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Abstract

Gompertz empirical law of mortality is often used to parametrize survival frac-
tion as a function of age with the help of mere two parameters: the Initial
Mortality Rate (IMR) and the Gompertz exponent slope, inversely related to
the Mortality Rate Doubling Time (MRDT). Furthermore, the two parameters
are believed to be related through the Strehler-Mildvan (SM) correlation, which
suggests that the more animals die during adolescence, the longer is the lifespan
of the survived individuals. Even though there have been quite a few doubts
expressed against the very existence of the correlation, it is still widely believed
that the theory of ageing and mortality behind the SM correlation provides a
mechanism-based explanation of Gompertz’s law. In this Letter, we concen-
trate on uncertainties of identification of the Gompertz parameters by fitting
from experimental survival records. We show, that whenever the number of an-
imals in the experimental cohorts is insufficiently large, the use of least-squares
fitting is rather a convenience for data visualization, than a robust procedure
to amalgamate and smooth discrete data. We present an analytical explanation
behind specific difficulties accompanying the fit once the average lifespan of the
species exceeds MRDT. We demonstrate, that under such conditions a fit to the
Gompertz law becomes unstable, and fails to produce a unique combination of
the demographic parameters. In fact, one gets the whole degenerate manifold
of the Gompertz parameters, which is nothing else but the line, corresponding
to the proper approximate value of the average lifespan, and, at the same time,
coincides with the SM correlation. We show that the employment of the age-
independent Makeham mortality term does not resolve the degeneracy problem.
Therefore, we have to conclude, that the average lifespan persists as the only
stable feature, which can be reliably inferred from survival statistics in an ex-
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periment with a finite number of animals. The SM correlation, in this case, is
nothing but an iso-average-lifespan degenerate manifold on the IMR versus «
plane, is thus a fitting artifact, and its observation in a data set is an indication
of insufficient statistical power, rather than a biological reality.

Keywords: aging parameters, Gompertz law, Gompertz-Makeham law,
Strehler-Mildvan correlation, fitting parameters degeneracy

1. Introduction

Aging in most animals, including humans, leads to nearly an exponential
increase of mortality M (t) = My exp(at) with age ¢, the dependence commonly
referred to as the Gompertz law [1]. It has been long assumed, based on both
empirical evidence and theoretical arguments, that the Initial Mortality Rate,
My or IMR, and the Gompertz exponent slope, «, are universally related by the
Strehler-Mildvan (SM) correlation

InMy—InK = —a/B. (1)

Here K and B are constants, introduced in [2], and « is inversely proportional
to the Mortality Rate Doubling Time (MRDT). The SM correlation is not a
trivial fact and is inconsistent with a recently observed scaling law, implying
that the surviving fractions of nematodes worms under different environmental
conditions or mutants with different lifespans can be cast into a universal func-
tion of a properly rescaled dimensionless age [3]. The observed temporal scaling
cannot be consistent with the SM correlation since it implies the proportionality
between IMR and «, rather than of InIMR and «, as predicted by Strehler and
Mildvan. In addition, the SM correlation does not hold well against a recently
proposed model of aging, where the above-mentioned scaling law is a natural
consequence of a genetic instability of regulatory gene networks in sufficiently
long lived organisms [4]. We believe that the two observations together are suffi-
cient to cast doubt on the biological origin of the SM correlation and investigate
a possibility of its artifactual nature.

To make sense of the apparent contradiction, we re-analyzed the problem of
the Gompertz parameters inference from experimental survival fraction curves
(lifetables). To our surprise, we found out, that the commonly employed least
squares procedure leads to an ill-defined non-linear optimization problem, which
fails to yield a unique solution. In practical terms this means that one is always
left with the family of parameters My and « forming a degeneracy manifold,
coinciding with the SM correlation with a few percent accuracy. The analytical
treatment of the fitting difficulty provides a clear explanation of the apparent
correlation: the exact analytical form of the SM relation is nothing else but a set
of possible demographic parameters consistent with the experimentally derived
average lifespan of the animals. This is why we have to conclude, that the SM
correlation is nothing but a fitting artifact occurring whenever the number of
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animals in experimental cohorts is not sufficiently large. The same conclusion
probably holds for the biological explanations behind the SM correlation.

We further support our theoretical arguments by demonstrating the least
squares procedure instability using survival plots, obtained in a recent series
of experiments in C. elegans under the influence of lifespan modifying treat-
ments [5]. We show, that the immediately apparent SM correlation in the
experiment is a consequence of the fitting procedure uncertainty exacerbated
by a small and finite number of animals in the cohorts. We show, that it is
only possible to fit robustly the average lifespans of small cohorts, yet it is ex-
tremely difficult to yield reliable estimates of the Gompertz parameters unless
the number of the animals in the experimental groups is large enough to produce
a unique solution.

2. The Strehler-Mildvan correlation is a degenerate manifold

To investigate the influence of a factor, such as a therapy, or a mutation, on
aging, one may want to estimate the effects of the experimental design conditions
on aging model parameters, such as, for example, commonly used quantities M
and « of the Gompertz law. A natural way to achieve the goal is to analyze
Kaplan-Meyer plots and fit an experimentally observed fraction of the animals
surviving by the age ¢, N(t), onto the model prediction. A typical behavior of
the survival fraction is qualitatively depicted on Fig.1A. Usually, the average
lifespan, t, exceeds the mortality rate doubling time and the survival fraction is a
very sharp, almost a step-wise function, dropping from 1 to 0 in a short interval
of ages, At/t < 1, around its mean value £, so that NV (f) = C' ~ 0.5. This means
that t =ty [1 + O (At/t)]. According to the Gompertz law, the mortality at a
given age, t, is M(t) = My exp (at), therefore the fraction of the animals alive
by the same age is given by the expression Ng (t|a, My) = exp [-M (e®t — 1)],
where M = My/a S 1.

To fit an experimentally observed dependence N (t) to the Gompertz law, it
is natural to minimize the approximation mean squared error. Normally, the
surviving fraction is known at a series of values at discrete age-points. We will
assume, that the observation points are sufficiently many in number and the
number of the animals in the cohorts is large, so that the discrete set of the
observations N(¢) is a smooth function of age. Under the circumstances, the
objective function can be represented as the integral

o0

1
7= [tV a0 - N o), )
0
to be minimized with respect to the values of o and M. The full analysis of the
optimization problem is presented in Appendix A. Let us summarize the results

important for the discussion below. First of all, the Gompertz parameters are
the solutions of the system of equations

8] a1
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Figure 1: A. A schematic representation of a typical step-wise survival fraction curve; B. A
graphic solution of Eqgs. (3) in InM and « plain. Here ¢ is the average lifespan of the
animals. The thick and the thin lines correspond to the vanishing derivatives of the objective
function J with respect to the parameters M and «; C. The estimates of the Gompertz
parameters Mo versus « obtained by the least-squares fit (2) for the sub-populations of the
wild type animals selected at random from the experimental data from [5] with the number
of cohorts in sub-populations N.,, = 5,20,50 and 300. Each dot represents a fit using data
from a single random sub-population, the colors mark N.,,. The black line represents an
iso-average-lifespan curve for the wild-type average lifespan.
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A graphical solution of the equations is represented in Fig.1B. The slopes of the
curves representing the solutions of Eqs. (3) at the intersection point differ by
a mere factor Cy/A2, with Cy ~ 1 being a numerical factor. For sufficiently
long lived animals, A > 1, and the curves get very close to each other near
the intersection point, defining the solution. Since actual experimental data is
intrinsically noisy, instead of a single and well-defined solution, one rather gets
the whole degenerate set of possible of solutions, even if the biological conditions
are exactly the same. Remarkably, each of the possible fits correspond to the
correct value of the average lifespan, t.,, = [ dtN(t). More specifically, every
pair of IMR and « values, satisfying

ta(a, M) = tegp, (4)

can, in principle, be obtained from the analysis of different realizations of the
same experiment. Since t.,, ~ —a~!In M in the Gompertz model, the degener-
acy manifold is approximately defined by the condition In My — In o = —ateyyp,
and therefore the condition (4) is practically indistinguishable from the SM cor-
relation (1) whenever A 2 1. A more accurate approximation for the average
lifespan tg (o, M) from the Gompertz law and therefore the precise form of the
SM correlation is derived in the appendix, see Eq. (B.1).

3. Survival statistics analysis example

To support our theoretical arguments and highlight the conclusions using
realistic experimental data, we investigated the Kaplan-Meier plots from [5]
experiment, an important example of a modern high-throughput screening for
life-span modulating compounds. The dataset contains information on life his-
tories in 1416 experiments of genetically homogeneous populations, actually the
same strain of C. elegans, all obtained in the same laboratory. Each experimen-
tal cohort consists of roughly 10 worms, some experiments have been repeated
to achieve higher significance.

In total, the dataset provides us with 768 control cohorts for the calculations.
We employed these cohorts to estimate the uncertainty of the Gompertz fit
parameters in the ideal case of a genetically homogeneous population under
identical conditions in a particular laboratory. To show a purely artifactual
nature of the SM correlation in this case, we imitated a typical aging population
study with this data. A subset of N, cohorts (we used N, = 5, 20, 50 and
300) was selected at random from all the available aging cohorts, after that
the survival plots of the chosen subset were averaged out to obtain a smooth
characteristic survival curve, which was finally fitted to the Gompertz curve.
This procedure was repeated a number of times to get a reliable estimate of
the fitting parameters uncertainty for a chosen N.,,. Fig. 1C shows that the
SM correlation exists even in this ideal experiment and it is linked to a subset
size N.p: the more cohorts one uses to calculate a smooth survival curve of
a chosen sub-population, the less the degeneracy of the Gompertz parameters,
hence we have to conclude that the nature of the SM correlation is purely
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Figure 2: The IMR (Mp) versus the Gompertz exponent slope « estimates obtained by the
least-squares procedure using lifetables from the C. elegans experiment [5]. The colored curves
are the asymptotic expressions, the analytical solutions, corresponding to the iso-average-
lifespan manifolds defined by Eq. B.2. Each colored ellipse (from green to red) corresponds
to a single experiment, a cohort of worms under each of the several chosen treatments. The
colors mark the average lifespans in days. The position and the size of the black-edged
ellipse indicate the best Gompertz fit parameters and their uncertainty for the wild type and
the treated groups (the estimates of the variance were obtained using models obtained from
cohorts of smaller sizes with randomly selected animals).

artifactual since N,p, is the only varying parameter in this calculation. The
SM correlation apparently arises due to the insufficient number of animals. The
suppression of the fitting parameters fluctuations in the direction, orthogonal
to the SM curves is the direct consequence of the degeneracy of the solutions of
Eq. 3. This means, that, even though in theory, the optimization problem may
have a unique solution, in practice, it is defined as an intersection point of the
two curves with nearly coinciding slopes, which differ by a quadratically small in
A term. Therefore, in a wide range of the fitting parameters there is efficiently
only one equation, an iso-average-lifespan curve, for the determination of both
parameters, hence there must exist some correlation between IMR and «, which
is conventionally referred to as the SM correlation.

Of all the available treatments we have chosen medicines with the largest
numbers of repeats and the smallest degeneracy of the Gompertz parameters,
for which the number of replicas is adequate to resolve the effects of the treat-
ments on lifespans. For each group of the experiments we averaged out survival
curves for randomly chosen 2/3 of all the available replicas and attempted the
Gompertz fit to obtain the parameters My and . We repeated the calculations
by reshuffling the animals and estimated the parameters variance. The uncer-
tainty of the results is represented by the sizes of the characteristic ellipses on
My versus « plane in Fig.2. To highlight the instability of the Gompertz fit pa-
rameters even for the absolutely homogeneous ageing cohorts, we plotted a black
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ellipse corresponding to the wild-type worms after reshuffling in groups of 300
cohorts, but the degeneracy still leads to a relative error in the determination of
the Gompertz parameters of nearly 25%. The iso-average-lifespan curves (the
SM correlation curves) are plotted and colored according to the age as shown in
the inset. For various animal groups, the average lifespan is, of course, slightly
different, that is why the ellipses are to a small degree distributed along the
direction orthogonal to the SM curves, whereas they are substantially stretched
along the SM curves. This fact shows that small fluctuations of a survival curve
for a homogeneous group of animal cohorts, due to a finite number of these
cohorts, lead to the strong fluctuations of the fitting parameters along the SM
curves, whereas fluctuations orthogonal to these SM curves are substantially
suppressed.

4. Conclusions and Discussion

We conclude our analysis by the observation that a fit of experimental lifeta-
bles on an aging model, such as Gompertz law, may be very challenging and
lead to flawed results. Our analytical treatment shows, that the solution of the
fitting problem is not unique in practice because it is defined as an intersection
point of the null curves of the derivatives of the fitting error with respect to the
demographic parameters, having practically coinciding slopes. The SM corre-
lation turns out to be a consequence of the fitting failure. In fact, the relation
between the IMR and MRDT is nothing but the iso-average-lifespan curve. The
exact form of the relation can be established analytically, though it is visually
barely distinguishable from a straight line. Realistic noisy experimental data
could be easily misinterpreted to produce such a correlation, which was, in fact,
initially “observed” and and commonly referred to as the SM correlation [2] ever
since. Therefore the immediate conclusion from our research is that the two-
parametric Gompertz fit is an ill-defined procedure, and it should be used with
care, especially if the number of animals in the groups is not very high.

Next to the solution of the minimization problem, at the intersection point
A in Fig. 1B the derivatives of the objective function Eq. 2 with respect to
the Gompertz variables i« = o, M behave as o — ay = k; (M — M4), where k;
are the two numerical factors and are very close to each other. The problem
is not limited to the specific choice of the aging model parametrization. One
can, in principle, try to perform the same calculation using any other pair of
quantities instead of M and «. For example, a possible choice could be the
average lifespan tg ~ In(1/M) /a. In this case o — aq ~ K; (tq — t{), where
K; = k; (dM/dtg) 4. The relative difference of the slopes stays the same under
such a change of the variables, and remains to be quadratically small

K Ky ki—ky 1
= x w9 ()

3

Exactly for this very same reason, the degeneracy of the solution cannot be
lifted by a change of the fitting function, such as for example by the use of
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mortality rate instead of survival fraction in the objective function. Indeed, as
shown in Appendix A, the mortality rate function should be used with an extra
care, since it can only be obtained by a numerical differentiation of experimental
survival lifetables, which are by no means continuous and differentiable. The
difficulty is even worse at advanced ages, when the number of the surviving
animals becomes very small. We note, that the difficulties in the aging model
parameters inference, highlighted in this Letter, are not limited only to the
Gompertz law fit. The actual reason behind the large uncertainty of the results
stems from the very abrupt change of the experimental surviving fraction near
the average lifespan of the group.

A possibility of a superficial nature of the SM correlation has been already
highlighted in by L. and N. Gavrilovs in [6, 7|, where a more sophisticated aging
model, the Gompertz-Makeham version of the mortality law, was invoked to
produce a more stable fit. Later on the Makeham term was claimed to have
a fundamental biological significance to describe some regimes of aging with a
large age-independent component of mortality [8]. In Appendix C we prove,
that the problem with the degeneracy of the solution does not go away if extra
parameters, such as the age-independent mortality rate, are added into the
procedure. Of course, the Gompertz-Makeham form of the mortality law may
help to fit the experimental data in a different aging regime with a significant
age-independent component in mortality rate, whenever it is required. However,
the model fit with a limited number of animals in the cohort would give a
degenerate set of solutions anyway.

In conclusion, let us use our analytical results to comment on the scale of the
expected survival statistics analysis difficulties for different species. For experi-
ments with C. elegans, for instance, we estimate A ~ 2, and therefore £ ~ 0.2. It
means that the Gompertz parameters a and My can only be found using the re-
gression solutions of Eq. 2 if a large, but still, a reasonable number of animals is
included into the aging cohorts under the investigation. More specifically, what
is important is the number of animals N, in an age bin near the average age,
where the steepest change in survival fraction occurs. To make a rough estimate
of the required number of the animals, we assume the characteristic error of a
mean experimental survival curve to be its standard deviation, which scales as
~ O (\/ﬁs) Since the null curves for the derivatives of the objective function
differ in slopes by a factor ~ O (1/A2), we obtain the estimate Ny = O (A4).
For simplicity, let us assume the proportionality coefficient to be of the order
of one and is the same for all species. For C. elegans the size of the parameters
spread of the wild-type cohorts in the Figure 2 suggests that ~ 300 animals in
the middle-age bin may be sufficient to determine the Gompertz exponent with
roughly 25% accuracy.

For human subjects, though, the requirements are much more challenging,
since the Gompertz logarithm can be as large as A ~ 8, and therefore the
minimum number of humans in the age bin from 50 to 70 years, where most
of the subjects die, can be estimated to be as large as N, ~ 75000. One can
easily imagine, that the minimum required population of a country required for
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a robust calculation is as large as a few million people. On top of that, realistic
populations may be genetically inhomogeneous and live under very different
environmental conditions along their life histories. These factors combined may
prevent any solid analysis using any model as simple as the two-parameter
Gompertz mortality law. We believe, that the outlined fitting difficulty on pair
with limited statistical power due to the inclusion of countries with smaller
populations into the analysis led to the spurious correlation. Indeed, the error
in the parameter o determination of the order of 25% in the original paper [2],
corresponds to Ng ~ 100,000 people and is in line with the expectation given
by the spread of the countries populations.

After more than half a century after the publication of the original work [2],
the idea of the SM correlation and biological picture behind it is deeply rooted
in ageing studies (see e.g. [9, 10, 11, 12] as examples of recent works). Most
notably, heterogeneity of ageing populations was recently investigated and in-
voked to explain the SM correlation [9, 13]. Remarkably, we show that the
SM correlation can be obtained even in absolutely homogeneous populations of
C. elegans worms, simply because the SM correlation in realistic experiments
may be purely artifactual!

A number of theories, suggesting some physical or biological background be-
hind the SM correlation, have been proposed since its discovery. In our work,
we come to the conclusion that any biological interpretations should be used
cautiously, especially those based on experimental data sets with an insufficient
number of animals. Otherwise, one might misinterpret the SM correlation be-
tween the Gompertz parameters as the actual dependence of MRDT on IMR,
whereas to obtain the real relation between these parameters one should rely
only on sufficiently large data sets. In fact, the demographic parameters may
be related indeed in a more advance aging model and therefore a more thorough
analysis of this dependence is very much desired, but yet has to be provided.
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Appendix A. The SM correlation is a degenerate manifold

The solution for the regression problem in Eq. (2) can be found from the min-
imum conditions, 8J/0a = 0 and 8J/OM = 0. Using the relations ONg/da =
(t/a)ONg/0t, and ONG/OM = (aM)~1ONg/Ot, we obtain:

% . /dt [N () - N (1) éa%, (A1)
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and

57‘]4 - ﬁ/dt [N () — N (1) a%. (A2)
0

If one fruitlessly tries to use mortality rate instead of survival fraction in
order to eliminate the degeneracy, the resulting equations are:

8J [ 9ln(Ng/N)t dlnNg
%_/dt ot a ot (A-3)
0
97 1 [ 9ln(Ng/N)dlnNg
oM on/dt ot ot (A-4)
0

Both N () and Ng (t) are step-like functions, N (t) =~ 0 (t —t) and Ng (t) =
0 (tg — t), hence there is no essential difference between the fit results of Egs. A.3, A.4.
As a result, for the arbitrary choice of the system variables, with a relative error
~ Nt/t
ta ~t,

which is a form of correlation between the Gompertz fit parameters:

a—lln o
ot My )’

The equation, of course, only holds if A = In (a/My) > 1. It can be generalized
approximately to any values of the parameter ao/Mj in a form

a=-Ih (1+010‘>, (A.5)

where C ~ 1.
The difference between the slopes of the two solutions at an intersection
point in Eq. 5 can be straightforwardly estimated as

1
P.
Therefore, the two solutions of the optimization problem in Eqs. A.1, A.2
are nearly equal with the identical quadratic precision

01 o1
da < oM

&~

Appendix B. The Gompertz iso-average-lifespan curve

We have proven above, that the only parameter which is really robustly
optimized by any gradient descent method is the average lifespan, which is for
the Gompertz law is written accurately as
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ta = /dtNG = eXpMF(OaM)» (B.1)
(0%
0

where I'(0, M) = E1(M), M = Mg/« is the upper incomplete gamma function
(or a special function called the exponential integral) which has an expansion

00 2k
Fy(M) = T(0, M) = — — In M — Z(Mﬂ,f,;,
k=1 ’

where v ~ 0.577 is the Euler-Mascheroni constant.
The experimental average lifespan should be equal to the Gompertz average
lifespan:

ex = (- k
t=tc= ZM (—W—IHM—Z(k(]\]j; ) (B.2)
k=1 '

For M > 1 (large «) the solution is rather simple

_ 1
tg(M>>1):a<ln]\i;0— >

Although the convergence of the series on the right side is known to be slow for
arguments of larger modulus (o — 0), but we still can obtain a divergent series
approximation

N-1 n
fo(M<1)= Mio l1 - M&o +y (—]\04‘0) n!] (B.3)

n=2

To compare with the Strehler-Mildvan correlation, for In My we now get the
following asymptotic

In My (e — 0) = In (1/%) — o, (B.4)

In My (a>0)=Ina — af — 7. (B.5)

To plot these correlation curves in Fig. 2 we simply join these asymptotic
lines together with a spline line at the intersection point ;s = €7/, that is why
the curves look smooth as the exact solution, these curves look like straight
lines at first sight). The actual origin of the Strehler-Mildvan correlation is a
visual misinterpretation of an intricate degenerate manifold of the Gompertz
fit parameters. Commonly used gradient descent methods are unable to find
a unique optimal solution, because any pair of parameters My and « on the
iso-average-lifespan curve makes corresponding derivatives in a gradient descent
method be zero with a quadratic precision.
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Appendix C. The Gompertz-Makeham iso-average-lifespan curve

Gavrilov [6, 7] proposes the Strehler-Mildvan correlation to be a spurious
correlation due to the neglect of an age-independent background component of
mortality in the original work of Strehler and Mildvan (use of the Gompertz law
instead of the Gompertz-Makeham law) [2]. Let us investigate the Gompertz-
Makeham law properties in the same manner as above.

M,
Saum (tla, My, A) = exp (—At +=2 (1- e"t)> .
a

The exact average lifespan for the Gompertz-Makeham law is

o0 M, Ala
_ exp Mo /0y A M,
tG:/dtNG: P o <0> F(—,O),
« « « «
0

which is indeed somewhat better then we had with the Gompertz law, be-
cause the Makeham parameter moves the centre of our expansion for the upper
incomplete gamma function from the singular point near zero I'(0, %) to a

better analytical point nearby non-zero point of I' (7% %), therefore, one can

expect the divergent series approximation as in Eq. B.3 to disappear, whereas
we now have the three-parametric fitting procedure, for which the SM correla-
tion will nevertheless exist. The degeneracy manifold in case of Gompertz’s law
arising from the vanishing slope between two optimization curves in case of the
Gompertz-Makeham law emerges due to the shrinking slope between two opti-
mization surfaces, therefore the Makeham parameter just determines the cross
section of these surfaces, where the same degeneracy problem for the remaining
two Gompertz parameters still persists. Even though the Makeham parameter
A is well-defined as long as it is large enough, nevertheless for the common
regime of human ageing it is not the case since a step-like behavior of survival
curves is expected, hence the introduction of the Makeham parameter is of little
consequence and the degeneracy is not eliminated.
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