suggesting a collective 

behavior of groups of cells interconnected by the plasmodemata network. Therefore, 

the temporal and spatial dynamics of electrical signaling in plants exhibit complex 

behavior. Indeed, Cabral et al. (ref 16) showed evidence of high complexity dynamics 

in plant electrical signals, exhibiting a large spectrum of frequencies, but not random. 

 Thus, we have hypothesized that the complexity of the massive ionic flow 

through plant tissues could be similar to the complexity observed in the human brain, 

since they share analogous (but non homologous) mechanisms of membrane 

depolarization/re-polarization based on transmembrane ion fluxes, linking electrically 

a plenty of cells and engendering a complex network of information transmission4,17.  

Actually, since the mid 1980s, scientists began to apply chaos theory to human 

electroencephalogram (EEG) data sets, uncovering non-random complex patterns 
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underlying brain electrical signals. Accordingly, EEG signals can be interpreted as the 

output of a deterministic system of relatively low complexity, but containing highly 

non-linear elements18. Non-linear dynamical systems can exhibit chaotic behavior 

and, thus, become unpredictable over a long time scale19.  

In animals, particularly humans, studies on the temporal dynamics of electric 

signals obtained by EEG are allowed to establish consistent relationship between the 

state of health of individuals and the complexity measures in EEG, applying non-

linear time series analyses techniques based on deterministic chaos theory18,20-22. 

Relationships between the intricate variation in the physiological time-series 

parameters and the state of plants under different environmental conditions were 

previously studied by Souza et al. (refs 23-25) allowing to hypothesize that eventual 

changes in the dynamics of EEG-like signals in plants could be associated to 

environmental stimuli responses.  

Gardiner26,27 has suggested the possibility of using EEG in plants to relate 

likely changes in temporal dynamics with different physiological states. But as far as 

we know, there are no studies in this direction. Thus, the main objective of this study 

was to investigate the eventual existence of complex information underlying plant 

electrical signaling, beyond APs and VPs, by analyzing the electrical signals 

measured with EEG-like technique. Moreover, we have taken in consideration the 

possibility that stressful environmental stimuli induce changes in the signals 

complexity. 

 

Material and Methods 

 

The plant model and growth conditions 
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In this study, soybean [Glycine max (L) Merrill] cv. Intact Bt/RR was used as plant 

model. G. max offers a good experimental model because it is easily cultivated at 

laboratory conditions, the available knowledge of its physiology under different 

environmental stressful conditions and it has been used previously in bioelectrical 

studies8.  

Seedlings were obtained from seeds germinated in 180 mL pots with 

vermiculite as substrate. The pots were kept in maximum capacity of water retention 

during both germination and early seedling development under controlled conditions 

(Phytotron EL-101, Eletrolab, Brazil): day/night temperature of 28/22 oC, 

respectively, 14h of photoperiod with 500 μmol photons m-2 s-1, and air humid around 

60%. The plants were irrigated daily with ½ strength Hoagland nutrient solution, 

preventing, at same time, both starvation and salinization. The amount of irrigation 

was determined after weighing the pots with its maximum water retention and 

verifying the daily evaporation loss. 

 

Data acquisition and experimental design  

For acclimation, one the day before each experimental session, sub-dermal needle 

electrodes (model EL452, Biopac Systems, US) were inserted into the region between 

the stem and the roots, below the first pair of simple leaves, using plants with 15 days 

after germination. Acclimation to the electrodes is required because insertion induces 

action potentials and local fluctuations in potential variation, which is stabilized in a 

few hours with the disappearance of action potentials28. Each pair of electrodes 

(positive/negative) was inserted into the stem at a fixed distance (1 cm from each 

other) and 2-3 mm in depth, ensuring contact with the conducting vessels of the 

plants. The parts of the electrodes outside the plants were isolated from each other by 
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a block of polystyrene. A third electrode was attached to the structure of the Faraday 

cage in order to obtain adequate electrical grounding. In each experimental session, 

data were collected from four plants simultaneously, using a total of forty plants. 

All bioelectric measurements were taken in a Faraday cage properly grounded 

to prevent electric field from the laboratory environment. The bioelectric time series 

were recorded using a device of electronic acquisition with four channels (model 

MP36, Biopac Systems, US) with high input impedance. The sampling rate used was 

125 Hz with two filters, one high-pass (0.5 Hz cutoff frequency) and a low-pass (1.5 

kHz cutoff frequency). The signals were amplified with a gain of 20,000 x, allowing 

high resolution to capture the voltage variations before and after stimuli, in order to 

perform suitable and reliable non-linear time series analyses. Data gathering was 

carried out continuously during 1h before and 1h after application of the 

environmental stimuli.  

The plants were osmotically stimulated with a mannitol solution with water 

potential of -2.0 MPa, applied directly on the substrate of the pots, taking care to 

avoid any mechanical contact with the plant. According to several previous studies, 

this osmotic potential is stressful, but no lethal, for soybean plants29,30. The 

temperature of the mannitol solution was previously kept in equilibrium with the 

temperature inside the Phytotron to avoid additional disturbances on the root system. 

 

Mathematical data analyses 

In this study, we analyzed the time series ΔV={Δv1, Δv2,...,ΔvN}, where Δvi is the 

potential difference between the electrodes inserted in the plants, as described above. 

The series analyzed correspond to samplings with the total length N ~75,000 points, 

corresponding to 600 s of the data measured before and after stimuli.  
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However, before experimental data analyzes, the noise from the EEG device 

was characterized as follows. First, it was calculated the Pearson linear correlation 

function ρ�τ� between two random variables x and y, delayed τ each other, by the 

equation 

ρ�τ��
��xi‐�x	�·��τ�i‐�yτ	�	

σx·σy

 

where �1 � ���� � 1, τ is the time lag and <...> represents an average; 	 
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��� . For ρ(τ)>0 the variables are positively correlated, and for  

ρ(τ)<0  the variables are negatively correlated throughout time. For ρ(τ)=0  the 

variables are uncorrelated. When ρ(τ) decay exponentially the correlation have short 

range, showing well defined characteristic time correlation. On the other hand, when 

ρ(τ) follows a power law, the correlations have long range without characteristic time. 

Considering x=Δv and y=Δv in (ρ(τ)), we have the auto-correlation function for the 

variable Δv with lag τ.  

In the ρ(τ) calculated for data from de open electrode (noise of the device) it 

was observed a exponential decay ����~�� �

�� , meaning that the correlations were 

short range with characteristic time  τo = 0.08s.  The probability density function (pdf) 

of the noise was Gaussian, as indicated by the normal probability plot method31 

(Figure 1, inset). This method consists of linearize the Gaussian of the pdf. When the 

data analyzed are arranged in the line, implies that they follow the same distribution. 

The Gaussian distribution of the noise was corroborated by the analysis of skewness 

(β) and kurtosis (κ). Gaussian pdf shows symmetrical (β = 0.0) and peaked 

distribution with κ = 3.0. Hence, we have demonstrated that the EEG device has a 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 19, 2016. ; https://doi.org/10.1101/064790doi: bioRxiv preprint 

https://doi.org/10.1101/064790


Gaussian noise (Figure 1), do not interfering significantly with the quality of the 

dynamics of the signals measured. 

Figure 1 – The autocorrelation function ρ(τ) with exponential decay, indicating that the 

temporal correlations are short range. The filled symbols are the experimental data and the 

continuous line is the fitting. In the inset, the normal probability plot test indicates that the pdf 

of the noise of the device is Gaussian. β = skewness; κ = kurtosis. 

 

The time series sampled were analyzed by different methods in order to 

characterize the temporal dynamic of the signals, focusing in comparing the dynamics 

before and after the stimuli. First, we analyzed the auto-correlation function for each 

time series and, then, the cross-correlation function was calculate between the before 

and after the stimuli series. Second, the complexity of the time series were estimated 

by computing the Approximate Entropy (ApEn) and, then, tested for chaotic behavior 

by computing the largest Lyapunov exponents of the series.  
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Experimental time series analyses 

The auto-correlation functions of the time series sampled before and after stimuli 

were calculate as described above. 

The calculation of Approximate Entropy, ApEn (m,r), follows the equation33 

 

������, �� � ����� � ������� 
 

where �� � �

�����
∑ �����,��	
/�� 
� � 1
������
�	�  and  ��,��	
 is the number (i) of 

vectors pairs m-dimensional to an Euclidian distance less or equal to r, and N-m+1 is 

the total number of vectors in the embedding dimension m. For this study, according 

to the demonstrations of Pincus32,33, we assume r= 0.2σ (20% of the standard 

deviation of the time series ΔV) and m = 2.  

ApEn has been used as a robust method to measure the complexity 

(irregularity level) of biological time series. ApEn assigns a non-negative number to a 

sequence or time-series, with larger values corresponding to greater apparent process 

randomness or serial irregularity, and smaller values corresponding to more instances 

of recognizable features or patterns in the data25,32,33. 

 

Largest Lyapunov exponent 

To characterize chaos in the time series, the largest Lyapunov exponent was 

calculated according to Rosenstein’s method34. The Lyapunov exponent35 quantifies 

the rate of separation of infinitesimally close trajectories in the phase space. Taking 

ΔSo>0 as the initial distance between two trajectories apart each other by a slight 

disturbance, the temporal evolution of this separation is given by the equation 
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∆���
 � ∆�
 · ��·
, where λ is the Lyapunov exponent and τ is the time step. When 

λ<0 the two trajectories converge and the system is stable. When λ>0 the trajectories 

diverge in the space-phase, and the system exhibit a chaotic behavior. Stochastic 

dynamics, mathematically, show λ→∞ that, in the plot of log(ΔS(τ)) versus τ, is 

indicated by a vertical straight line trending in the initial part of the plot (such as in 

Figure 5, in Results).  

 

Results 

 

The auto-correlation analysis showed that, contrary the noise of the EEG device, all 

the experimental time series sampled have a long-range correlation. However, the 

pattern decay of the ρ(τ) of the signal measured before and after the stimuli exhibited 

different behaviors. While the trend of decay of ρ(τ) before stimuli was continuous, 

the trend after stimuli showed a consistent oscillatory behavior. In order to 

corroborate the observed differences in the ρ(τ) between the signals before and after 

stimuli, a cross-correlation analysis was carried out, showing no correlation between 

them (Figure 2).   
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Figure 2 – Auto-correlation function ρ(τ) of four time series samples (a, b, c, and d) randomly 

chosen from the total data set (n = 40). The auto-correlation function before and after 

treatment are represented by empty circles and filled squares, respectively. The cross 

correlation function before and after stimuli is shown by filled triangles.  

 

The complexity measurements showed consistently that after stimuli there was 

a decrease in ApEn values (Figure 3), indicating higher complexity in the electrical 

signals before stimuli. For the most of the series analyzed (after and before stimuli) 

the Lyapunov exponents were finites and positives, indicating chaotic behavior. 

Moreover, the Lyapunov exponents were lower after than before stimuli, supporting 

the ApEn results that have indicated lower complexity in the electrical dynamic after 

stimuli (Figure 4).  
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Figure 3 – Approximate Entropy (ApEn) before (cross-hatched column) and after (filled 

column) the stimulus for ten time series samples chosen randomly from the total data set (n = 

40). 

 

 

Figure 4 – Largest Lyapunov exponent before (cross-hatched column) and after (filled 

column) of the stimuli for ten time series samples chosen randomly from the total data set (n 

= 40). 

 

The largest Lyapunov exponent is obtained from the slope of the log of the 

divergence between two trajectories (log(Δs) vs  Δt) according to the time step34. In 
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some situations observed herein, signals before stimuli showed an asymptotically 

infinite exponent, suggesting that the series was purely stochastic (Figure 5a). 

However, in the same plant sampled after the stimulus, the Lyapunov exponent has 

become finite and positive, indicating that the series has assumed a chaotic dynamics 

(Figure 5b). 

 

 

Figure 5 – Logarithm of the divergence due to the time step for the same plant time series 

before and after the stimulus. In (a) it was observed an approximately infinite exponent 

showing that the series was stochastic. In (b), for the same plant after stimulus, the exponent 

was finite and positive, indicating that the dynamics has become chaotic. 

 

 Further, analysing visually and systematically the shape of each original time 

series before and after stimuli, we have observed the presence of spikes up to 500 μV 

(taking into account the⏐ΔV⏐ baseline range around 20 – 40 μV) in all time series 

after stimuli (inserts in Figure 6). Then, the distribution of the ⏐ΔV⏐ magnitudes was 

analysed in the whole scored time series after stimuli (aprox. 1 h of sampling), in 

order to obtains a more accurate and reliable analysis. Surprisingly, but not unlikely, a 
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power law distribution was detected, D(⏐ΔV⏐)=⏐ΔV⏐-μ
, with exponent μ ≅ 2.0 

(Figure 6). This result indicates that the time series exhibits scale invariance19. 

 

 

Figure 6: Distribution of ⎛ΔV⎛ μV in the asymptotic limit from five time series after stimuli 

following a power law, D(⏐ΔV⏐)=⏐ΔV⏐-

μ
, whit μ values from 1.9 up to 2.1. 

Representative samples from the original time series scored before and after stimuli are 

showed in the insert (a) and (b), respectively.  

 

Discussion 

 

Plants, as any live being, are thermodynamical dissipative open systems far from 

equilibrium, with self-organized emergent properties36,37. Such systems often show 

non-linear dynamics that can fit to deterministic chaos18,19. Chaotic dynamics have 

been observed in many biological phenomena38,39, ranging from human EEG18, 

different processes in plant physiology24,40,41, to ecological dynamics42. Our results 

consistently showed that the temporal dynamics of electrical signaling in plants is 

highly complex (but not random), indeed chaotic. As far we can know, this is the first 

observation of chaos in plant electrical signaling. 
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Thus, some questions arise: What could engender such complexity? Is there 

some physiological meaning in such chaotic behavior? Although plants do not have a 

nervous system, they possess a complex network that uses ion fluxes moving through 

defined cell types to rapidly transmit information between distant sites within the 

organism43. Distinction between APs and VPs in plants based solely upon their kinetic 

characteristics might be doubtful because VPs often mimic AP kinetics, and they 

often overlap each other14,44, arising a spatial and temporal complex web of electrical 

signaling4. Additionally, the well known complexity of calcium waves underlying 

plant electrical signaling13,42, and the network of neurotransmitters signaling, acting 

on development, communication and stress responses5,17 can explain, at least in part, 

the temporal complexity in the electrical transmission of significant (not random) 

physiological information through the plant body, which is not properly congregated 

by single VPs or APs signals14. 

Furthermore, several electrical signals from single cells can be synchronized 

in time and space4,15, similarly to a neuronal electrical network. Our finding that the 

distribution of ΔVs follows a power law can bring some light to the phenomenon of 

synchronization. Power law distributions, specifically when 1< μ < 3 (in our results 

μ was between 1.9 and 2.1), can be signatures of self-organized critical (SOC) 

systems45-47. SOC is a ubiquitous phenomenon in nature regardless on the details of 

the physical system under study observed, for instance, in earthquakes, sandpiles, 

droplet formation, dynamic of populations, and in biological evolution46,47. Thus, we 

hypothesized that the spikes observed herein (Figure 6) and those reported by Masi et 

al. (ref 15) emerge from a self-organized process, when groups of cells with different 

sizes synchronize their variation of voltages. Moreover, because the exponent μ is 

around 2.0, the distribution of spikes has not a characteristic size20.  
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According to Bak et al. (ref 45), SOC systems are barely stable and, then, 

perturbations can cause a cascade of energy dissipation on all length scales, following 

a power law. Stability is supposedly linked in a straightforward way with the system 

dynamics.  In a biological interpretation, it is expected that more complex dynamics 

allow system stability, providing higher resilience to the system under external 

disturbances25,48. Thus, the higher the complexity of the system is, “healthier” it shall 

be. For instance, plants showing more complex dynamics in leaf gas exchanges under 

control conditions showed better recovering after a water deficit situation24,25. Studies 

with EEG in human brains have also found a correlation between complexity and 

health. For example, dramatic reductions in the complexity of EEG signals have been 

associated with seizures in humans22. Similarly, analysis of the temporal dynamics of 

EEG in Alzheimer patients identified a reduction in irregularity (complexity) of the 

time series of electric signals20. Accordingly, our results from complexity 

measurements after stimuli indicated that the osmotic stimulus was stressful, reducing 

the complexity and stability, pushing the system to a critical state.  

Recent studies with EEG in human brains have also showed evidences of 

SOC49,50. However, SOC has been associated to a normal brain functioning and 

disturbances, such as epileptic seizures attacks, deviate neuronal activity from a 

power-law distribution50. Thus, while SOC seems to be the normal state of brain 

functioning, our results suggest that the critical state in plants can be reached under 

stressful environmental conditions. Therefore, it is not clear what is the meaning of 

SOC for biological systems stability. By one hand, critical states can be associated to 

optimal information processing and computational capabilities (brain specialties)50 

and, on the other hand, in the critical state, systems can dissipate energy (tensions) 

efficiently45, which is a very important capacity for plants under stressful situations. 
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Follow-up questions and perspectives 

Summarizing, our results support the hypothesis that, beyond APs and VPs, 

there is a complex and significant, i.e. non-random and responsive to stimuli, flow of 

electrical information, showing chaotic dynamic. Additionally, when disturbed, the 

system can reach a self-organized critical state.  

Our results suggest that electrical signaling could play a broader role in plant 

life. The complexity in the electrical signals measured here supports a further 

hypothesis that a large amount of meaning information can flow throughout the plant 

body, likely affecting the signaling of a plethora of processes. Moreover, since the 

complexity of the electrical signals can be affected by environmental stimuli, it is 

reasonable to assume a special involvement in plant stress responses, such as single 

APs and VPs supposedly do6,8. 

 As these are the first reports of chaos and SOC phenomena in plant 

electrophysiology, we should ask if the underlying electrical information could be 

directly related to the plant responses to specific environmental stimuli, and if 

different cultivars/species could show different response patterns. Additionally, we 

shall ask: Which are the causal mechanisms of SOC in the electrical signals? What 

could be the physiological significance of critical state for the plants? In order to 

answer these fundamental questions, more experimental studies are necessary to 

support the development of mathematical models, allowing explore deeply the origins 

of SOC in plant electrophysiology. 

Further, if there is ubiquitous complex information underlying the electrical 

signals in plants, we could decode this information and use it to create a protocol of 
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diagnosis, gathering their physiological states in real time. Practically, we could try to 

uncover a plant’s “language”. 
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