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ABSTRACT 

Visual processing depends on specific computations implemented by complex neural circuits. Here, we 1 

present a circuit-inspired model of retinal ganglion cell computation, targeted to explain their temporal 2 

dynamics and adaptation to contrast. To localize the sources of such processing, we used recordings at the 3 

levels of synaptic input and spiking output in the in vitro mouse retina. We found that an ON-Alpha 4 

ganglion cell’s excitatory synaptic inputs were described by a divisive interaction between excitation and 5 

delayed suppression, which explained nonlinear processing already present in ganglion cell inputs. 6 

Ganglion cell output was further shaped by spike generation mechanisms. The full model accurately 7 

predicted spike responses with unprecedented millisecond precision, and accurately described contrast 8 

adaption of the spike train. These results demonstrate how circuit and cell-intrinsic mechanisms interact 9 

for ganglion cell function and, more generally, illustrate the power of circuit-inspired modeling of sensory 10 

processing.   11 
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INTRODUCTION 12 

Neural computations in the retina are generated by complex circuits that drive the responses of ~30 13 

distinct ganglion cell types (Baden et al., 2016; Demb and Singer, 2015; Sanes and Masland, 2015). 14 

Despite the complexity of retinal circuitry, the broad features of spike firing, in many ganglion cell types, 15 

can be described with a straightforward Linear-Nonlinear (LN) cascade model (Shapley, 2009). In this 16 

model, a linear receptive field filters the stimulus, and a nonlinear function shapes the output by 17 

implementing the spike threshold and response saturation (Baccus and Meister, 2002; Chichilnisky, 2001; 18 

Kim and Rieke, 2001). However, many aspects of ganglion cell firing deviate from LN model predictions. 19 

For example, the LN model does not capture the effect of contrast adaptation, which includes reduced 20 

gain (i.e., filter amplitude) at high contrast (Kim and Rieke, 2001; Meister and Berry, 1999; Shapley and 21 

Victor, 1978). Furthermore, the LN model does not predict firing at high temporal resolution (Berry and 22 

Meister, 1998; Butts et al., 2016; Butts et al., 2007; Keat et al., 2001; Passaglia and Troy, 2004; Uzzell 23 

and Chichilnisky, 2004), and yet precise firing represents an essential element of downstream visual 24 

processing (Bruno and Sakmann, 2006; Havenith et al., 2011; Kelly et al., 2014; Wang et al., 2010a).  25 

To improve on the LN model, several nonlinear approaches have been proposed. The first 26 

approach describes the nonlinear function between stimulus and response as a mathematical expansion, 27 

extending from the linear receptive field (Chichilnisky, 2001) to second-order quadratic terms, using 28 

either spike-triggered covariance (Fairhall et al., 2006; Liu and Gollisch, 2015; Samengo and Gollisch, 29 

2013; Vaingankar et al., 2012) or maximally informative dimension analyses (Sharpee et al., 2004). Such 30 

expansion terms better predict the spike train, but they are difficult to interpret functionally and with 31 

respect to the underlying circuitry (Butts et al., 2011; McFarland et al., 2013). The second approach 32 

targets specific aspects of the response, such as spike-refractoriness (Berry and Meister, 1998; Keat et al., 33 

2001; Paninski, 2004; Pillow et al., 2005), gain changes associated with contrast adaptation (Bonin et al., 34 

2005; Mante et al., 2008; Meister and Berry, 1999; Shapley and Victor, 1978), the interplay of excitation 35 

and inhibition (Butts et al., 2016; Butts et al., 2011), and rectification of synaptic release, associated with 36 

nonlinear spatial processing (Freeman et al., 2015; Gollisch, 2013; Schwartz and Rieke, 2011). However, 37 

each of these models primarily focuses on one type of nonlinear computation and does not generalize to 38 

explain a range of response properties. 39 

Here we derive a novel nonlinear modeling framework inspired by retinal circuitry. The model is 40 

constrained by recordings at two stages of processing: excitatory synaptic input and spike output, 41 

recorded in mouse ON-Alpha ganglion cells. We devise a tractable model of excitatory currents that 42 

incorporates a nonlinear structure based on realistic circuit elements. In particular, we allowed for divisive 43 

suppression acting on a ganglion cell’s excitatory inputs to capture the computations implemented by 44 

presynaptic inhibition (Eggers and Lukasiewicz, 2011) and synaptic depression (Jarsky et al., 2011; 45 
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Ozuysal and Baccus, 2012) at bipolar cell terminals. Ganglion cell firing, further shaped by spike 46 

generation mechanisms, could be predicted to millisecond precision. Our study establishes a unified 47 

model of nonlinear processing within ganglion cells that accurately captures both the generation of 48 

precise firing events and contrast adaptation. Similar circuit-inspired modeling could be applied widely in 49 

other sensory systems. 50 

 51 

 52 

RESULTS 53 

We recorded spikes from ON-Alpha ganglion cells in the in vitro mouse retina while presenting a 54 

temporally modulated (<30 Hz), 1-mm spot centered on the neuron’s receptive field (Fig. 1A, top). Every 55 

10 seconds the contrast level switched between high and low. In high contrast, the stimulus evoked spike 56 

responses that were precisely timed from trial to trial (Fig. 1A, left), consistent with previous work 57 

performed both in vitro and in vivo (Berry and Meister, 1998; Butts et al., 2016; Butts et al., 2007; 58 

Passaglia and Troy, 2004; Reinagel and Reid, 2000; Uzzell and Chichilnisky, 2004).  59 

We first used a linear-nonlinear (LN) cascade model (Fig. 1B) (Chichilnisky, 2001; Hunter and 60 

Korenberg, 1986) to predict the observed responses. The “L” (linear) step of the cascade processes the 61 

stimulus with a linear “receptive field” k, whose output reflects the degree that the stimulus s(t) matches 62 

k. The “N” (nonlinear) step acts on output of the receptive field, k�s(t), which is scaled by a nonlinear 63 

function that could include the effects of spike threshold and response saturation. Both the linear receptive 64 

field and the nonlinearity are fit to the data in order to best predict the firing rate. The resulting receptive 65 

field had a biphasic shape at both contrasts, representing the sensitivity of the neuron to dark-to-light 66 

transitions (Fig. 1B). Furthermore, the filter had smaller amplitude at high contrast, a signature of contrast 67 

adaptation (Baccus and Meister, 2002; Kim and Rieke, 2001; Zaghloul et al., 2005). 68 

Despite capturing the coarse temporal features of the response, the LN model could not capture 69 

fine temporal features at high contrast (Fig. 1A) (Berry and Meister, 1998; Liu et al., 2001). To precisely 70 

compare time scales of the observed data with model predictions, we performed “event analysis”, which 71 

divides the spike train into firing events separated by silence (Butts et al., 2010; Kumbhani et al., 2007). 72 

Based on this analysis, the LN model failed to predict either the SD of the first-spike in each event or the 73 

overall event duration in high contrast, but was largely successful in low contrast (Fig. 1C).  74 

To improve on the LN model prediction, we included a refractory period (RP) following each 75 

spike (Paninski, 2004), which has previously been suggested as a mechanism for precise firing in 76 

ganglion cells (Berry and Meister, 1998; Keat et al., 2001) (see Methods). However, while the resulting 77 

LN+RP model could predict the temporal properties of the spike train at low contrast, it failed at high 78 
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contrast (Fig. 1C). Thus, spike-refractoriness alone could not explain the precision at high contrast, and 79 

consequently could not predict how the response changes from low to high contrast. 80 

Nonlinear processing distributed across two stages of retinal processing 81 

Because some degree of contrast adaptation is already present in a ganglion cell’s excitatory synaptic 82 

inputs (Beaudoin et al., 2007; Beaudoin et al., 2008; Kim and Rieke, 2001), we hypothesized that we 83 

might uncover the source of the nonlinear processing by directly modeling the synaptic input currents. We 84 

therefore made whole-cell patch clamp recordings on the same neurons we recorded spike responses 85 

from, and performed a similar LN analysis on excitatory synaptic currents (Fig. 1D). The LN model of the 86 

currents (Fig. 1E) – like that of the spike response – accurately predicted the observed response at low 87 

contrast, but performed relatively poorly at high contrast (Fig. 1D). To compare the precision of the LN 88 

model with the observed data, we measured the coherence between the trial-averaged response and the 89 

responses on individual trials (see Methods); this measure captures the consistency of the response across 90 

repeats at multiple time scales. At low contrast, the coherence of the excitatory current matched that of 91 

the LN model prediction, whereas at high contrast the coherence of the current extended to finer time 92 

scales (i.e., higher frequencies) and hence exceeded the precision predicted by the LN model (Fig. 1F).  93 

Contrast adaptation was measured in the synaptic currents by comparing LN models at each 94 

contrast level (Fig. 1E). The linear filter for the current responses had a larger amplitude (i.e., higher gain) 95 

in low contrast compared with high contrast (Beaudoin et al., 2007; Beaudoin et al., 2008; Kim and 96 

Rieke, 2001). The adaptation occurred rapidly after the contrast switch and lacked an additional slow 97 

component described for some other ganglion cell types (Suppl. Fig. 1; (Baccus and Meister, 2002; 98 

Manookin and Demb, 2006)). Furthermore, the increase in gain for currents was smaller than that 99 

measured in the spike response. To compare the changes in the filters with contrast and spikes, we define 100 

contrast gain as the ratio between the standard deviation of the filter in low contrast over that in high 101 

contrast. For all neurons where spikes and currents were recorded in the same neuron, the contrast gain 102 

was significantly larger for spikes than currents (n=3), and this trend was robust across all recordings 103 

(p<10-6, unpaired two-sample t-test, spikes: n=11, current: n=13) (Fig. 1E) (Zaghloul et al., 2005). These 104 

observations suggest that both contrast adaptation and temporal precision in ON-Alpha ganglion cell 105 

spike responses are generated in large part by retinal circuitry upstream of the ganglion cell, but that 106 

further transformation occurs between currents and spikes (Kim and Rieke, 2001). 107 

 108 

 [Figure 1 about here] 109 

 110 
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The nonlinear computation underlying synaptic inputs to ganglion cells 111 

In constructing a nonlinear description of the computation present in excitatory synaptic currents, we 112 

sought to emulate elements of the retinal circuit that shape these currents (Fig. 2A). Excitatory synaptic 113 

inputs to ganglion cells come from bipolar cells, and bipolar cell voltage responses to our stimuli are well 114 

described by an LN model (Baccus and Meister, 2002; Rieke, 2001). This suggests that mechanisms 115 

responsible for the nonlinear behavior of the postsynaptic excitatory current are localized to the bipolar-116 

ganglion cell synapses. Possible sources of such nonlinear behavior include presynaptic inhibition from 117 

amacrine cells, which can directly gate glutamate release from bipolar cell terminals (Eggers and 118 

Lukasiewicz, 2011; Euler et al., 2014; Schubert et al., 2008; Zaghloul et al., 2007), and synaptic 119 

depression at bipolar terminals caused by vesicle depletion (Jarsky et al., 2011; Markram et al., 1998; 120 

Ozuysal and Baccus, 2012). 121 

To capture the computations that could be performed by such suppressive mechanisms, we 122 

constructed a “divisive suppression” (DivS) model (Fig. 2A, bottom left). Terms simulating bipolar cell 123 

excitation and suppression are each described by a separate LN model, with a multiplicative interaction 124 

between their outputs such that the suppression impacts bipolar cell release (Fig. 2A). Note that divisive 125 

gain control matches earlier models of either presynaptic inhibition (Olsen and Wilson, 2008) or synaptic 126 

depression (Markram et al., 1998). The suppressive term drops below one when the stimulus matches the 127 

suppressive filter, causing a proportional decrease in excitation of the ganglion cell. If the suppression 128 

does not contribute to the response, its nonlinearity would simply maintain a value of one, and the DivS 129 

model reduces to the LN model. The DivS model construction can be tractably fit to data using recent 130 

advances in statistical modeling (Ahrens et al., 2008b; McFarland et al., 2013).  131 

The DivS model fits were highly consistent across the population, with similarly shaped 132 

excitatory and suppressive filters across cells (Fig. 2B). For each cell, the suppressive filter was delayed 133 

relative to the excitatory filter (10.9 ± 2.2 ms, p<0.0005, n=13, Fig. 2C). The excitatory nonlinearity was 134 

approximately linear over the range of stimuli (Fig. 2D, left), whereas the suppressive nonlinearity 135 

decreased below one when the stimulus either matched or was opposite to the suppressive filter (Fig. 2D, 136 

right), resulting in selectivity to both light increments and decrements.  137 

The DivS model outperformed the LN model in predicting the observed currents (Fig. 2E). 138 

Furthermore, it performed as well or better than other nonlinear interactions between the two filters. We 139 

first tested a more general form of nonlinear interaction by directly estimating a two-dimensional 140 

nonlinear function, which maps each combination of the excitatory and suppressive filter outputs to a 141 

predicted current (Fig. 2F; see Methods). While this 2-D model contains many more parameters than the 142 

DivS model, the 2-D model did not perform significantly better (Fig. 2E); indeed, the estimated 2-D 143 

nonlinearities for each neuron were well approximated by the separable mathematical form of the DivS 144 
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model (R2 for 2-D nonlinearity reconstruction = 0.94±0.02; Fig. 2G). We also tested an additive 145 

suppression (AddS) model, where suppression interacts with excitation additively (see Methods). 146 

However, the AddS model had significantly worse predictive power than the DivS model (p<0.0005, 147 

n=13; Fig. 2E) and less resemblance to the 2-D nonlinearities compared to the DivS model (p<0.0005, 148 

n=13; Fig. 2G). Therefore, the DivS model gives a parsimonious description of the nonlinear computation 149 

at the bipolar-ganglion cell synapse and yields interpretable model components, suggesting an interaction 150 

between tuned excitatory and suppressive elements. 151 

We also derived filters using a form of spike-triggered covariance (Fairhall et al., 2006; Liu and 152 

Gollisch, 2015; Samengo and Gollisch, 2013) adapted for the continuous nature of the synaptic currents 153 

(see Methods). Consistent with previous analyses with spikes (Butts et al., 2011; McFarland et al., 2013), 154 

these covariance methods identified the same filter subspace as the DivS model, meaning that the 155 

covariance-based filters could be derived as a linear combination of the DivS filters and vice versa 156 

(Suppl. Fig. 2-1). However, the 2-D mapping between STC filter output and the synaptic current differed 157 

substantially from the same mapping for the DivS model (Suppl. Fig. 2-1). As a consequence, the 2-D 158 

mapping for the STC analysis could not be decomposed into two 1-D components (Suppl. Fig. 2-1). Thus, 159 

despite the ability of covariance analysis to nearly match the DivS model in terms of model performance 160 

(Fig. 2E), it could not uncover the divisive interaction between excitation and suppression (Fig. 2G). As 161 

we demonstrate below, the correspondingly straightforward divisive interaction detected by the DivS 162 

model on the ganglion cell synaptic input is essential in deriving the accurate model of ganglion cell 163 

output, which combines this divisive interaction with subsequent nonlinear components related to spike 164 

generation. 165 

 166 

[Figure 2 about here] 167 

 168 

Divisive suppression explains contrast adaptation in synaptic currents 169 

In addition to nearly perfect predictions of excitatory current at high contrast (Fig. 2; Fig. 3C), the DivS 170 

model also predicted the slower time course of the synaptic currents at low contrast. Indeed, using a 171 

single set of parameters the model was similarly accurate in both contrast conditions (Fig. 3A), and 172 

outperformed an LN model that used separate filters fit to each contrast level (e.g., Fig. 1E). The DivS 173 

model thus implicitly adapts to contrast with no associated changes in parameters. 174 

The adaptation of the DivS model arises from the scaling of the divisive term with contrast. The 175 

fine temporal features in the synaptic currents observed at high contrast (Fig. 3C, left) arise from the 176 

product of the output of the excitatory LN component and the output of the suppressive LN component. 177 
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Because suppression is delayed relative to excitation and has both ON and OFF selectivity, suppression 178 

increases at both positive and negative peaks of the suppressive filter output (Fig. 3C inset). This divisive 179 

suppression makes the DivS model output more transient compared to its excitatory component output 180 

alone; the difference between the two predictions is pronounced surrounding the times of peak excitation. 181 

At low contrast (Fig. 3C, right), both excitatory and suppressive filter outputs are proportionately scaled 182 

down. Because the suppression is divisive and close to one, the DivS model becomes dominated by the 183 

excitatory term and closely matches the LN model, as well as the measured excitatory current. 184 

The close match between data and DivS predictions across contrasts suggest that the DivS model 185 

should exhibit contrast-dependent change in the LN model filters (e.g., Fig. 1E). Indeed, using the LN 186 

model to describe the filtering properties of the DivS-model-predicted currents in high and low contrast 187 

matches the LN-based adaptation measured from data on a cell-by-cell basis (Fig. 3D), including the 188 

observed contrast gain (Fig. 3E) and change in biphasic index (Fig. 3F). 189 

 190 

[Figure 3 about here] 191 

Divisive suppression largely originates from the surround region of the receptive field. 192 

As described above (Fig. 2A), the mathematical form of the DivS model is consistent with two pre-193 

synaptic mechanisms that shape temporal processing: synaptic depression (Jarsky et al., 2011; Ozuysal 194 

and Baccus, 2012) and presynaptic inhibition (Eggers and Lukasiewicz, 2011; Schubert et al., 2008). 195 

Indeed, a model of ganglion cells that explicitly implements synaptic depression, the linear-nonlinear-196 

kinetic model (LNK model) (Ozuysal and Baccus, 2012) can explain intracellular recordings. The LNK 197 

model fits a single LN filter (analogous to the excitatory kE and fE(.) of the DivS model; Fig. 2A), with 198 

additional terms that simulate use-dependent depletion of output (Suppl. Fig. 3). This depletion is based 199 

on previous output of the model (recovering over one or more time scales), and divisively modulates the 200 

output of the LN filter. For our data, the LNK model captured excitatory currents in response to the 201 

temporally modulated spot (Fig. 4A), also outperforming the LN model (p<0.0005, n=13), although not 202 

with the level of performance as the DivS model (p<0.0005, n=13). Furthermore, when data were 203 

generated de novo by an LNK model simulation, the resulting DivS model fit showed a delayed 204 

suppressive term, whose output well approximates the effect of synaptic depression in the LNK model 205 

(Suppl. Fig. 3).  206 

The DivS and LNK model, however, yield distinct model predictions to a more complex stimulus 207 

where a central spot and surrounding annulus are independently modulated (Fig. 4B). The models 208 

described above can be trivially extended to this stimulus by including two temporal filters, one for the 209 

center and one for the surround (Fig. 4B). As expected from the center-surround structure of ganglion cell 210 
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receptive fields, an LN model fit to this condition demonstrates strong ON-excitation from the center, and 211 

a weaker OFF component from the surround. 212 

Because the LNK model has a single filter that explains both the excitation and resulting synaptic 213 

depression, the LNK model’s filter resembled the LN filter (Fig. 4B). Furthermore, the “spatial” LNK 214 

model had rate constants that differed significantly from those fit to the single temporally modulated spot 215 

(Fig. 4C), which minimized the time that the model dwelled in the inactivated state (i.e., was 216 

“suppressed”). Correspondingly, the LNK model in the spot-annulus condition exhibited little 217 

performance improvement over the LN model (predictive power improvement 1.8% ± 1.3%, p=0.016, 218 

n=7; Fig. 4D). 219 

By comparison, the DivS model significantly outperformed the LN model with an improvement 220 

of 8.6% ± 3.3% (p=0.016; n=7), and was 6.7 ± 2.8% better than the LNK model (p=0.016; n=7). The 221 

suppressive term of the DivS model showed a very distinct spatial profile relative to excitation, with a 222 

greater drive from the annulus region, while excitation was mostly driven by the spot region (Fig. 4E,F). 223 

The suppressive filter overlapping the spot was typically slower than the filter overlapping the annulus: 224 

the peak latency for the suppressive filter was 129 ± 16 ms within the spot region compared to 120 ± 225 

15 ms within the annulus region (faster by 9.7 ± 4.3 ms; p =0.0156, n=7).  226 

The strong suppression in the surround detected by the DivS model could not be explained by the 227 

LNK model, which cannot flexibly fit an explicit suppressive filter. Indeed, suppression in the LNK 228 

model arises from excitation, and thus the two components share the same spatial profile (Fig. 4B; Suppl. 229 

Figs. 3 and 4). This can be demonstrated not only with simulations of the LNK model, but also more 230 

complex models with separate LNK terms in center and surround (Suppl. Fig. 4). In all cases, application 231 

of the DivS model to data generated by these synaptic-depression-based simulations found that the 232 

suppressive term roughly matched the spatial profile of excitation, which is inconsistent with the observed 233 

data (Fig. 4F). While these analyses do not eliminate the possibility that synaptic depression plays a role 234 

in shaping the ganglion cell response (and contributes to the DivS suppression), the surround suppression 235 

suggests that synaptic depression alone cannot fully describe our results. In contrast, the DivS model can 236 

flexibly capture the more general suppression profiles of other more complex models (Suppl. Fig. 4) as 237 

well as the data (Fig. 4F), which could ultimately be related to mechanisms of synaptic depression and 238 

other sources such as pre-synaptic inhibition. 239 

 240 

[Figure 4 about here] 241 

 242 
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Nonlinear mechanisms underlying spike outputs of ganglion cell 243 

With an accurate model for excitatory synaptic currents established, we returned to modeling the spike 244 

output of ON-Alpha cells. Following previous likelihood-based models of ganglion cell spikes, we added 245 

a spike-history term, which implements absolute and relative refractory periods (Butts et al., 2011; 246 

McFarland et al., 2013; Paninski, 2004; Pillow et al., 2005). The output of this spike-history term sums 247 

with the contributions of the DivS model for the synaptic currents and is further processed by a spiking 248 

nonlinearity (Fig. 5A), yielding the final predicted firing rate. Using a standard likelihood-based 249 

framework, all terms of the model – including the excitatory and suppressive LN models that comprised 250 

the prediction of synaptic currents – can then be tractably fit using spike data alone. But it is important to 251 

note that this model architecture was only made clear via the analyses of synaptic currents described 252 

above. 253 

When fit using spiking data alone, the resulting excitatory and suppressive filters and 254 

nonlinearities closely resembled those found when fitting the model to the synaptic currents recorded 255 

from the same neurons (e.g., Fig. 2B,D). Suppression was consistently delayed relative to excitation (Fig. 256 

5B), and exhibited both ON and OFF selectivity (Fig. 5C). The spike-history term was suppressive and 257 

had two distinct components, a strong “absolute refractory period” that lasted 1-2 ms and a second 258 

relative refractory period that lasted more than 15 ms (Berry and Meister, 1998; Butts et al., 2011; Keat et 259 

al., 2001; Paninski, 2004; Pillow et al., 2005). 260 

The resulting model successfully captured over 90% of the predictable variance in the firing rate 261 

for all neurons in the study (Fig. 5F, median=91.5% ± 1.0%; n=11), representing the best model 262 

performance for ganglion cell spike trains considered at millisecond resolution. By comparison, the 263 

standard LN model had a median predictive power of 62.8% ± 1.9% (n = 11); which modestly increased 264 

to 68.8% ± 1.9% upon inclusion of a spike-history term (Fig. 5F). This suggests that ganglion cell spikes 265 

are strongly shaped by the nonlinear computations present at their synaptic input, and the precise timing 266 

of ganglion cell spiking involved the interplay of divisive suppression in their input with spike-generating 267 

mechanisms.  268 

 269 

[Figure 5 about here] 270 

Precision of spike trains arises from complementary mechanisms of divisive suppression and spike 271 

refractoriness 272 

To evaluate the relative contributions of divisive suppression and spike refractoriness to predicting firing, 273 

we simulated spike trains using different combinations of model components (Fig. 6A). We first found 274 

that the parameters of the divisive suppression components could not be fit without including a spike-275 
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history term, suggesting that each component predicts complementary forms of suppression. We could 276 

generate a DivS model without a spike-history term, however, by first determining the full model (with 277 

spike-history term), and then removing the spike history term and refitting (see Methods), resulting in the 278 

DivS-RP model. This allowed for direct comparisons between models with selective deletion of either 279 

divisive suppression or spike refractoriness (Fig. 6A). 280 

 Event analyses on the resulting simulated spike trains, compared with the observed data, 281 

demonstrate that both divisive suppression (derived from the current analyses above) and spike 282 

refractoriness were necessary to explain the precision and reliability of ganglion cell spike trains. By 283 

comparing the two models without DivS (LN and LN+RP) to those with DivS (DivS and DivS-RP), it is 284 

clear that divisive suppression is necessary to predict the correct envelope of the firing rate (Fig. 6B). 285 

Note, however, that DivS had little impact in the low contrast condition, which lacked fine-time-scale 286 

features of the spike response.  287 

By comparison, the spike-history term had little effect on the envelope of firing (Fig. 6A, 288 

bottom), and contributed little to the fine time scales in the ganglion cell spike train at high contrast (Fig. 289 

6B). Instead, the spike-history term had the largest effect on correct predictions of event reliability, as 290 

reflected in the event Fano factor (Fig. 6C). Both models without the spike-history term had much 291 

variability in spike counts in each event. The presence of the suppression contributed by the spike-history 292 

term following each event allows the predicted firing rate to be much higher (and more reliable) during a 293 

given event, resulting in reliable patterns of firing within each event (Fig. 6A) (Pillow et al., 2005). 294 

We conclude that a two-stage computation present in the spike-DivS model, with both divisive 295 

suppression and spike refractoriness, is necessary to explain the detailed spike patterning on ON-Alpha 296 

ganglion cells.  297 

 298 

[Figure 6 about here] 299 

Contrast adaptation is enhanced via spike refractoriness in ganglion cell output 300 

In addition to accurate reproduction of precise spike outputs of ganglion cells, the DivS model also 301 

captured the effects of contrast adaptation observed in the ganglion cell spike trains. For both contrast 302 

conditions, the simulated spike trains, which are predicted for both contrasts using a single set of 303 

parameters, are almost indistinguishable from the data (Fig. 7A, top). As with the performance of the 304 

models of excitatory current (Fig. 3), the DivS model outperforms LN models that are separately fit for 305 

each contrast level (Fig. 5F).  306 

The ability to correctly predict the effects of contrast adaptation depends on both the divisive 307 

suppression and spike-refractoriness of the spike-DivS model. This can be shown for an example neuron 308 
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by using LN filters of the simulated output of each model at high and low contrasts (Fig. 7B). In this case, 309 

only the DivS model (which includes a spike-history term) shows adaptation similar to that observed by 310 

the LN filters fit to the data. We quantified this across the population by identifying the most prominent 311 

feature of adaptation of the LN filters, the change in filter amplitude (i.e., contrast gain). Across the 312 

population, the DivS correctly predicted the magnitude of this change (Fig. 7C, top), as well as the 313 

changes in biphasic index across contrasts (Fig. 7C, bottom), and outperformed models with either the 314 

divisive suppression or spike-history terms missing. 315 

As expected, spike refractoriness imparted by the spike-history term contributed to the stronger 316 

effects of contrast adaptation observed in spikes relative to synaptic inputs (Beaudoin et al., 2007; Kim 317 

and Rieke, 2001, 2003; Rieke, 2001; Zaghloul et al., 2005). Specifically, at high contrast, spikes 318 

concentrate into relatively smaller time windows, leading to a consistently timed effect of spike 319 

refractoriness (Fig. 7D). As a result, despite similar numbers of spikes at the two contrasts, the effect of 320 

the spike-history term has a bigger impact at high contrast. 321 

Thus, contrast adaptation – and more generally the temporal shaping of ON-Alpha ganglion cell 322 

spike trains – depends on nonlinear mechanisms at two stages of processing within the retinal circuit: 323 

with precision emerging predominantly from ganglion cell synaptic inputs, and spike-refractoriness 324 

amplifying the effects of precision to explain spike patterning and adaptation to contrast. 325 

 326 

[Figure 7 about here] 327 

 328 

 329 

DISCUSSION 330 

In this study we derived a retina-circuit-inspired model for ganglion cell computation using recordings of 331 

both the synaptic inputs and spike outputs of the ON-Alpha ganglion cell. Data were used to fit model 332 

parameters and evaluate different hypotheses of how the retinal circuit processed visual stimuli. The 333 

resulting model explains both high precision firing and contrast adaptation with unprecedented accuracy. 334 

Precise timing is already present in the excitatory synaptic inputs, and can be explained by divisive 335 

suppression, which likely depends on a combination of mechanisms: presynaptic inhibition of bipolar 336 

terminals from amacrine cells and synaptic depression at bipolar cell synapses. The interplay between 337 

nonlinear mechanisms, including divisive suppression, spike refractoriness and spiking nonlinearity, 338 

accurately captured detailed structure in the spike response across contrast levels. 339 

 Divisive suppression was implemented by multiplying two LN models together (Fig. 2A). One 340 

LN model controls the gain of a second, simple LN model; the gain is equal to or less than one and so 341 
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represents division. While divisive gain terms have been previously suggested in the retina – particularly 342 

in reference to early models of contrast adaptation (Mante et al., 2008; Meister and Berry, 1999; Shapley 343 

and Victor, 1978) – critical novel elements of the present DivS model include the ability to fit the 344 

nonlinearities of both LN terms by themselves, as well as their tractability in describing data at high time 345 

resolution. The presence of nonlinearities that are fit to data in the context of multiplicative interactions 346 

distinguishes this model from multi-linear models (two linear terms multiplying) (Ahrens et al., 2008a; 347 

Williamson et al., 2016), as well as more generalized LN models such as those associated with spike-348 

triggered covariance (Fairhall et al., 2006; Samengo and Gollisch, 2013; Schwartz et al., 2006). 349 

Furthermore the model form allows for inclusion of spike-history terms as well as spiking nonlinearities, 350 

and can be tractably fit to both synaptic currents and spikes at high time resolution (~1 ms).  351 

 An eventual goal of our approach is to characterize the nonlinear computation performed on 352 

arbitrarily complex spatiotemporal stimuli. Here, we focused on temporal stimuli, which drive well-353 

characterized nonlinearities in ganglion cell processing including temporal precision (Berry and Meister, 354 

1998; Butts et al., 2007; Keat et al., 2001; Passaglia and Troy, 2004; Uzzell and Chichilnisky, 2004) and 355 

contrast adaptation (Kim and Rieke, 2001; Meister and Berry, 1999; Shapley and Victor, 1978) but do not 356 

require a large number of additional parameters to specify spatial tuning. By comparison, studies that 357 

focused on characterizing nonlinearities in spatial processing (Freeman et al., 2015; Gollisch, 2013; 358 

Schwartz and Rieke, 2011) have not modeled responses at high temporal resolution. Ultimately, it will be 359 

important to combine these two approaches, to capture nonlinear processing within spatial ‘subunits’ of 360 

the ganglion cell receptive field, and thereby predict responses at both high temporal and spatial 361 

resolutions to arbitrary stimuli. Such an approach would require a large number of model parameters and 362 

consequently a larger amount of data than collected here. Our intracellular experiments were useful for 363 

deriving model architecture – discerning the different time courses of excitation, suppression, and spike 364 

refractoriness – but ultimate tests of full spatiotemporal models will likely require prolonged, stable 365 

recordings of spike trains, perhaps using a multielectrode array.  366 

Generation of temporal precision in the retina 367 

One important nonlinear response property of early sensory neurons is high temporal precision. Temporal 368 

precision of spike responses has been observed in the retinal pathway with both noise stimuli (Berry et al., 369 

1997; Reinagel and Reid, 2000) and natural movies (Butts et al., 2007). Precise spike timing suggests a 370 

role for temporal coding in the nervous system (Berry et al., 1997), or alternatively simply suggests that 371 

analog processing in the retina must be oversampled in order to preserve information about the stimulus 372 

(Butts et al., 2007). Temporal precision also has been shown to play an important role in downstream 373 

processing of information provided by ganglion cells (Stanley et al., 2012; Usrey et al., 2000).  374 
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The generation of temporal precision involves nonlinear mechanisms within the retina; which 375 

may include both spike-refractoriness within ganglion cells (Berry and Meister, 1998; Keat et al., 2001; 376 

Pillow et al., 2005) and the interplay of excitation and inhibition (Baccus, 2007; Butts et al., 2016; Butts 377 

et al., 2011). Such distinct mechanisms contributing to ganglion cell computation are difficult to 378 

distinguish using recordings of the spike outputs alone, which naturally reflect the total effects of all 379 

upstream mechanisms. By recording at two stages of the ganglion cell processing, we demonstrate that 380 

high temporal precision already presents in the synaptic current inputs at high contrast, and temporal 381 

precision of both current inputs and spike outputs can be accurately explained by the divisive suppression 382 

model. 383 

The divisive suppression model explained fast changes in the neural response through the 384 

interplay of excitation and suppression. For both the spike and current models, suppression is consistently 385 

delayed relative to excitation. The same suppression mechanism also likely underlies high temporal 386 

precision of LGN responses, which can be captured by a model with delayed suppression (Butts et al., 387 

2011). Indeed, precision of LGN responses is apparently inherited from the retina and enhanced across 388 

the retinogeniculate synapse (Butts et al., 2016; Carandini et al., 2007; Casti et al., 2008; Rathbun et al., 389 

2010; Wang et al., 2010b). Therefore, our results demonstrate that the temporal precision in the early 390 

visual system likely originates from nonlinear processing in the inputs to retinal ganglion cells. Note that 391 

the full model did not incorporate any form of direct synaptic inhibition onto the ON Alpha cell, 392 

consistent with findings that such inhibition is relatively weak and that excitation dominates the light 393 

response in the regime that we studied (Kuo et al., 2016; Murphy and Rieke, 2006). 394 

Our results show that the contribution of spike history term to precision – as measured by the 395 

time scale of events and first-spike jitter – seems minor, consistent with earlier studies in the LGN (Butts 396 

et al., 2016; Butts et al., 2011). Nevertheless, the spike history term does play an important role in spike 397 

patterning within the event (Pillow et al., 2005) and the resulting neuronal reliability (Berry and Meister, 398 

1998). In fact, we could not fit the divisive suppression term robustly without the spike history term in 399 

place, suggesting that both nonlinear mechanisms are important to explain ganglion cell firing.  400 

Contrast adaptation relies on both divisive suppression and spike refractoriness 401 

Here we modeled contrast adaptation at the level of synaptic currents and spikes from the same ganglion 402 

cell type. We found contrast adaptation in synaptic inputs to ganglion cells, consistent with previous 403 

studies (Beaudoin et al., 2007; Kim and Rieke, 2001; Rieke, 2001; Zaghloul et al., 2005). Such adaptation 404 

could be explained by divisive suppression, which takes a mathematical form similar to previously 405 

proposed gain control models (Heeger, 1992; Shapley and Victor, 1979). Because the suppressive 406 

nonlinearity has very different shape than the excitatory nonlinearity, divisive suppression has a relatively 407 
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strong effect at high contrast and results in a decrease in measured gain. Moreover, the same divisive 408 

suppression mechanism may also explain nonlinear spatial summation properties of ganglion cells 409 

(Shapley and Victor, 1979), because suppression generally has broader spatial profiles than excitation. 410 

Contrast adaptation is amplified in the spike outputs mostly due to spike refractoriness and 411 

changes of neural precision across contrast. At high contrast, the response has higher precision and occurs 412 

within shorter event windows (Butts et al., 2010). As a result, the accumulated effect of spike 413 

refractoriness is stronger within each response event. Note that the effect of the spike history term is 414 

highly dependent on the ability of the model to predict high temporal precision at high contrast, which 415 

largely originates from the divisive suppression term as discussed earlier. Therefore, the two nonlinear 416 

properties of retinal processing, contrast adaptation and temporal precision, are tightly related 417 

mechanistically and can be simultaneously explained by the divisive suppression model.  418 

Circuits and mechanisms underlying the divisive suppression  419 

Divisive suppression has been observed in many systems, including the invertebrate olfactory system 420 

(Olsen and Wilson, 2008), the lateral geniculate nucleus (Bonin et al., 2005), the primary visual cortex 421 

(Heeger, 1992), and higher visual areas like area MT (Simoncelli and Heeger, 1998). A number of 422 

biophysical and cellular mechanisms that could implement divisive suppression have been proposed, 423 

including shunting inhibition (Abbott et al., 1997; Carandini et al., 1997; Hao et al., 2009), synaptic 424 

depression (Abbott et al., 1997), presynaptic inhibition (Olsen and Wilson, 2008; Zhang et al., 2015) and 425 

fluctuation in membrane potential due to ongoing activity (Finn et al., 2007).  426 

We evaluated different mechanistic explanations of the divisive suppression identified in this 427 

study. Divisive suppression underlying synaptic inputs to ganglion cells cannot be attributable to 428 

fluctuations in membrane potential or shunting inhibition since we recorded synaptic currents under 429 

voltage-clamp conditions that minimize inhibitory inputs. Although synaptic depression could also 430 

explain fast transient responses and contrast adaptation (Ozuysal and Baccus, 2012), this model predicts 431 

that excitation and suppression have the same spatial profiles, whereas we show that excitation and 432 

suppression have distinct spatial profiles (Fig. 4). Therefore, the divisive suppression in our model 433 

apparently depends partly on presynaptic inhibition from amacrine cells, which can extend their 434 

suppressive influence laterally (Euler et al., 2014; Schubert et al., 2008).  435 

Detailed anatomical studies suggest that each ganglion cell type receives inputs from a unique 436 

combination of bipolar and amacrine cell types, contributing to a unique visual computation (Baden et al., 437 

2016). By focusing on a single cell type, the ON-Alpha cell, we identified a particular computation 438 

consistent across cells. We expect that other ganglion cell types will perform different computations, and 439 

likewise have different roles in visual processing. This could include additional contrast-dependent 440 
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mechanisms, including slow forms of adaptation (Baccus and Meister, 2002; Manookin and Demb, 2006), 441 

sensitization (Kastner and Baccus, 2014) and complex changes in filtering (Liu and Gollisch, 2015). 442 

Thus, further applications of the approach described here will uncover a rich diversity of computation 443 

constructed by retinal circuitry to format information for downstream visual processing.  444 

 445 

 446 

METHODS 447 

Neural recordings 448 

Data were recorded from ON-Alpha ganglion cells from the in vitro mouse retina using procedures 449 

described previously (Borghuis et al., 2013; Wang et al., 2011). Spikes were recorded in the loose-patch 450 

configuration using a patch pipette filled with Ames medium, and synaptic currents were recorded using a 451 

second pipette filled with intracellular solution (in mM): 110 Cs-methanesulfonate; 5 TEA-Cl, 10 452 

HEPES, 10 BAPTA, 3 NaCl, 2 QX-314-Cl, 4 ATP-Mg, 0.4 GTP-Na2, and 10 phosphocreatine-Tris2 (pH 453 

7.3, 280 mOsm). Lucifer yellow was also included in the pipette solution to label the cell using a 454 

previously described protocol (Manookin et al., 2008). The targeted cell was voltage clamped at ECl (-67 455 

mV) to record excitatory currents after correcting for the liquid junction potential (-9 mV). Cells in the 456 

ganglion cell layer with large somas (20-25 µm diameter) were targeted. Cells were confirmed to be ON-457 

Alpha cells based on previously established criteria (Borghuis et al., 2013): (1) an ON response; (2) high 458 

rate of spontaneous firing; and a high rate of spontaneous excitatory synaptic input; (3) a low input 459 

resistance (~40-70 MΩ). In some cases, we imaged the morphology of recorded cells and confirmed (4) a 460 

relatively wide dendritic tree (300-400 µm diameter) and (5) stratification on the vitreal side of the nearby 461 

ON cholinergic (starburst) amacrine cell processes. 462 

We made recordings from 27 ON-Alpha cells total, each in one or more of the experimental 463 

conditions described. Of the 15 cells recorded in cell-attached configuration (spike recordings), 4 cells 464 

were excluded where low reliability across trials indicated an unstable recording, as indicated by much 465 

higher spike event Fano Factors (>0.2, see below).  466 

All procedures were conducted in accordance with National Institutes of Health guidelines under 467 

protocols approved by the Yale University Animal Care and Use Committee.  468 

Visual Stimulation 469 

The temporally modulated spot stimulus was described previously (Wang et al., 2011). The retina was 470 

stimulated by UV LEDs (peak, 370 nm; NSHU-550B; Nichia America) to drive cone photoreceptors in 471 
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the ventral retina. UV LEDs were diffused and windowed by an aperture in the microscope’s fluorescence 472 

port, with intensity controlled by pClamp 9 software via a custom non-inverting voltage-to-current 473 

converter using operational amplifiers (TCA0372; ON Semiconductor). The stimulus was projected 474 

through a 4X objective lens (NA, 0.13). The stimulus was a flickering spot (1-mm diameter), with 475 

intensity generated from low pass Gaussian noise with a 30 Hz cutoff frequency. We used a contrast-476 

switching paradigm (Baccus and Meister, 2002; Kim and Rieke, 2001; Zaghloul et al., 2005), in which 477 

the temporal contrast alternately stepped up or down every 10 sec. The contrast of the stimulus is defined 478 

by the SD of the Gaussian noise and was either 0.3 times (high contrast) or 0.1 times (low contrast) the 479 

mean. Note that this is only a three-fold difference in contrast versus the seven-fold difference considered 480 

in Ozuysal and Baccus (2012), but sufficient to see clear contrast effects. The stimulus comprised 10 481 

cycles of 10 sec for each contrast. The first 7 sec were unique in each cycle (used for fitting model 482 

parameters), and the last 3 sec were repeated across cycles (used for cross-validation of model 483 

performance). 484 

The center-surround stimuli (Fig. 4B) were generated in Matlab (Mathworks, Natick) using the 485 

Psychophysics Toolbox (Brainard, 1997) and presented with a video projector (M109s DLP; Dell, or 486 

identical HP Notebook Companion; HP), modified to project UV light (single LED NC4U134A, peak 487 

wavelength 385 nm; Nichia) as previously described (Borghuis et al., 2013). The center and surround 488 

stimuli were independently modulated with Gaussian noise (60-Hz update rate). A spot covered the 489 

receptive field center (e.g., 0.3 mm), and an annulus extended into the surround (e.g., inner/outer 490 

diameters of 0.35/1.0 mm). We recorded 7 ON-Alpha cells in this condition. For a subset of the 491 

recordings (n=5), we explored a range of inner/outer diameters, and selected the diameters that 492 

maximized the difference between the spatial footprints of excitatory and suppressive terms of the DivS 493 

model (see below). 494 

The mean luminance of the stimulus was calculated to evoke ~4×104 photoisomerizations cone-1 495 

sec-1, under the assumption of a 1 µm2 cone collecting area. For all methods of stimulation, the gamma 496 

curve was corrected to linearize output, and stimuli were centered on the cell body and focused on the 497 

photoreceptors. We verified that the relatively short stimulus presentation did not result in significant 498 

bleaching, as the response (and model parameters) had no consistent trends from the beginning of the 499 

experiment to the end (Suppl. Fig. 1).  500 

Statistical modeling of the synaptic current response 501 

We modeled the synaptic current response of neurons using the traditional linear-nonlinear (LN) cascade 502 

model (Paninski, 2004; Truccolo et al., 2005), as well as the Linear-Nonlinear-Kinetic model (Ozuysal 503 
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and Baccus, 2012), and a general 2-D nonlinear model (‘2-D’) and Divisive Suppression model (‘DivS’) 504 

introduced in this paper. 505 

  In all cases (with the exception of the LN analyses of contrast adaptation effects described 506 

below), we optimized model parameters to minimize the mean-squared error (MSE) between the model-507 

predicted and observed currents: 508 

 509 

MSE = ∑t [c(t) – cobs(t)]2 (1) 

 510 

To limit the number of model parameters in the minimization of MSE, we represented temporal filters by 511 

linear coefficients weighting a family of orthonormalized basis functions (Keat et al., 2001): 512 

 513 

!(t) = sin["n(2t/tF – (t/tF)2)], (2) 

 514 

where tF=200 ms.  515 

 516 

LN model. The LN model transforms the stimulus s(t) to the synaptic current response c(t) using a linear 517 

filter kLN and nonlinearity fLN[.] such that: 518 

c(t)= fLN[kLN·s(t)] + c0, (3) 

 519 

where c0 is a baseline offset. The filter kLN was represented as a set of coefficients weighting the basis 520 

functions of eq (2), and the nonlinearities were represented as coefficients weighting tent basis functions 521 

as previously described (Ahrens et al., 2008b; McFarland et al., 2013). 522 

 523 

2-D model. We generalized the LN model by incorporating a second filtered input, such that: 524 

 525 

c(t)=F[ke·s(t), ks·s(t)], (4) 
 526 

where F[·,·] is a two-dimensional nonlinearity, and ke and ks denote the excitatory and suppressive filters 527 

respectively. 528 

 The 2-D nonlinearity was represented using piecewise planar surfaces and can be estimated non-529 

parametrically for a given choice of filters (Toriello and Velma, 2012). Specifically, we divided the 2-D 530 

space into a set of uniform squares, and then subdivided each square into two triangles. Each basis 531 

function was defined as a hexagonal pyramid function centered at one of the vertices, and the 2-D 532 

nonlinearity function was expressed as a combination of these bases:  533 
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 534 

F[x,y]= ∑i,j wij fij(x,y), (3) 
 535 

where fij(x,y) is the basis centered at the ijth grid vertex, and wij is the weight coefficient, which can be 536 

optimized by minimizing MSE for a given choice of filters. 537 

The coefficients for the filters and nonlinearities were optimized using block-coordinate descent: 538 

for a given choice of nonlinearity F[·,·] the filters were optimized, and vice versa. In doing so, we 539 

introduced an additional constraint on the nonlinearity due to a degeneracy in the combined optimization 540 

of stimulus filters and 2-D nonlinearity. Specifically, one can choose a linear combination of the two 541 

stimulus filters and achieve the same model performance by refitting the 2-D nonlinearity. To alleviate 542 

this problem, we constrained the 2-D nonlinearity to be monotonically increasing along the first 543 

dimension, i.e., 544 

 545 
If x>x’, then F[x,y]≥F[x’,y], ⩝ y (4) 

 546 

DivS model. We derived the DivS model as a decomposition of the 2-D nonlinearity into two one-547 

dimensional LN models that interact multiplicatively:  548 

 549 

c(t)=fe[ke·s(t)] × fs[ks·s(t)] + c0 (5) 
 550 

We constrained the excitatory nonlinearity fe(.) to be monotonically increasing, and constrained the 551 

second nonlinearity fs(.) to be suppressive by bounding it between zero and one, with the value for zero 552 

input constrained to be one. We optimized the filters and the nonlinearities through block-coordinate 553 

descent until a minimum MSE was found. Because this optimization problem is in general non-convex 554 

(i.e., not guaranteed to have a single global minimum), we used standard approaches (McFarland et al., 555 

2013) such as testing a range of initialization and block-coordinate descent procedures to ensure optima 556 

were found.  557 

 558 

LNK Model. We explicitly followed the methods of Ozuysal and Baccus (2012) in fitting the linear-559 

nonlinear-kinetic (LNK) model to the temporally modulated spot data (Fig. 4A, Suppl. Fig. 3). This 560 

model involves the estimation of an LN model in combination with a first-order kinetics model that 561 

governs the dynamics of signaling elements in resting state (R), active state (A) and inactivated states (I). 562 

The kinetics rate constants reflect how fast the signaling elements transition between states. Model 563 

parameters are fit to the data using constrained optimization. We adapted this model to fit the spot-564 

annulus data by extending the linear filter of the LN model into separate temporal filters for center and 565 
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surround processing (Fig. 4B). Note that parameters for more complex forms of the LNK model (e.g., 566 

those considered in Suppl. Fig. 4) cannot be tractably fit to real data, and we chose the parameters of these 567 

models and simulate their output, as described in Supplemental Figure 4.  568 

Statistical modeling of the spike response 569 

We have applied several statistical models to describe the spike response of ganglion cells. We first 570 

considered the generalized linear modeling (GLM) framework (Paninski, 2004; Truccolo et al., 2005). 571 

We assumed that spike responses are generated by an inhomogeneous Poisson process with an 572 

instantaneous rate. The GLM makes prediction of the instantaneous firing rate of the neuron r(t) based on 573 

both the stimulus s(t) and the recent history of observed spike train R(t): 574 

 575 
r(t)= Fspk[klin·s(t) + hspk· R(t) - #], (6) 

 576 

where klin is a linear receptive field, hspk is the spike history term and # is the spiking threshold. Here, the 577 

parameters of the model are all linear functions inside the spiking nonlinearity Fspk[.]. The LN model 578 

consists of only the linear receptive field and the spiking threshold; the full GLM further includes the 579 

spike history term (denoted as LN+RP in figures). The spiking nonlinearity has a fixed functional form 580 

Fspk[g] = log[1+exp(g)], satisfying conditions for efficient optimization (Paninski, 2004). The choice of 581 

this particular parametric form of spiking nonlinearity was verified with standard non-parametric 582 

estimation of the spiking nonlinearity (Fig. 1B, 1E) (Chichilnisky, 2001). The model parameters are 583 

estimated using maximum likelihood optimization. The log-likelihood (LL) of the model parameters that 584 

predict a firing rate r(t) given the observed neural response robs(t) is (Paninski, 2004): 585 

 586 

LL=∑t[robs(t) log r(t) - r(t)] (7) 
 587 

The optimal model parameters can then be determined using gradient-descent based optimization of LL. 588 

Although this formulation of the model assumes probabilistic generation of spikes, this fitting procedure 589 

is able to simulate and capture the parameters of the equivalent integrate-and-fire neuron, and thus makes 590 

no assumptions about the form of noise in spike generation (Butts et al., 2011; Paninski et al., 2007). 591 

To capture nonlinear properties of the spike response, we extended the Nonlinear Input Model 592 

(NIM) (McFarland et al., 2013) to include multiplicative interactions. The predicted firing rate of the NIM 593 

is given as, 594 

 595 
r(t)= Fspk[∑ifi[s(t)] + hspk· R(t) - #], (8) 

 596 
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where f[.] represents a set of nonlinear subunits reflecting upstream processing. In this case, based on 597 

knowledge of nonlinear processing in the synaptic current response, we assumed the nonlinear subunit 598 

takes the form of a DivS model, 599 

 600 
f[s(t)] = fe[ke·s(t)]× fs[ks·s(t)]. (9) 

 601 

Similar to parameter estimation of the DivS models of synaptic current response, we alternately estimated 602 

the filters and nonlinearities until they converged. The same set of constraints was applied to the 603 

excitatory and suppressive nonlinearities.  604 

Quantification of contrast adaptation with LN analysis 605 

We performed a more traditional LN model analysis to gauge the adaptation to contrast of both the 606 

observed data as well as the predictions of nonlinear models, following (Chander and Chichilnisky, 607 

2001). We first separately performed LN analysis on each contrast level. The resulting nonlinearities were 608 

then aligned by introducing a scaling factor for the x-axis and an offset for the y-axis. The associated 609 

scaling factor was incorporated into the linear filters such that contrast adaptation effects are attributable 610 

entirely to changes in the linear filter. 611 

 Once the linear filters at both contrasts were obtained, we calculated contrast gain as the ratio of 612 

standard deviations of the filters at low and high contrast conditions. To make more detailed comparisons 613 

about the filter shape, we also calculated a biphasic index, based on the ratio of the most negative to the 614 

most positive amplitude of the LN filter k, i.e., |min(k)/max(k)|.  615 

Evaluation of model performance  616 

We fit all models on the 7-sec segments of unique stimuli out of each 10-sec block, and cross-validated 617 

model performance on the 3-seconds repeat trials. We calculated the predictive power, or percent of 618 

explainable variance (Sahani and Linden, 2003), to quantify how well the model captured the trial-619 

averaged response for both intracellular and extracellular recordings. This metric corrects for noise-620 

related bias due to a limited number of trials. Note that for validation of spike-based models, we 621 

simulated individual instances of spike trains using a non-homogeneous Poisson process, and the model 622 

predictions were based on many repeats for which we generated a PSTH. All measures of model 623 

performance compared predicted to measured responses using 1-ms bins, which was necessary to measure 624 

how accurately the different models captured temporal precision (Butts et al., 2011; Butts et al., 2007).  625 
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Coherence analysis of synaptic current response 626 

The general model performance metrics such as predictive power and cross-validated likelihood do not 627 

reflect which aspects of the response are not captured by the model. We thus devised a new coherence-628 

based metric to quantify how well the model performs across frequencies. The coherence between the 629 

model predicted current response c(t) and the recorded current response on the ith trial c%&'
( (*) is (Butts et 630 

al., 2007): 631 

 632 

,(
- . =

|	C%&'
( (.)C(.)|-

|	C%&'
( (.)|- |C(.)|-

 
(10) 

 633 

where C(.) and 	C%&'
( (.) are the Fourier transforms of c(t) and 3%&'

( (*) respectively, and the bar denotes 634 

complex conjugate. We used angular frequency . = 2"5  instead of f to be consistent with common 635 

conventions. The coherence measure on individual trials was averaged across repeats for each cell.  636 

 Because the observed response on each trial contains noise, a coherence of one throughout the 637 

frequency is not a realistic target. To correct for this bias, we calculated the coherence between the trial-638 

averaged current response (i.e., the ideal predictor of response) and the recorded current on each trial. 639 

This noise corrected coherence metric represents an upper bound of coherence that can be achieved by 640 

any stimulus-processing model. It also reflects the consistency of current response at each frequency 641 

range. For example, in the low contrast condition, the response contained little high frequency 642 

components (Fig. 7A-B), and consequently the measured coherence was close to zero above 30 Hz.  643 

 644 

Covariance analysis of synaptic current response and spike train 645 

We performed covariance analysis on both synaptic current responses and spike trains. Spike-triggered 646 

covariance analyses followed established methods (Fairhall et al., 2006; Liu and Gollisch, 2015; Samengo 647 

and Gollisch, 2013; Schwartz et al., 2006), Briefly, for spike-triggered covariance analysis, we collected 648 

the stimulus sequence 67 8 = 6(*7 − 8) that preceded each spike time *7, where the lag 8 covers 200 649 

time bins at 1 ms resolution. The spike-triggered average was calculated as the average over all spikes 650 

6:;< 8 = 67 8 7, and the covariance matrix was calculated as =>?,>A
:;<

= 67 8B − 6:;< 8B 67 8- −651 

6:;< 8- 7. The prior covariance matrix was also computed using the above formula, but for all times 652 

rather than spike times, and it was subtracted from =>?,>A
:;<  and the result diagonalized matrix to obtain its 653 

eigenvalues and corresponding eigenvectors.  654 

This procedure was extended to perform the same analysis on synaptic currents, following past 655 

applications (Fournier et al., 2014). For current-based covariance analysis, we calculated the cross-656 
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correlation between stimulus and synaptic current response (analogous to the spike-triggered average)  657 

6CDE 8 =
B

F
3 * 6(* − 8)F

GHB , and the current-based covariance matrix was given by =>?,>A
CDE =658 

B

F
3 * 6 * − 8B − 6CDE 8B 6 * − 8- − 6CDE 8-

F
GHB . We again subtracted an average covariance 659 

matrix (unweighted by the current) and calculated eigenvalues and eigenvectors for the result. 660 

 We generated response predictions of the current-based covariance model using the two 661 

eigenvectors with largest magnitude, and applying the methods to fit a two-dimensional nonlinearity 662 

described above. The performance of the resulting model is reported in Fig. 2E, and example fits are 663 

shown in Supplemental Figure 2. To be applied to spike trains, such methods require much more data, 664 

and we could not generate firing rate predictions of the spike-based model with reasonable accuracy given 665 

the limited data to estimate a two-dimensional nonlinearity, consistent with previous applications of 666 

spike-triggered covariance to retina data (e.g., (Liu and Gollisch, 2015)). Note that simply estimating 667 

separate one-dimensional nonlinearities for each filter (e.g., (Sincich et al., 2009)), results in significantly 668 

worse predictive performance (e.g., (Butts et al., 2011)), due to the non-separability of the resulting 669 

nonlinear structure, as well as the inability for such analyses to factor in spike refractoriness.  670 

Event analysis of spike trains 671 

We modified a previously established method to identify short firing episodes (events) in the spike train 672 

(Berry et al., 1997; Butts et al., 2010; Kumbhani et al., 2007). Specifically, events were first defined in the 673 

peristimulus time histogram (PSTH) as times of firing interspersed with periods of silence lasting ≥ 8 ms. 674 

Each resulting event was further analyzed by fitting the PSTH with a two-component Gaussian mixture 675 

models. An event was broken into two events if the differences of means of the two Gaussian components 676 

exceed two times the sum of standard deviations. Event boundaries were defined as the midpoint between 677 

neighboring event centers and were used when assigning event labels to simulated spikes. Events were 678 

excluded from further analysis if no spike was observed on more than 50% of the trials during the event 679 

window. This criterion excluded spontaneous spikes that occur on only a few trials. Event analysis was 680 

first performed on responses at high contrast. Events at low contrast were defined using the event 681 

boundaries obtained from high contrast data. These particular methods were chosen because they gave the 682 

most reasonable results with regards to visual inspection, but the results presented here do not 683 

qualitatively depend on the precise methods. 684 

 Once events were parsed, we measured several properties associated with each event relating to 685 

their precision and reliability (Figs. 1 and 6). First, we measured the jitter in the timing of the first-spike, 686 

using the SD of the first spike of the event on each trial. The event time scale is estimated as the SD of all 687 

spike times in each event, which is related to the duration of each event. The event Fano factor measures 688 
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the ratio between the variance of spike count and the mean spike count in each event.  689 

Statistical tests 690 

All statistical tests performed in the manuscript were non-parametric Wilcoxon signed rank tests, unless 691 

otherwise stated. All significant comparisons were also significant using t-tests. 692 
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Figure  1.  Precision  of  ganglion cell spike trains arises from synaptic inputs. A. Spike rasters of an ON-Alpha cell to 10 repeated 
presentations of a temporally modulated noise stimulus (top) at two contrast levels. The response was parsed into separate “events” (labeled 
by different colors). The PSTH (bottom) is compared with predictions of the LN model (blue, red), which fits relatively better at low 
contrast. B. The LN model (schematic: left) was fit separately at each contrast, with the effects of adaptation isolated to the linear filters 
(top), which share the same nonlinearity (bottom). Shaded distributions show the filtered stimulus at high (blue) and low (red) contrasts. C. 
Temporal properties of the observed spike trains, compared with predictions of the LN model without or with a spike-history term (LN and 
LN+RP). Left: SD of the timing of the first spike in each event. Right: Event duration, measured by the SD of all spikes in the event 
(*p<10-6, 59 events). LN and LN+RP models do not reproduce the spike precision at high contrast (HC), but the LN+RP model is adequate 
at low contrast (LC). D. Excitatory synaptic current from the neuron in A-C compared with the LN model predictions. Gray area indicates 
SD across trials, demonstrating minimal variability. E. LN model fits to the current data. The temporal filters (top) change less with 
contrast compared to spike filters (Fig. 1B). F. The precision of the current response was measured using the coherence between the 
response on individual trials and either the observed trial-averaged response (black) or LN predictions (blue, red). Gray area shows SEM 
across trials (left) and standard deviation across the population (right). The LN model fails to capture high frequency response components 
at HC, but agrees well with the data at LC, suggesting the precision observed in ganglion cell spike trains arises at the level of synaptic 
inputs.  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Figure 2. The divisive suppression (DivS) model of synaptic currents. A. Schematic of retinal circuitry. The vertical, excitatory pathway, 
cones  bipolar cells  ganglion cell can be modulated at the bipolar cell synapse by amacrine cell-mediated inhibition of bipolar cell release 
or by synaptic depression. We model both processes by divisive suppression (bottom inset), where an LN model, representing the collective 
influence of amacrine cell inhibition and synaptic depression, multiplicatively modulates excitatory inputs from the bipolar cell. B. The 
excitatory (green) and suppressive (cyan) temporal filters of the DivS model for an example ON-Alpha cell. C. Divisive suppression is 
delayed relative to excitation, demonstrated by the distributions of latencies measured for each pair of filters (mean delay = 10.9±2.2 ms, 
p<0.0005, n=13). D. Excitatory (left) and suppressive nonlinearities (right) for the DivS model. The solid line indicates model fits for the 
example cell, and the gray lines are from other cells in the population, demonstrating their consistent form. The distribution of the filtered 
stimulus is also shown as the shaded area for HC (blue) and LC (red). The suppressive nonlinearity (right) falls below one for stimuli that 
match the kernel or are opposite, implying that divisive suppression is ON-OFF. E. To validate the form of the DivS model, we compared 
its performance to alternative models, including a more general model where the form of the nonlinearity is not assumed (2-D, see below), 
a covariance (COV) model similar to spike triggered covariance (Suppl. Fig. 2), and a model where excitatory and suppressive terms 
interact additively (AddS) instead of divisively. The DivS model performed significantly better than the LN, AddS and COV models 
(**p<0.0005, n=13), and matched the performance of the 2-D model. F. We used a 2-dimensional nonlinearity to capture any more general 
interaction between excitatory and suppressive filters, shown with schematic (left), and the resulting fits (middle). Consistent with the 
model performance (E), the form of this 2-D nonlinearity could be reproduced by the DivS model (right). G. Accuracy of 2-D nonlinearity 
reconstruction with DivS model and AddS model across neurons (**p<0.0005, n=13). 
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Figure 3. DivS model explains temporal precision and contrast adaptation in synaptic currents. A. The predictive power of models 
across contrasts. The DivS model is fit to both contrasts using a single set of parameters, and outperforms LN models fit separately to either 
high or low contrast (LN-H and LN-L). As expected, the LN model fit to both contrasts (LN-HL) performs worse than separately fit LN 
models, because it cannot capture the filter changes without changes in model parameters. B. Average coherence between model 
predictions and recorded synaptic currents on individual trials (n=13), shown for high contrast (HC) and low contrast (LC). The DivS 
model prediction is almost identical to that of the trial-averaged response. C. DivS model explains precision and contrast adaptation 
through the interplay of excitation and suppression. Top: comparison of predictions of synaptic current response of the LN model and the 
DivS model for the cell in Fig. 1. 2nd row: normalized output of the excitatory and delayed suppressive filter. 3rd row: suppressive 
modulation is obtained by passing the filtered output through the suppressive nonlinearity (middle inset). Bottom: excitatory output of the 
DivS model before and after the suppressive modulation. In LC, the suppressive term (3rd row) does not deviate much from unity, and 
consequently the DivS model output resembles the excitatory input. D. Comparison of the measured (left) and DivS model predicted (right) 
filters across contrasts. E-F. The DivS model accurately captures changes of both contrast gain (E: R=0.96, p<10-6) and biphasic index (F: 
R=0.86, p<0.0005) of the temporal filters across contrasts. 
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Figure 4. Probing the mechanism of divisive suppression with center-surround stimuli. A. For the large spot stimulus, the Linear-
Nonlinear-Kinetic (LNK) model nearly matches the performance of the DivS model, and outperforms the LN model. B. To distinguish 
between different sources of divisive suppression, we presented a spot-annulus stimulus (left), where each region is independently 
modulated. Model filters can be extended to this stimulus using a separate temporal kernel for center and surround, shown for the LN and 
LNK model filters (right), which are very similar. C. After the linear filter, the LNK model involves a nonlinearity (left), which together 
drive the transition between resting and activated states (middle), which is further governed by kinetics parameters as shown. Critical 
kinetics parameters for LNK models differed between the large-spot and spot-annulus stimulus (right), however, with the spot-annulus 
model very quickly transitioning from Inactive back to Active states, minimizing the effects of synaptic depression. D. The performance of 
the spatiotemporal LNK model are only slightly better than those of the LN model, and neither captures the details of the modulation in 
synaptic current, compared with the DivS model. E. The spatiotemporal DivS model shown for an example neuron exhibits different spatial 
footprints for excitation and suppression, with excitation largely driven by the spot and suppression by the annulus. This divisive 
suppression is inconsistent with synaptic depression, which predicts overlapping sources of suppression and excitation (see Suppl. Figs. 3 
and 4). F. Contribution of the center component in the DivS model for excitation (left) and suppression (right). Excitation is stronger in the 
center than in the surround (center contribution>0.5, p=0.016, n=7) and suppression is weaker in the center (center contribution<0.5, 
p=0.016, n=7) for every neuron. G.  The DivS model is able to capture temporal transients in the current response to spot-annulus stimuli 
better than the LN and LNK models.  
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Figure 5. The extended divisive suppression model explains ganglion cell spike trains with high precision. A. Model schematic for the 
divisive suppression model of spiking, which extends DivS model for the current data by adding an additional suppressive term for spike-
history (refractoriness), with the resulting sum passed through a rectifying spiking nonlinearity. (B-E) The model components for the same 
example neuron considered in Fig. 1-3. B. The excitatory and suppressive filters. C. The excitatory and suppressive nonlinearities. The 
filters and nonlinearities are similar to the DivS model fit from current data (shown in Fig. 2B). D. The spike-history term, demonstrating 
an absolute and relative refractory period. E. The spiking nonlinearities, with shaded area indicating the distribution of generating signals. 
F. The predictive power of different models applied to the spike data in HC and LC. The DivS model performs better than other models 
(HC: p<0.001; LC: p<0.002, n=11), including the LN model, the LN model with spike history term (LN+RP), and a divisive suppression 
model lacking spike refractoriness (DivS-RP). Only a single set of parameters was used to fit the DivS model for both contrasts, whereas 
all other models shown used different parameters fit to each contrast.  

A B

r(t)

spike

refract.

+

0 00

1

20 40

S
p
ik

e
-
h
is

to
r
y
 t

e
r
m

0

200

400

600

800
F

ir
in

g
 r

a
te

 (
H

z
)

0
Summed input

E
x
c
. 
te

r
m

 o
u
tp

u
t

S
u
p
. 
te

r
m

 o
u
tp

u
t C

E

F[.]

Firing Rate

Prediction

Observed

spike train

k
B

f
E
(.)

k
M

f
S
(.)

+

s(t)

c(t)

(D
iv

S
 M

o
d
e
l)

(i)

(ii)

(iii)

Spike-DivS model

F

D

Time (ms)

k
E 

. s k
S 

. s

Exc

Sup

P
r
e
d
ic

ti
v
e
 p

o
w

e
r

0.5

0.6

0.7

0.8

0.9

1.0

LN

LN
+R

P

D
iv
S-
R
P

D
iv
S LN

LN
+R

P

D
iv
S-
R
P

D
iv
S0.4

0.5

0.6

0.7

0.8

0.9

1.0
HC LC

Time (ms)

-200 -100 0

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 19, 2016. ; https://doi.org/10.1101/064592doi: bioRxiv preprint 

https://doi.org/10.1101/064592


!  

Figure 6. Spike patterning is shaped by a combination of nonlinear mechanisms. A. Top: Spike rasters recorded over ten repeats for an 
example cell (black) compared with simulated spikes from four models: LN, LN model with spike-history term (LN+RP), the DivS model 
without spike-history (DivS-RP), and the full DivS model (DivS). Colors in the raster label separate spike events across trials (see 
Methods). Bottom: The PSTHs for each model demonstrate that suppressive terms are important in shaping the envelope of firing (DivS 
prediction is shaded). (B-E) Using event labels, spike statistics across repeats were compiled to gauge the impact of different model 
components. B: The temporal properties of events compared with model predictions, across contrast (same as Fig. 1, with DivS-based 
models added). Both spike-history and divisive suppression contribute to reproduce the temporal scales across contrast. C. The Fano factor 
for each event is a measure of reliability, which increased (i.e., Fano factor decreased) for models with a spike-history term.  
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Figure 7. Contrast adaptation in the spike output depends on both divisive suppression and spike refractoriness. A. The full spike-
DivS model accurately captured contrast adaptation. Top: observed PSTH and predicted firing rates of the DivS model at HC and LC. B. 
The DivS model predicts the changes in LN filter shape and magnitude with contrast for an example cell. Predicted changes are shown for 
each model, demonstrating that the full effects of contrast adaptation require both divisive suppression and spike-history terms. C. 
Measured and predicted contrast gain (top) and changes of biphasic index (bottom). The DivS model accurately predicts contrast gain and 
changes biphasic index across contrast across cells (contrast gain: slope of regression=0.75, R=0.85, p<0.001; biphasic index: slope of 
regression=0.87, R=0.87, p<0.001). DivS model without the spike history term underestimated contrast adaptation (contrast gain: slope of 
regression=0.53, R=0.51, p=0.10; biphasic index: slope of regression=0.49, R=0.73, p<0.05), and the LN+RP model failed to predict 
adaptation altogether (contrast gain: slope of regression=0.06, R=0.28, p=0.41; biphasic index: slope of regression=-0.07, R=-0.18, p=0.60). 
D. The suppressive effect from the spike-history term is amplified at HC, due to increased precision of the spike train. Dashed lines show 
the onset of HC spike events, which predict the largest difference in magnitudes of the suppression between contrasts.  
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Supplemental Figure 1. Absence of slow contrast adaptation and stability of recording.

�

Supplemental Figure 1. Absence of slow contrast adaptation and stability of recording. (A-C) We tested the presence of slow contrast 
adaptation by performing separate LN contrast adaptation analysis (e.g., Chander and Chichilnisky, 2001) based on data at the beginning 
and end of each 7-sec period of unique responses within a 10-sec trial (excluding the final 3-sec period of a repeated stimulus). A. LN 
analyses for the first 3-seconds (top) and last 3-seconds (bottom) of the trial. Model filters (left) are computed and scaled such that the 
nonlinearity (right) is shared between high contrast (HC, blue) and low contrast (LC, red) models, shown for an example cell. The models 
are nearly identical, suggesting there is no slow contrast adaptation over the course of the trial. (B-C) Change of contrast gain (B) and 
biphasic index (C) across contrasts measured on the first 3 seconds (x-axis) and on the last 3 seconds (y-axis) of each trial across neurons 
(n=13). We observed no difference on a cell-by-cell basis. D. To test stability of the recording, we calculate the standard deviation of 
intracellular synaptic current responses (top) and average current (bottom) over the 10 trials of each experiment (box plots show data 
aggregated across cells, n=13). This demonstrates that recordings are stable across trials. 
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Supplemental Figure 2. Comparison to Covariance-based Models.

�

Supplemental Figure 2. Comparison to covariance-based models. (A-F) Covariance-based analysis of synaptic currents for the same 
example cell as in Figure 1. Covariance analysis follows the intuition of spike-triggered covariance, but uses continuous current input 
rather than spikes (see Methods). A. Left: Cross-correlation between the stimulus and current response (the equivalent of a spike-triggered 
average) for high contrast (HC, blue) and low contrast (LC, red) stimuli. Filters are scaled to have the same standard deviation, for 
comparisons of shape. Middle: The eigenvalue spectrum for the response-triggered covariance matrix in HC, revealing two significant 
eigenvalues (color-coded). Right: The corresponding eigenvectors. B. The locations of the cross-correlations in HC (blue, left) and LC 
(red, right) within the 2-D subspace spanned by the two significant eigenvectors for all neurons (n=13). Because they are all close to the 
unit circle, both HC and LC cross-correlations are largely contained in the covariance (COV) subspace, consistent with previously 
reported results for spikes (Liu and Gollisch, 2015). C. Model performance for the LN, DivS, and COV models (n=13), reproduced from 
Figure 2E. This demonstrates that the COV filters coupled to a 2-D nonlinearity (described below) can nearly match the performance of 
the DivS model. D. Left: The excitatory (green) and suppressive (cyan) filters of the DivS model, plotted in comparison to the filters 
identified by covariance analysis (dashed lines). Middle: The DivS model filters share the same 2-D subspace as the covariance filters, as 
shown by comparing the filters to optimal linear combinations of the COV filters (black dashed), following previous work based on spikes 
(Butts et al., 2011). Right: The DivS filters project into the COV filters subspace across neurons, using the same analysis as in (B). Their 
proximity to the unit circle shows they are almost completely in the covariance subspace for all neurons, again consistent with previous 
work with spikes (Butts et al., 2011). E. Left: The 2-D nonlinearity associated with the COV filters, for the example neuron considered. 
Right: The best 2-D nonlinearity reconstructed from 1-D nonlinearities operating on the COV filters. Unlike the 2-D nonlinearity 
associated with the DivS filters (Fig. 2F), this nonlinearity cannot be represented as the product of two 1-D nonlinearities. F. The 
separability of 2-D nonlinearities for the COV and DivS models, measured as the ability of the 1-D nonlinearities to reproduce the 
measured 2-D nonlinearity (R2) across neurons (**p<0.0005, n=13). (G-H) An example neuron for which there was enough spiking data 
to perform a meaningful spike-triggered covariance (STC) analysis (see Methods). G. The spike-triggered average (left), eigenvalue 
spectrum (middle), and significant STC filters (right). H. As with the analyses of current responses above, the DivS filters (green, cyan) 
did not match those identified by STC (left, dashed), but were largely contained in the subspace spanned by the STC filters (right), as 
shown by comparing to their projections into the STC subspace (dashed black). Note that there was not enough data to estimate 2-D 
nonlinearities for the spiking data, and so no comparison of STC model performances could be made. 
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Supplemental Figure 3. DivS model localizes the suppressive components of LNK model and 
reproduces its simulated response.
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Supplemental Figure 3. DivS model localizes the suppressive components of LNK model and reproduces its simulated response. We 
simulated LNK models resembling the example neurons considered in Figure 4. (A-D) LNK simulation in response to temporally 
modulated spot. A. The LNK model components consist of a temporal filter k (left) and static nonlinearity f(·) (middle), whose output 
u(t)=f[k·s(t)] governs the transition rate between the resting (R) and active (A) states. Current output is proportional to active state 
occupation, and other constants govern transition to inactive (I) state and back to resting state. Parameters for this LNK simulation were 
derived from an LNK fit to an example neuron (see Methods). B. A DivS model was fit to the LNK model simulated response, with 
components labeled as in Figure 2. The temporal filter of suppression (cyan) is delayed relative to excitation (left) and only results in 
suppression for ON stimuli, as expected given its relationship to synaptic depression. C. Model performance (R2) for the LN model and 
DivS model across all neurons demonstrates that the DivS model can reproduce LNK simulations with greater than 90% accuracy, across 
simulations of all LNK models of recorded neurons (n=13). D. Simulated response of the LNK model in (A) in response to a temporal 
modulated spot stimulus (top). 2nd row: The output of the LNK simulation (black) can be reproduced better by a DivS model (red) fit to the 
simulated data, as compared to the LN model (blue). 3rd row: The occupation of each internal state determines the current output in 
addition to the output of the LN component of the model. 4th row: The dynamics of the divisive suppression of the DivS model (cyan) 
roughly match the occupation of the resting state of the LNK model (3rd row, green): the resting state occupancy (and availability for 
transition to the active state and resulting current output in the LNK model) becomes low at the same times there is suppression in the DivS 
model. (E-G) LNK simulation in response to the spot-annulus stimulus. E. LNK components are labeled identically as in (A), but now the 
filter k consists of separate components for the spot (left, solid) and annulus (dashed) regions of the stimulus. The temporal filter and 
nonlinearity were derived from the example cell in Figure 4B, but the kinetics parameters of the temporally modulated stimulus (A) were 
used in place of those derived for the spot-annulus stimuli, since the latter parameters did not result in nonlinear effects. F. A DivS model 
was fit to the LNK model simulated response, and components labeled as in Figure 2, resulting in the expected delayed ON suppression (as 
with the temporally modulated spot simulations in B). G. Simulated response using the LNK model with the spot-annulus stimulus, again 
with the divisive suppression of the DivS model (4th row, cyan) capturing the occupancy of resting state of the LNK model (3rd row, 
green).  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Supplemental Figure 4. DivS model descriptions of extended LNK models.
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Supplemental Figure 4. DivS model descriptions of extended LNK models. Here we consider additional model structures involving 
synaptic depression. The simulations here incorporate nonlinear rectified subunits, and are limited to two components corresponding to 
those independently modulated in the stimulus: spot and annulus. (A-D) First we considered an extended LNK model with independent 
stimulus processing of the spot and annulus stimuli, and a shared synaptic depression stage. A. Model schematic, showing that the separate 
“center” and “surround” components (corresponding to spot and annulus stimuli) are each rectified before being combined, and fed into the 
LNK model for synaptic depression, using the same kinetic parameters considered for simulations in Supplemental Figure 3. Simulated 
data was generated for a range of models of this form, where the weight for the ‘spot’ component wspot was fixed and the annulus 
component weight wannu was varied. B. The DivS model components fit to an example simulated response of the extended LNK model 
(with wspot = wannu). As with simpler circuits (e.g., Suppl. Fig. 3), suppression is delayed relative to excitation. Note that the DivS model 
was limited to only a single rectified component to match the form used to describe experiments described in Figure 4. C. The performance 
of the LN (red) and DivS (purple) models across simulations with different annulus component weights. The DivS model is significantly 
better than the LN model over a wide range of parameters (each point corresponds to the results of simulation with different choice of 
wannu), suggesting a large portion of the synaptic depression effect is captured by the DivS model. Note, however, that the DivS model has a 
harder time explaining this [simulated] data than the data from real ON Alpha ganglion cells (i.e., Fig. 4D). D. For all simulations, the 
“spatial profile” of suppression matched that of excitation, as measured by the “center fraction”, which was given by the norm of the center 
component of the filter divided by the norm of the full filter. [The center fraction is 1 if for no surround component, and zero for no center 
component.] (E-H) We next considered an extended LNK model with both independent stimulus processing and independent kinetics. E. 
Model schematic, showing the separate center and surround components each with independent synaptic depression — again with the same 
kinetic parameters previously considered. F. The DivS model components fit to an example simulated response of the extended LNK 
model (with wspot = wannu). G. Performance of DivS model and LN model on simulated LNK model response. H. Tight correlation of the 
center fractions of excitation versus divisive suppression of the DivS model components (as in panel D). Over this and other types of 
simulations involving synaptic depression, we never observed the case where DivS excitation is largely from the center and suppression is 
largely from the surround (e.g., Fig. 4E).
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