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Abstract 

Reinforcement learning and decision-making (RLDM) provide a quantitative framework, 

which allows us to specify psychiatric conditions with basic dimensions of 

neurocognitive functioning. RLDM offer a novel approach to assess and potentially 

diagnose psychiatric patients, and there is growing enthusiasm on RLDM and 

Computational Psychiatry among clinical researchers. Such a framework can also provide 

insights into the brain substrates of particular RLDM processes as exemplified by model-

based functional magnetic resonance imaging (fMRI) or electroencephalogram (EEG). 

However, many researchers often find the approach too technical and have difficulty 

adopting it for their research. Thus, there remains a critical need to develop a user-

friendly tool for the wide dissemination of computational psychiatric methods. We 

introduce an R package called hBayesDM (hierarchical Bayesian modeling of Decision-

Making tasks), which offers computational modeling on an array of RLDM tasks and 

social exchange games. The hBayesDM package offers state-of-the-art hierarchical 

Bayesian modeling, where both individual and group parameters (i.e., posterior 

distributions) are estimated simultaneously in a mutually constraining fashion. At the 

same time, it is extremely user-friendly: users can perform computational modeling, 

output visualization, and Bayesian model comparisons–each with a single line of coding. 

Users can also extract trial-by-trial latent variables (e.g., prediction errors) required for 

model-based fMRI/EEG. With the hBayesDM package, we anticipate that anyone with 

minimal knowledge of programming can take advantage of cutting-edge computational 

modeling approaches and investigate the underlying processes of and interactions 

between multiple decision-making (e.g., goal-directed, habitual, and Pavlovian) systems. 

In this way, it is our expectation that the hBayesDM package will contribute to the 

dissemination of advanced modeling approaches and enable a wide range of researchers 

to easily perform computational psychiatric research within their populations. 
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1.	Introduction 

Computational modeling (a.k.a., cognitive modeling) describes human 

information processing with basic principles of cognition, which are defined in formal 

mathematical notations. Unlike verbalized or conceptualized approaches, computational 

modeling has the merit of allowing researchers to generate precise predictions and 

quantitatively test competing hypotheses (Busemeyer & Diederich, 2010; Forstmann & 

Wagenmakers, 2015; Lewandowsky & Farrell, 2010). Computational modeling has been 

particularly useful in reinforcement learning and decision-making (RLDM) fields (Dayan 

& Daw, 2008; Rangel, Camerer, & Montague, 2008); computational modeling has also 

been integrated into the analysis of neural data including functional magnetic resonance 

imaging (fMRI) and electroencephalogram (EEG) data (e.g., Cavanagh, Eisenberg, 

Guitart-Masip, Huys, & Frank, 2013; Daw, O'Doherty, Dayan, Seymour, & Dolan, 2006; 

Gläscher, Hampton, & O'Doherty, 2009; Hampton, 2006; Iglesias et al., 2013; Li, 

Schiller, Schoenbaum, Phelps, & Daw, 2011; Mars et al., 2008; O'Doherty, Hampton, & 

Kim, 2007; O'Doherty, Dayan, Schultz, & Deichmann, 2004; Xiang, Lohrenz, & 

Montague, 2013).  

 As summarized in recent review papers (Ahn & Busemeyer, 2016; Friston, 

Stephan, Montague, & Dolan, 2014; Huys, Maia, & Frank, 2016; Montague, Dolan, 

Friston, & Dayan, 2012; Stephan, Bach, et al., 2016a; Stephan, Binder, et al., 2016b; 

Stephan, Iglesias, Heinzle, & Diaconescu, 2015; X.-J. Wang & Krystal, 2014; Wiecki, 

Poland, & Frank, 2015), computational modeling has gained much attention for its 

usefulness in investigating psychiatric conditions. Exemplified by the Research Domain 

Criteria and Precision Medicine (RDoC; Insel, 2014), there is also a growing consensus 

that diagnosis and treatment decisions should incorporate underlying cognitive and 

neurobiological underpinnings of psychiatric conditions instead of relying only on 

behavioral symptoms. To this end, a new field called Computational Psychiatry (e.g., 

Friston et al., 2014; Montague et al., 2012) aims to discover neurocognitive mechanisms 

underlying normal and abnormal conditions by combining cutting-edge neurobiological 

and computational tools. 
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 Performing computational psychiatric research, however, especially 

computational modeling, is a challenging task for many clinical researchers or those with 

limited quantitative skills. Computational modeling involves multiple steps including 

designing/adopting laboratory tasks, building a theoretical framework of the task with a 

set of assumptions and mathematical equations, formulating multiple computational 

models based on the assumptions, estimating model parameters of each model, and 

quantitatively comparing the models of interest (e.g., Busemeyer & Diederich, 2010; 

Wiecki et al., 2015). It is a pressing issue how to train clinical researchers in mental 

health (e.g., psychiatrists and clinical psychologists) so that they can receive in-depth 

training across several related fields including cognitive science, advanced statistics, and 

neuroscience (Montague et al., 2012). For the dissemination of Computational 

Psychiatry, we believe there remains a critical need to develop user-friendly tools for 

computational modeling. In fact, there exist several software packages but most of them 

are for a single class of modeling such as sequential sampling models (Matzke et al., 

2013; Wabersich & Vandekerckhove, 2014; Wiecki, Sofer, & Frank, 2013). An exception 

is the Variational Bayesian Analysis (VBA) MATLAB toolbox (Daunizeau, Adam, & 

Rigoux, 2014), which allows users to fit and compare various models with variational 

Bayesian algorithms. However, we believe users still need some amount of programming 

skills and background in computational modeling to model various tasks.  

In this article, we describe a free R package, hBayesDM (hierarchical Bayesian 

modeling of Decision-Making tasks), which we developed for the dissemination of 

computational modeling to a wide range of researchers. The hBayesDM package offers 

hierarchical Bayesian analysis (HBA; see Section 3 for more details about HBA) of 

various computational models on an array of decision-making tasks (see Table 1 for a list 

of tasks and models currently available). We aim to make the package extremely user-

friendly: with hBayesDM, users can perform model fitting with HBA, output 

visualization, and model comparisons – each with a single line of coding. Example 

datasets are also available to make it easy to use hBayesDM. Users can also extract trial-

by-trial latent variables (e.g., prediction errors) that are required for model-based 

fMRI/EEG (see Section 5.5). Users can not only perform Bayesian modeling of tasks 

implemented in the hBayesDM package, but also we make all source codes publicly 
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available so that other users can contribute to the package (also see our future directions 

in Section 6). By making all steps for computational modeling user-friendly, we hope the 

hBayesDM package will allow even researchers with minimal programming knowledge 

to perform certain computational psychiatric research.  

The remainder of this article is organized as follows. First, we describe the list of 

tasks and models that are currently implemented in the hBayesDM package (Section 2). 

Second, we briefly describe HBA and why we adopt HBA for computational modeling 

(Section 3). Third, we explain the detailed mathematical formulation of hierarchical 

Bayesian models (Section 4). Fourth, we provide step-by-step tutorials on how to use the 

hBayesDM package (Section 5). Lastly, we discuss future plans and some limitations of 

the package (Section 6). Readers who are not interested in the technical details may skip 

Section 3 and equations in Section 4. 

 

2. Tasks and computational models implemented in hBayesDM 

Table 1 shows the list of tasks and computational models currently implemented 

in the hBayesDM package (as of version 0.2.3). Note that some tasks have multiple 

computational models and users can compare the model performance within the 

hBaysDM framework (see Section 5). To fit models to a task, prepare trial-by-trial data 

as a text file (*.txt) where each row (observation) contains the columns required for the 

given task (see Table 1). Users can also follow its sample dataset as an example. 

Below, we describe each task and its computational model(s), briefly review its 

applications to healthy and clinical populations, and list model parameters. We refer 

readers to original papers for the full details of experimental design and model 

parameters. 

 

2.1. The Delay Discounting task 

 The Delay Discounting task (DDT; Rachlin, Raineri, & Cross, 1991) is designed 

to estimate how much an individual discounts temporally delayed outcomes in 

comparison to smaller-sooner ones. On each trial of the DDT, two options are presented: 

a sooner and smaller reward (e.g. $5 now) and a later and larger reward (e.g. $20 next 

week). Subjects are asked to choose which option they prefer on each trial.  
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 The DDT has been widely studied in healthy populations (e.g., Green & Myerson, 

2004; Kable & Glimcher, 2007) and DD has been associated with cognitive abilities such 

as intelligence (Shamosh et al., 2008) and working memory (Hinson, Jameson, & 

Whitney, 2003). Steeper delay discounting is a strong behavioral marker for addictive 

behaviors (Ahn & Vassileva, 2016; MacKillop, 2013) and has also been associated with 

other psychiatric conditions including schizophrenia (Ahn, Rass, Fridberg, Bishara, 

Forsyth, Breier, et al., 2011b; Heerey, Matveeva, & Gold, 2011; Heerey, Robinson, 

McMahon, & Gold, 2007) and bipolar disorder (Ahn, Rass, Fridberg, Bishara, Forsyth, 

Breier, et al., 2011b). The hBayesDM package currently contains three different models 

for the DDT: 

 

1) dd_cs (Constant Sensitivity model, Ebert & Prelec, 2007) 

Exponential discounting rate (0 < r <1 ) 

Impatience (0 < s <10 ) 

Inverse temperature ( 0 < β < 5 ) 

2) dd_exp (Exponential model, Samuelson, 1937)  

Exponential discounting rate (0 < r <1 ) 

Inverse temperature ( 0 < β < 5 ) 

3) dd_hyperbolic (Hyperbolic model, Mazur, 1987) 

Discounting rate (0 < k <1  ) 

Inverse temperature ( 0 < β < 5 ) 

 

2.2. The Iowa Gambling task 

 The Iowa Gambling task (IGT, Bechara, Damasio, Damasio, & Anderson, 1994) 

was originally developed to assess decision-making deficits of patients with ventromedial 

prefrontal cortex lesions. On each trial, subjects are presented with four decks of cards. 

Two decks are advantageous (good) and the other two decks disadvantageous (bad) in 

terms of long-term gains. Subjects are instructed to choose decks that maximize long-

term gains, which they are expected to learn by trial and error. From a statistical 

perspective, the IGT is a four-armed bandit problem.  
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 The IGT has been used extensively to study decision-making in several 

psychiatric populations (Ahn et al., 2014; Bechara & Martin, 2004; Bechara et al., 2001; 

Bolla et al., 2003; Grant, Contoreggi, & London, 2000; Vassileva, Gonzalez, Bechara, & 

Martin, 2007). The hBayesDM package currently contains three different models for the 

IGT: 

 

1) igt_pvl_decay (Ahn et al., 2014; Ahn, Krawitz, Kim, Busemeyer, & Brown, 

2011a) 

Decay rate (0 < A <1 ) 

Shape (0 <α < 2 ) 

Consistency ( 0 < c < 5 ) 

Loss Aversion (0 < λ <10 ) 

2) igt_pvl_delta (Ahn, Busemeyer, Wagenmakers, & Stout, 2008) 

Learning rate (0 < A <1 ) 

Shape (0 <α < 2 ) 

Consistency ( 0 < c < 5 ) 

Loss Aversion (0 < λ <10 ) 

3) igt_vpp (Worthy, Pang, & Byrne, 2013) 

Learning rate (0 < A <1 ) 

Shape (0 <α < 2 ) 

Consistency ( 0 < c < 5 ) 

Loss Aversion (0 < λ <10 ) 

Perseverance gain impact (
 
−1< εp <1) 

Perseverance loss impact ( −1< εn <1 ) 

Perseverance decay rate (0 < k <1 ) 

Reinforcement learning weight (0 <ω <1 ) 

 

2.3. The Orthogonolized Go/NoGo task 

Preparatory Pavlovian control sets a strong prior on actions for predictors of 

outcomes depending on their valence: approaching/engaging behavior with appetitive 

outcomes and avoiding/inhibiting behavior with aversive outcomes. Instrumental control, 
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on the other hand, selects actions based on the action-outcome contingencies. The 

orthogonalized Go/NoGo (GNG) task (Guitart-Masip et al., 2012) is designed to examine 

the interaction between the two controllers by orthogonalizing the action requirement (Go 

vs. NoGo) against the valence of the outcome (winning vs. avoiding losing money).  

Each trial of the orthogonal GNG task has three events in the following sequence: 

cue presentation, target detection, and outcome presentation. First, one of four cues is 

presented (“Go to win”, “Go to avoid (losing)”, “NoGo to win”, or “NoGo to avoid”). 

After some delay, a target (“circle”) is presented on the screen and subjects need to 

respond with either a Go (press a button) or NoGo (withhold the button press). Then, 

subjects receive a probabilistic (e.g., 80%) outcome. See Guitart-Masip et al. (2012) for 

more details of the experimental design.  

The orthogonalized GNG task has been used to study decision-making in healthy 

populations (Cavanagh et al., 2013), age-related changes in midbrain structural integrity 

in older adults (Chowdhury, Guitart-Masip, Lambert, Dolan, & Duzel, 2013), and 

negative symptoms of schizophrenia (Albrecht, Waltz, Cavanagh, Frank, & Gold, 2016). 

The interaction between Pavlovian and instrumental controllers might also play a role in 

addiction problems (Guitart-Masip, Duzel, Dolan, & Dayan, 2014). The hBayesDM 

package currently contains four different models for the orthogonalized GNG task:  

 

1) gng_m1 (M1 in Guitart-Masip et al., 2012) 

Lapse rate (0 < ξ <1) 

Learning rate ( 0 < ε <1) 

Effective size of a reinforcement (0 < ρ < ∞ ) 

2) gng_m2 (M2 in Guitart-Masip et al., 2012) 

Lapse rate (0 < ξ <1) 

Learning rate ( 0 < ε <1) 

Go Bias (−∞ < b < ∞ ) 

Effective size of a reinforcement (0 < ρ < ∞ ) 

3) gng_m3 (M3 in Guitart-Masip et al., 2012) 

Lapse rate (0 < ξ <1) 
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Learning rate ( 0 < ε <1) 

Go Bias (−∞ < b <∞ ) 

Pavlovian bias (−∞ < π <∞ ) 

Effective size of a reinforcement (0 < ρ < ∞ ) 

4) gng_m4 (M5 in Cavanagh et al., 2013) 

Lapse rate (0 < ξ <1) 

Learning rate ( 0 < ε <1) 

Go Bias (−∞ < b <∞ ) 

Pavlovian bias (−∞ < π <∞ ) 

Effective size of reward reinforcement (0 < ρrew < ∞ ) 

Effective size of punishment reinforcement ( 0 < ρ pun < ∞ ) 

 

2.4. Probabilistic Reversal Learning task  

 Environments often have higher-order structures such as interdependencies 

between stimuli, action, and outcomes. In such environments, subjects need to infer and 

make use of the structures to make optimal decisions. In the probabilistic reversal 

learning task (PRL), there exists an anticorrelation between the outcomes of two stimuli 

and the reward contingencies reverse unbeknownst to subjects. Subjects need to take the 

higher-order structure of the task into account to optimize their decision-making and 

maximize earnings.   

 In a typical probabilistic reversal learning (PRL) task, two stimuli are presented to 

a subject. The choice of a ‘correct’ or good stimulus will usually lead to a monetary gain 

(e.g., 70%) whereas the choice of an ‘incorrect’ or bad stimulus will usually lead to a 

monetary loss. The reward contingencies will reverse at fixed points (e.g., Murphy, 

Michael, Robbins, & Sahakian, 2003) or will be triggered by consecutive correct choices 

(Cools, Clark, Owen, & Robbins, 2002; Hampton, 2006).  

 The PRL task has been widely used to study reversal learning in healthy 

individuals (Cools et al., 2002; Gläscher et al., 2009; Ouden et al., 2013). The PRL has 

been also used to study decision-making deficits associated with prefrontal cortex lesions 

(e.g., Fellows & Farah, 2003; Rolls, Hornak, Wade, & McGrath, 1994) as well as 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2016. ; https://doi.org/10.1101/064287doi: bioRxiv preprint 

https://doi.org/10.1101/064287
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 10 

Parkinson’s disease (e.g., Cools, Lewis, Clark, Barker, & Robbins, 2007; Swainson et al., 

2000), schizophrenia (e.g., Waltz & Gold, 2007), and cocaine dependence (Ersche, 

Roiser, Robbins, & Sahakian, 2008). The hBayesDM package currently contains three 

models for probabilistic reversal learning tasks: 

 

1) prl_ewa (Ouden et al., 2013) 

1 - Learning rate ( 0 <ϕ <1) 

Indecision point ( 0 < ρ <1) 

Inverse temperature (−10 < β <10 ) 

2) prl_fictitious (Gläscher et al., 2009) 

Learning rate (0 <η <1 ) 

Indecision point ( 0 <α <1 ) 

Inverse temperature ( 0 < β < 5 ) 

3) prl_rp (Ouden et al., 2013) 

Punishment learning rate (0 < Apun <1) 

Reward learning rate (0 < Arew <1 ) 

Inverse temperature (−10 < β <10 ) 

 

2.5. Risk Aversion task  

The Risk Aversion (Sokol-Hessner, Camerer, & Phelps, 2012; RA; Sokol-Hessner 

et al., 2009) task is a description-based task (Hertwig et al., 2004) where possible 

outcomes of all options and their probabilities are provided to subjects on each trial. In 

the RA task, subjects choose either a sure option with a guaranteed amount or a risky 

option (i.e., gamble) with possible gains and/or loss amounts. Subjects are asked to 

choose which option they prefer (or whether they want to accept the gamble) on each trial. 

In the RA task, subjects performed two cognitive regulation conditions in a within-

subject design: for the Attend and Regulate (Reappraise) conditions (see Sokol-Hessner 

et al., 2009 for the details). Users can fit data from each condition separately and examine 

the effect of cognitive regulation strategy.  Data published in Sokol-Hessner et al. (2009) 

are available in the following paths: 
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path_to_attend_data=system.file("extdata/ra_data_attend.txt", 

package="hBayesDM") 

 

path_to_regulate_data=system.file("extdata/ra_data_reappraisal.tx

t", package="hBayesDM") 

 

 The hBayesDM package currently contains three models for the RA and similar 

(e.g., Tom, Fox, Trepel, & Poldrack, 2007) tasks: 

  

1) ra_prospect (Sokol-Hessner et al., 2009) 

Loss aversion (0 < λ < 5 ) 

Risk aversion ( 0 < ρ < 2 ) 

Inverse temperature ( 0 < τ < ∞ ) 

2) ra_noLA (no loss aversion (LA) parameter; for tasks that involve only gains) 

Risk aversion ( 0 < ρ < 2 ) 

Inverse temperature ( 0 < τ < ∞ ) 

3) ra_noRA (no risk aversion (RA) parameter; e.g., Tom et al., 2007) 

Loss aversion (0 < λ < 5 ) 

Inverse temperature ( 0 < τ < ∞ ) 

 

2.6. Two-Armed Bandit task   

Multi-armed bandit tasks or problems typically refer to situations in which 

gamblers decide which gamble or slot machine to play to maximize the long-term gain. 

Many reinforcement learning tasks and experience-based (Hertwig, Barron, Weber, & 

Erev, 2004) tasks can be classified as bandit problems. In a typical two-armed bandit task, 

subjects are presented with two options (stimuli) on each trial. Feedback is given after a 

stimulus is chosen. Subjects are asked to maximize positive feedback as they make 

choices, and they are expected to learn stimulus-outcome contingencies from trial-by-trial 

experience. The hBayesDM package currently contains a simple model for a two-armed 

bandit task:    
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1) bandit2arm_delta (Hertwig et al., 2004) 

Learning rate (0 < A <1 ) 

Inverse temperature ( 0 < τ < 5 ) 

 

2.7. The Ultimatum Game (Norm-Training)  

The ability to understand social norms of an environment and to adaptively cope 

with norms is critical for normal social functioning (Gu et al., 2015; Montague & 

Lohrenz, 2007). The Ultimatum Game (UG) is a widely used social decision-making task 

that examines how individuals respond to deviations from social norms and adapt to 

norms in a changing environment.  

 The UG involves two players: a Proposer and a Responder. On each trial, the 

Proposer is given some amount of money to divide up amongst the two players. After 

deciding how to divide the money, an offer is made to the Responder. The Responder can 

either accept the offer (money is split as offered), or reject it (both players receive 

nothing). Previous studies show that modal offers are approximately 50% of the total 

amount and “unfair” offers (< 20% of the total amount) are often rejected although it is 

always optimal for a Responder to accept any offer (Güth, Schmittberger, & Schwarze, 

1982; Sanfey, 2003; Thaler, 1988). A recent study examined the computational substrates 

of norm adjustment by using a norm-training UG where subjects played the role of 

Responder in a norm-changing environment (Xiang et al., 2013).   

 The UG has been used to investigate social decision-making of individuals with 

ventromedial prefrontal lesions (Gu et al., 2015; Koenigs et al., 2007) and insular cortex 

(Gu et al., 2015) lesions, and of patients with schizophrenia (Agay, Kron, Carmel, 

Mendlovic, & Levkovitz, 2008; Csukly, Polgár, Tombor, Réthelyi, & Kéri, 2011). The 

hBayesDM package currently contains two models for the UG (or norm-training UG):  

    

1) ug_bayes (Xiang et al., 2013) 

Envy ( 0 <α < 20 ) 

Guilt (0 < β <10 ) 

Inverse temperature ( 0 < τ <10 ) 
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2) ug_delta (Gu et al., 2015) 

Envy ( 0 <α <1) 

Inverse temperature ( 0 < γ <1) 

Norm adaptation rate (0 < ε <1 ) 

 

3. Mathematical formulation of hierarchical Bayesian models 

 We first briefly describe HBA (Section 3.1) for readers interested in HBA or a 

Bayesian framework in general. Then, we illustrate how we program our models using 

the Stan software package (Carpenter et al., 2016) (Section 3.2) and how we formulate 

hierarchical structures for various types of model parameters (Section 3.3). Readers who 

are not interested in mathematical details may skip Sections 3.2 and 3.3.  

	

3.1. Hierarchical Bayesian analysis (HBA) 

Most computational models do not have closed form solutions and we need to 

estimate parameter values. Traditionally, parameters are estimated at the individual level 

with maximum likelihood estimation (MLE): getting point estimates that maximize the 

likelihood of data for each individual separately (e.g., Myung, 2003). However, 

individual MLE estimates are often noisy and unreliable especially when there is 

insufficient amount of data, which is common in psychology or neuroscience 

experimental settings (c.f., speeded choice-response time tasks). A group-level analysis 

(e.g., group-level MLE), which estimates a single set of parameters for the whole group 

of individuals, may generate more reliable estimates but inevitably ignores individual 

differences. 

For parameter estimation, the hBayesDM package uses HBA, which is a branch 

of Bayesian statistics. We will briefly explain why hierarchical approaches such as HBA 

have advantages over traditional MLE methods. In Bayesian statistics, we assume prior 

beliefs (i.e., prior distributions) for model parameters and update the priors into posterior 

distributions given the data (e.g., trial-by-trial choices and outcomes) using Bayes’ rule. 

If Bayesian inference is performed individually for each individual i: 
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 P(Θi |Di ) =
P(Di |Θi )P(Θi )

P(Di )
= P(Di |Θi )P(Θi )

P(Di |Θ ′i )P(Θ ′i )dΘi '∫
   

  

Here, Θi  is a set of parameters of a model for individual i (e.g., 

 Θi = α i ,βi ,γ i ,!{ } ), Di  is the data, p(Di |θ )  is the likelihood (of data given a set of 

parameters), P(Di )  is called evidence (of data being generated by this model), andP(Θi )  

and P(Θi |Di )  are prior and posterior distributions of Θi , respectively.  

In HBA, hyper-parameters are introduced on top of individual parameters as 

illustrated in Figure 1A (Gelman, Dunson, & Vehtari, 2013; Kruschke, 2014). If we set 

hyper-parameters as 
 
Φ = µα ,µβ ,µγ ,σα ,σ β ,σγ ,!{ }  

with group-level normal means µ(.)  

and standard deviations σ (.) , the joint posterior distribution P(Θ,Φ |D)  is: 

 

P(Θ,Φ |D) = P(D |Θ,Φ)P(Θ,Φ)
P(D)

∝  P(D |Θ)P(Θ |Φ)P(Φ)  

    

 The hierarchical structure of HBA leads to “shrinkage” effects (Gelman et al., 

2013) in individual estimates. Shrinkage effects refer to, put simply, when each 

individual’s estimates inform the group’s estimates, which in turn inform the estimates of 

all individuals. Consequently, individual parameter estimates tend to be more stable and 

reliable because commonalities among individuals are captured and informed by the 

group tendencies (but see Section 6 for its limitations and potential drawbacks). Such a 

hierarchical approach is particularly useful when the amount of information (e.g., number 

of trials) from a single person is often too small to precisely estimate parameters at the 

individual level. A simulation study (Ahn, Krawitz, Kim, Busemeyer, & Brown, 2011a) 

empirically demonstrated that HBA outperforms individual MLE in parameter recovery 

(see Figure 1B), which suggests that parameter values estimated with HBA might more 

accurately reflect individual differences underlying neurocognitive processes than those 

estimated with individual MLE. Importantly, HBA provides full posterior distributions 
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instead of point estimates, thus it provides rich information about the parameters. HBA 

also makes it straightforward to make group comparisons in a Bayesian fashion (e.g., 

comparing clinical and non-clinical groups, see an example in Section 5.4.4). Recent 

studies in cognitive and decision sciences further confirmed the validity and usefulness of 

HBA and other hierarchical approaches (e.g., Ahn et al., 2014; Guitart-Masip et al., 2012; 

Huys et al., 2011; Katahira, 2016; Lee, 2011; Raja Beharelle, Polania, Hare, & Ruff, 

2015; Shiffrin, Lee, Kim, & Wagenmakers, 2008).  

	

	
Figure 1. (A) A schematic illustration of hierarchical Bayesian analysis (HBA). In this 
exame, individual parameters are assumed to come from a hyper (group) parameter. (B) 
The results of a parameter recovery study (Ahn et al., 2011) between HBA and maximum 
likelihood estimation (MLE). Thirty subjects’ data on the IGT were simulated from true 
parameters (black circles) and parameters were estimated with hierarchical Bayesian 
analysis (blue squares) and individual maximum likelihood estimation (red triangles). 
Performance of the two approaches is shown for the loss aversion parameter (λ).  

	
	

In the hBayesDM package, posterior inference for all models is performed with a 

Markov Chain Monte Carlo (MCMC) sampling scheme using a newly developed 

Hyper-parameter 
(Group distribution) 

Individual 
participants 

Shrinkage 

A

B

Hierarchical Bayesian 
Maximum likelihood 

Actual values 

Simulation study 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2016. ; https://doi.org/10.1101/064287doi: bioRxiv preprint 

https://doi.org/10.1101/064287
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 16 

probabilistic programming language Stan (Carpenter et al., 2016) and its R instantiation 

RStan (http://mc-stan.org/interfaces/rstan). Stan uses a specific MCMC sampler called 

Hamiltonian Monte Carlo (HMC) to perform sampling from the posterior distribution. 

HMC offers more efficient sampling than conventional algorithms implemented in other 

software like BUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000; Lunn, Spiegelhalter, 

Thomas, & Best, 2009)and JAGS (Plummer, 2003). Moreover, HMC works well even for 

complex models with high-dimensional model structures and highly correlated model 

parameters. See the Stan reference manual (http://mc-stan.org/documentation/) and 

Kruschke (2014; Chapter 14) for a comprehensive description of HMC and Stan. To learn 

more about the basic foundations of MCMC, see Krushcke (2014; Chapter 7). 

 

4. Performing hierarchical Bayesian analysis with Stan 

To use the hBayesDM package, users do not need to know how to program in 

Stan. However, for those interested in understanding our models and Stan in general, we 

briefly introduce the general structure of model specification in Stan, followed by a 

detailed hierarchical parameter declaration and optimizing approaches that are utilized in 

hBayesDM. Lastly, we describe how we calculate log likelihood and model-fits inside 

Stan models.  

 

4.1. General structure of Stan model specification  

Many useful features of BUGS were incorporated into Stan’s design; thus, Stan is 

similar to BUGS (or JAGS) and users familiar with BUGS would find Stan relatively 

easy to use (see Stan reference manual, Appendix B: http://mc-stan.org/documentation/). 

There are six model blocks in the general structure of Stan model specification, as listed 

below. Note that Stan implements sequential execution in its model specification unlike 

BUGS and JAGS where the order of code does not affect a model’s execution:  

	
data	{	
...	read	in	external	data...	
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}	
transformed	data	{	
...	pre-processing	of	data	...	
}	
parameters	{	
...	parameters	to	be	sampled	by	HMC	...	
}	
transformed	parameters	{	
...	pre-processing	of	parameters	...	
}	
model	{	
...	statistical/cognitive	model	...	
}	
generated	quantities	{	
...	post-processing	of	the	model	...	
}	

 
Note that the data, parameters and model blocks are mandatory in Stan, whereas 

transformed data, transformed parameters and generated quantities blocks are optional. 

Nonetheless, we typically use all these optional blocks in hBayesDM for different 

purposes: (1) We use the transformed data block to maintain a concise programming style 

and assign initial values. (2) We implement non-centered parameterization (a.k.a., Matt 

Trick) in the transformed parameters block to optimize sampling and reduce the 

autocorrelation between group-level parameters in our hierarchical models. Details will 

be explained in the optimizing section of the tutorial (Section 4.3). (3) We include the 

generated quantities section to explicitly calculate log-likelihood of the corresponding 

model and compute out-of-sample prediction accuracy (see Section 4.4) for model 

comparison.  

 

4.2. Hierarchical parameter declaration in Stan  

When declaring hierarchical parameters in hBayesDM with Stan, we assume that 

individual parameters are drawn from group-level normal distributions. Normal and half-

Cauchy distributions are used for the priors of the group-level normal means (µ(.) ) and 

standard deviations (σ (.) ), respectively. We employ weakly informative priors (Gelman et 

al., 2013) so that those priors will not bias the posterior distribution when sample sizes 
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are small. According to the range of parameters of interest, we introduce four ways of 

declaring hierarchical parameters: unbounded parameters, positive parameters, 

parameters bounded between 0 and 1, and parameters bounded between 0 and an upper 

limit U. 

 

For unbounded parameters (say ξ  for a general individual parameter for 

illustration purposes), we declare: 

 

µξ ~ Normal(0, 1)  

σξ ~ Cauchy(0, 5)  

 

 

where µξ  (group mean parameter) is drawn from a unit normal distribution, σξ  (group 

standard deviation parameter) is drawn from a positive-half Cauchy distribution, and ξ  is 

distributed as a normal distribution with a mean of µξ  and a standard deviation of σξ .  

 

For positive parameters (e.g., the effective size of reinforcements in the 

orthogonalized GNG task), we apply exponential transformation to constrain an 

unbounded parameter to be greater than 0:  

 

µ ′ξ ~ Normal(0, 1)  

σ ′ξ ~ Cauchy(0, 5)  

ξ ' ~ Normal(µ ′ξ , σ ′ξ )  

ξ = exp( ′ξ )   

 

For parameters that are bounded between 0 and 1 (e.g., learning rate), we use the 

inverse probit transformation (the cumulative distribution function of a unit normal 

distribution). In particular, Stan provides a fast approximation of the inverse probit 

transformation (i.e., Phi_approx function), which we adopted:  

ξ ~ Normal(µξ , σξ )
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µ ′ξ ~ Normal(0, 1)  

σ ′ξ ~ Cauchy(0, 5)  

ξ ' ~ Normal(µ ′ξ , σ ′ξ )  

ξ = Probit−1( ′ξ )   

 

For parameters that are bounded between 0 and an upper limit U (e.g., inverse 

Softmax temperature, loss aversion in the Risk-Aversion task), we simply adapt the 

declaration rule for [0, 1] parameters and multiply it by the upper limit U. Formally, we 

declare: 

 

µ ′ξ ~ Normal(0, 1)  

σ ′ξ ~ Cauchy(0, 5)  

ξ ' ~ Normal(µ ′ξ , σ ′ξ )  

ξ = Probit−1( ′ξ ) ⋅U   

 

As shown above, we do not employ truncated sampling in declaring hierarchical 

parameters because hard constrain (e.g., ξ ~ Normal(0, 1)T[0, U]) may harm the HMC 

sampling algorithm and return poorly converged posterior distributions.  

 

4.3. Optimizing approaches in Stan 

Hierarchical models often suffer from highly correlated group-level parameters in 

posterior distributions, creating challenges in terms of model convergence and estimation 

time (Gelman et al., 2013; Kruschke, 2014). In order to address the challenges, we 

practice reparameterization and vectorization to optimize the model specification in 

hBayesDM. 

A normal(µ, σ) distribution, like other distributions in the location-scale 

distribution family, can be reparameterized to be sampled from a unit normal distribution 
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that is multiplied by the scale parameter σ and then shifted with the location parameter µ. 

Formally,  

 

ξ ~ Normal(µξ , σξ )  

 

is mathematically equivalent to  

 

ξ ' ~ Normal(0, 1)  

 

 

 

Such transformation is referred to as the non-centered parameterization (a.k.a., 

Matt Trick) by the Stan Development Team (2016), and it effectively reduces the 

dependence between µξ , ξ , and σξ  and increases effective sample size. 

 

In addition to reparameterization, we use vectorization to improve MCMC 

sampling. For example, suppose one experiment consists of N participants, then its 

individual level parameter ξ  is an N-dimensional vector. Instead of declaring ξ  as: 

 

 for (n in 1: N) 

 ξ [n] ~ Normal(µξ , σξ ) 

 

we vectorize it as: 

 

 ξ ~ Normal(µξ , σξ )  

 

to make full use of Stan’s vectorization of all sampling statements. As a rule of thumb, 

one may want to use vectorization as long as it is possible. All hBayesDM’s models that 

implement both reparameterization and vectorization can be found under the directory of 

…\R\R-x.x.x\library\hBayesDM\stan, or the path can be retrieved by calling 

ξ = µξ + ξ '⋅σ ξ
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the following R command: file.path(.libPaths(), "hBayesDM", 

"stan"). Those interested in more details of optimizing Stan models can read Stan 

reference manual (http://mc-stan.org/documentation/, “Optimizing Stan Code” Chapter). 

 

4.4. Computing log-likelihood inside Stan models 

The hBayesDM package provides two model performance indices including 

Leave-One-Out Information Criterion (LOOIC) and Widely Applicable Information 

Criterion (WAIC). We follow Vehtari et al. (2016) to compute and monitor Stan’s 

pointwise log-likelihood in the generated quantities block. The generated quantities block 

serves as the post-processing of the model, with its commands being executed only after 

the HMC sampling. Therefore, it does not significantly increase time required for 

Bayesian inference. The generated quantities block is particularly useful when users 

intend to monitor pointwise log-likelihood (Vehtari, Gelman, & Gabry, 2016), reproduce 

predictive values or obtain internal model variables. Practically, we initialize the 

pointwise log-likelihood to be 0 for each participant, then we repeat the same model of 

the ‘model’ block in the generated quantities block, except we replace the sampling 

statement with the explicit computation of pointwise log-likelihood. Please be aware that 

in many RLDM tasks (especially RL tasks), choices on one trial are dependent on those 

on other trials. Therefore, instead of gathering the trial-by-trial log-likelihood, we sum 

them over per participant and obtain the pointwise log-likelihood at the participant level. 

Below is the pseudocode as an example of what is described above: 

	
model	{	
…	
	for	(i	in	1:N)	{	
			for	(t	in	1:T)	{	
				 Choice[i,	t]	~	categorical_logit(ev);	
…	
}	
	
Generated	quantities	{	
…	
	for	(i	in	1:N)	{	
		log_lik[i]=0;	
		for	(t	in	1:T)	{	
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				log_lik[i]=log_lik[i]	+	categorical_logit_lpmf(Choice[i,	t]	|	ev);	
…	
}	
	

Once having the pointwise log-likelihood per participant, it is straightforward to 

compute LOOIC and WAIC (Vehtari et al., 2016). Both LOOIC and WAIC provide the 

estimate of out-of-sample predictive accuracy in a fully Bayesian way, which samples 

new participants from the hierarchical group, generates new data from those new 

participants and evaluates how well a model make predictions on the new data set. What 

makes LOOIC and WAIC more reliable compared to Akaike information criterion (AIC; 

Akaike, 1987; Bozdogan, 1987) and deviance information criterion (DIC; Spiegelhalter, 

Best, Carlin, & van der Linde, 2002) is that both LOOIC and WAIC use the pointwise 

log-likelihood of the full Bayesian posterior distribution, whereas AIC and DIC are based 

only on point estimates to calculate model evidence. We used functions included in the 

loo package (Vehtari et al., 2016) to generate LOOIC and WAIC values. Both LOOIC 

and WAIC are on the information criterion scale; thus lower values of LOOIC or WAIC 

indicate better out-of-sample prediction accuracy of the candidate model. 

 

5. Step-by-step tutorials of the hBayesDM package 

	

5.1. Installing hBayesDM: Prerequisites 

Before installing hBayesDM, it is necessary to have an up to date version of R 

(version 3.2.0 or later is recommended) and RStan on your machine. RStudio 

(www.rstudio.com) is not required but strongly recommended. Typically RStan can be 

installed just by entering the following command into the R console: 

	

install.packages("rstan", dependencies = TRUE)  
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For Windows, it is necessary to install Rtools before installing RStan. Instructions 

for installing Rtools on a Windows machine can be found in this link 

(https://github.com/stan-dev/rstan/wiki/Install-Rtools-for-Windows). 

 

After RStan (and Rtools for Windows users) is installed, it is recommended to test the 

installation before moving on to install hBayesDM. This can be accomplished by trying 

to fit the “Eight Schools” example that is provided on RStan’s Getting Started page 

(https://github.com/stan-dev/rstan/wiki/RStan-Getting-Started). 

 
5.2. Installing hBayesDM 

The hBayesDM package is available on the Comprehensive R Archive Network 

(CRAN). Each software package that is submitted to CRAN undergoes daily checks to 

ensure that the package is functional and without major bugs. CRAN also makes it very 

simple to install a package, so this is the preferred method for installation. To install 

hBayesDM from CRAN, use the following call: 

	

install.packages("hBayesDM", dependencies=TRUE) 

	

5.3. How to use hBayesDM: Navigating 

After hBayesDM has been installed correctly, the package must be loaded into the 

current environment. Users will be able to access all of the functions that are included 

with the package after hBayesDM is loaded. To load hBayesDM, use the following 

command: 

	

library(hBayesDM) 
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After loading the package, users should see a message that displays the version 

number of the current hBayesDM install. For a list of all the models available in the 

package, one can refer to the package help files with the following command:  

	

?hBayesDM 

 

This will bring up a help file that contains a general description of the package along with 

a list of all RLDM tasks and models that can be fit with hBayesDM. One can follow the 

links provided in the help file to find in-depth documentation describing how to fit each 

model. 

 

	

Figure 2. Four steps of doing HBA with the hBayeDM package.  

 

Computational modeling of decision-making tasks with hBayesDM 

■ Raw trial-by-trial data from all subjects 
■ Stick with the reserved column labels 
■ Save it in a *.txt file (Tab Delimited Text) 

■  (Re)direct to your desired working directory 
■ Call model function with default properties 
■ Or with user-specified settings 

output_model1	<-	model_fun1(data,	
								nchain	=	4,	

																niter		=	4000,	...)	
	

subjID	trial		choice	outcome	...	
			01					01							2							1	
			01					02							1						-1	

...	

Fit candidate models 2 Prepare the data 1 

■ Bayesian model comparison methods 
■ Leave-one-out information criterion (LOOIC) 
■ Widely Applicable Information Criterion (WAIC) 

printFit(output_model1,	
									output_model2,	
									output_model3,	...)	
	

Compare models 4 

■ Visualize posterior distributions of parameters 
■ Versatile plot functions 

plot(output_model1)	
plot(output_model1,	type	=	“trace")	
plotHDI(output_model1$parVals$par)	

Plot model parameters  3 
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5.4. How to use hBayesDM: Model Fitting 

The four steps of doing HBA with hBayesDM are illustrated graphically in 

Figure 2. These steps are described in further detail below. To exemplify these steps, 

four models of the orthogonalized GNG task are fit and compared using the hBayesDM 

package.  

 

5.4.1. Prepare the data 

To begin, all subjects’ data (for the current analysis) should be combined into a 

single text (*.txt) file where rows represent trial-by-trial observations and columns 

represent variables of interest. The first row of the text file must contain the column 

headers (names) of the variables of interest. 

Subjects’ data must contain variable headers that are consistent with the column 

names specified in the model help file (see Table 1). For example, in the orthogonalized 

GNG task, there should exist columns labeled: “subjID”, “cue”, “keyPressed”, and 

“outcome”, where subjID is a subject-specific identifier, cue is a nominal integer 

specifying the cue shown on the given trial, keyPressed is a binary value representing 

whether or not a key was (1) or was not (0) pressed on the given trial, and outcome 

represents a positive (1), negative (-1), or neutral (0) outcome on the given trial. The text 

file may also contain other data/column headers, but only the aforementioned variables 

will be used for modeling analysis. All of the above information for each model can be 

found in the package help files, which can be accessed with R’s help command (e.g., for 

orthogonalized GNG model 1:	?gng_m1). Across all of the models implemented in 

hBayesDM, the number of trials within the data file is allowed to vary across subjects, 

but there should exist no N/A data. If some trials contain N/A data (e.g., outcome=NA), 

remove these trials before continuing.	

Sample data can be retrieved from the package folder with the R command shown 

below. Note that the file name of sample (example) data for a given task is 

taskName_exampleData.txt (e.g., dd_exampleData.txt, igt_exampleData.txt, 

gng_exampleData.txt, etc.):  
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dataPath = system.file("extdata/gng_exampleData.txt", 

package="hBayesDM") 

gng_data = read.table(dataPath, header=TRUE) 

 

If data are downloaded from an external source to "/home/user1/Downloads", the user 

may specify the path using a character string like below: 

	

dataPath = "/home/user1/Downloads/gng_exampleData.txt" 

 

5.4.2. Fit candidate models 

Since hBayesDM uses MCMC sampling to generate posterior distributions, there 

are many arguments that may be passed to Stan through the model functions in order to 

fine-tune the sampling behavior. There are also arguments that can be used for user 

convenience. Table 2 shows arguments that are common to all model functions in 

hBayesDM. Note that in the table an asterisk (*) denotes an argument that may 

unpredictably change the computation time and/or sampling behavior of the MCMC 

chains (Homan & Gelman, 2014). For this reason, it is advised that only advanced users 

alter the default values of these arguments.   

Below, the gng_m1 model is fit using the sample data that comes with the 

package. The command indicates that three MCMC chains are to be run and three cores 

are to be used for parallel computing. Note that parallel computing is only useful for 

multiple chains; it is common to use one core per chain to maximize sampling efficiency. 

If "example" is entered as an argument for data, hBayesDM will use the sample data 

for the task. Convenience arguments such as saveDir can be used in order to save the 

resulting model output to a local directory. This is useful for when model fitting is 

expected to take long periods of time and users want to ensure that the data are saved. 

Also, the email argument allows users to be notified by an email message upon the 

completion of model fitting.  
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output1 = gng_m1(data="example", niter=5000, nwarmup=2000, 

nchain=3, ncore=3, saveDir="/data/Models", 

email="email@gmail.com") 

 

A model function has default values for all arguments except for data, so the above 

command is equivalent (aside from saveDir and email arguments) to the more 

concise call below: 

	

output1 = gng_m1("example", nchain=3, ncore=3) 

 

If the data argument is left blank, a file browser window will appear, allowing 

the user to manually select the text file with their file browser. The default input 

arguments for each model were selected based on our experience with the sampling 

behavior of each model with respect to the data we have access to. For each model being 

fitted, niter and nwarmup values (and control parameters for advanced users) might 

need to be experimented with to ensure that convergence to target posterior distributions 

is being reached. Later sections will discuss convergence in more detail.  

Executing any model function command in hBayesDM will generate messages for 

the user within the R console, exemplified by Figure 3A. It will take approximately 2 to 

3 minutes (with the gng_m1 model & "example" data) for the model fitting to 

complete. Note that you may get warning messages about “numerical problems” or that 

there are a certain number of “divergent transitions after warm-up”. When we check our 

models with example datasets, warning messages appear mostly at the beginning of the 

warm-up period, and there are very few divergent transitions after warm-up. In such 

cases, the warnings can be ignored. For a technical description of these (and other) 

sampling issues, see Appendix D of the Stan Reference Manual. When the model fitting 

is completed, the R console will print the message in Figure 3B.	The output data will be 

stored in	output1, a class hBayesDM object containing a list with 6 following 

elements: 
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Figure 3. Panel (A) shows the message displayed in the R console after a model function is 
called. Here, “Details” shows information relevant to both the arguments passed to the function 
and to the data that was specified by the user. The console also shows the progression of the 
MCMC sampling. As shown in Panel (B), upon the completion of model fitting, a message is 
presented to the user. Panel (C) and (D) show that users can retrieve the summary statistics of 
individual model parameters and Stan model fits (the Stan fit object stored as output1). 
 

1. model:  
Name of the fitted model (i.e., output1$model is "gng_m1") 

2. allIndPars:  

Details: 
 # of chains                   =  3  
 # of cores used               =  3  
 # of MCMC samples (per chain) =  5000  
 # of burn-in samples          =  2000  
 # of subjects                 =  10  
 # of (max) trials per subject =  240  
 
************************************ 
** Building a model. Please wait. ** 
************************************ 
starting worker pid=75130 on localhost:11950 at 08:25:48.905 
starting worker pid=75138 on localhost:11950 at 08:25:49.101 
 
SAMPLING FOR MODEL 'gng_m1' NOW (CHAIN 1). 
 
Chain 1, Iteration:    1 / 5000 [  0%]  (Warmup) 
SAMPLING FOR MODEL 'gng_m1' NOW (CHAIN 2). 
... 
 
************************************ 
**** Model fitting is complete! **** 
************************************ 

R> output1$allIndPars 
           xi        ep      rho subjID 
1  0.03688558 0.1397615 5.902901      1 
2  0.02934812 0.1653435 6.066120      2 
3  0.04467025 0.1268796 5.898099      3 
4  0.02103926 0.1499842 6.185020      4 
5  0.02620808 0.1498962 6.081908      5 
... 
 
R> output1$fit 
Inference for Stan model: gng_m1. 
3 chains, each with iter=5000; warmup=2000; thin=1;  
post-warmup draws per chain=3000, total post-warmup draws=9000. 
 
           mean se_mean   sd    2.5%     25%     50%     75%   97.5% n_eff Rhat 
mu_xi      0.03    0.00 0.02    0.00    0.02    0.03    0.05    0.08  2316 1.00 
mu_ep      0.15    0.00 0.02    0.11    0.13    0.15    0.16    0.19  4402 1.00 
mu_rho     5.97    0.01 0.72    4.76    5.45    5.89    6.40    7.61  3821 1.00 
sigma[1]   0.54    0.06 1.02    0.02    0.18    0.35    0.61    1.99   318 1.01 
sigma[2]   0.12    0.00 0.08    0.01    0.05    0.10    0.16    0.31  2620 1.00 
sigma[3]   0.12    0.00 0.09    0.01    0.05    0.10    0.16    0.33  2402 1.00 
...  
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D	
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Summary of individual subjects’ parameters (default: posterior mean values of 
individual parameters). Users can also choose to use posterior median or mode in 
a model function command (e.g., indPars="mode")). See Figure 3C to view 
the values of allIndPars for gng_m1 printed to the R console. 

3. parVals:  
Posterior MCMC samples of all parameters. Note that hyper (group) posterior 
mean parameters are indicated by mu_PARAMETER (e.g., mu_xi, mu_ep, 
mu_rho). These values are extracted from fit with RStan’s 
extract()function. 

4. fit:  
An rstan object that is the output of RStan’s stan() function. If users would 
like to use Rstan commands, they should be performed on this object. See Figure 
3D for a summary of fit printed to the R console. 

5. rawdata:  
Raw trial-by-trial data used for HBA. Raw data are provided in the output to 
allow users to easily access data and compare trial-by-trial model-based 
regressors (e.g., prediction errors) with choice data.  

6. modelRegressor (optional):  
Trial-by-trial model-based regressor such as prediction errors, the value of the 
chosen option, etc. For each model, we pre-selected appropriate model-based 
regressors. Users can refer to the package help files for the details. Currently 
(version 2.3.0), this feature is available only for the orthogonalized GNG task.  

 
5.4.3. Plot model parameters 

It is important to both visually and quantitatively diagnose MCMC performance 

(i.e., visually check whether MCMC samples are well mixed and converged to stationary 

distributions). For the visual diagnostics of hyper (group) parameters, users can call 

plot.hBayesDM() or just plot(), which searches for an extension function that 

contains the class name. The class of any hBayesDM output is hBayesDM. For a 

quantitative check on convergence, the Gelman-Rubin convergence diagnostic (Gelman 

& Rubin, 1992) for each parameter is computed by RStan and stored in the fit element 

of the hBayesDM model output. To see the Gelman-Rubin values, refer to Figure 3D. 

Here, R̂  (Rhat) is the Gelman-Rubin index used to assess the convergence of the 

MCMC samples. R̂  values close to 1.00 would indicate that the MCMC chains are 

converged to stationary target distributions. For all models included in hBayesDM, R̂  

values are 1.00 for most parameters or at most 1.04 when tested on example datasets.  
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Users can also use trace plots to visually check MCMC samples. The command 

shown below (with font size set to 11) shows how to use the plot() command to create 

trace plots of hyper (group) parameters (see Figure 4A for an example):  

 

plot(output1, type="trace", fontSize=11) 

 

The trace plots indicate that the MCMC samples are indeed well mixed and converged, 

which is consistent with their R̂  values. Note that the plots in Figure 4A exclude burn-in 

samples. Users can include burn-in (warm-up) MCMC samples to better understand 

sampling behavior if necessary. The following function call produces the plot in Figure 

4B that includes burn-in samples: 

 

plot(output1, type="trace", inc_warmup=T) 

 

Users can also plot the posterior distributions of the hyper (group) parameters with the 

default plot()function by not specifying the type argument. The following function 

call produces the plot in Figure 4C. 

 

plot(output1) 

 

To visualize individual parameters, users can use RStan’s native functions as exemplified 

below. The following call plots each individual’s 𝜖 (learning rate) parameter (see Figure 

4D): 

	

stan_plot(output1$fit, "ep", show_density=T) 
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Figure 4. (A) Traceplots for the group-level (hyper) parameters of the gng_m1 model. The 3 
chains show excellent mixing, suggesting that they have converged to their target distributions.  
(B) The same traceplots as Panel (A), however, these also include the warm-up (burn-in) samples, 
highlighted by the gray background shading. (C) The posterior distributions of the group-level 
(hyper) parameters. (D) Individual-level posterior distributions. The red shading and tailed white 
areas represent the 80% and 95% kernel density estimates, respectively. Note that all plots above 
are generated directly from hBayesDM and RStan functions, with no further modifications.  
	

	

5.4.4. Compare models (and groups)  

To compare multiple models using LOOIC or WAIC values, the first step is to fit 

all models in the same manner as the gng_m1 example above. The following commands 

will fit the rest of the orthogonalized Go/Nogo models available within hBayesDM: 

 

output2 = gng_m2("example", nchain=3, ncore=3) 

output3 = gng_m3("example", nchain=3, ncore=3)         

output4 = gng_m4("example", nchain=3, ncore=3) 

 

A	

B	

C	

D	
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Note that each model should be checked for convergence in the same manner as 

gng_m1. If for any reason a model fails to converge, re-fit the model or exclude the 

model from model comparisons.  

Next, users can assess model fits using the printFit() command, which is a 

convenient way to summarize LOOIC and WAIC of all considered models. Assuming all 

four models’ outputs are named output1 (gng_m1), output2 (gng_m2), output3	

(gng_m3), and output4 (gng_m4), their model fits can be simultaneously summarized 

by the following command, the results of which are illustrated in Figure 5A: 

	

	

Figure 5. (A) An output of the printFit() command, which prints model performance 
indices (LOOIC and WAIC) of competing model(s). The resulting table shows the name 

   Model    LOOIC     WAIC 
1 gng_m1 1589.470 1585.800 
2 gng_m2 1570.582 1566.263 
3 gng_m3 1574.640 1568.421 
4 gng_m4 1544.680 1538.111  
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of each model, followed by their LOOIC and WAIC values. Lower LOOIC and WAIC 
values correspond to better model performance. Here, gng_m4 (highlighted with a 
dashed box) has the lowest values. (B) The result of the plotHDI() function that plots 
the 95% Highest Density Interval (HDI) of the posterior distribution difference between 
two group parameters. The red bar indicates the 95% HDI. The 95% HDI excludes zero, 
which indicates that the two groups are credibly different from one another. 

	

printFit(output1, output2, output3, output4) 

 

The lower LOOIC or WAIC values indicate better model performance; thus, the 

model number 4 has the best LOOIC and WAIC compared to other models. Users 

interested in more detailed information including standard errors and expected log 

pointwise predictive density (elpd) can use the extract_ic() function (e.g., 

extract_ic(output3) ) to extract this information. Note that the extract_ic() 

function can be used only for a single model output, unlike printFit().  

Note that there exist other model comparison methods including the simulation 

method (a.k.a., absolute model performance) (Ahn et al., 2008; 2014; Guitart-Masip et 

al., 2012; Steingroever, Wetzels, & Wagenmakers, 2013), parameter recovery (Ahn et al., 

2014; Ahn, Krawitz, Kim, Busemeyer, & Brown, 2011a), and generalization criterion 

(Ahn et al., 2008; Busemeyer & Wang, 2000). Models that show the best goodness-of-fit 

may not perform well on other indices (e.g., Ahn et al., 2014), so it is recommended that 

researchers use multiple model comparison methods if at all possible. 

 

5.4.5. Group comparisons 

Having selected the best-fit model, users may want to use the model to compare 

the parameter estimates of different populations. With a hierarchical Bayesian 

framework, users can compare model parameters of multiple groups or within-subject 

conditions in fully Bayesian ways (e.g., Ahn et al., 2014; Chan et al., 2014; Fridberg, 

Ahn, Kim, Bishara, & Stout, 2010; Kruschke, 2014; Vassileva et al., 2013). The 

(posterior) distributions show the uncertainty in the estimated parameters and we can use 

the posterior highest density interval (HDI) to summarize the uncertainty. 95% HDI 
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refers to “the span of values that are most credible and cover 95% of the posterior 

distribution” (Kruschke, 2014). To make a decision about whether a particular parameter 

is credibly different between the two groups, we can calculate the difference of the hyper-

distributions across the groups, and then examine if the 95% HDI of the difference 

excludes zero.  

As an example, let’s compare two groups’ model parameters in a Bayesian 

fashion. First, prepare each group’ data as separate text files: 

 

data_group1 = "~/Project_folder/gng_data_group1.txt" 

data_group2 = "~/Project_folder/gng_data_group2.txt" 

 

Here, gng_data_group1.txt and gng_data_group2.txt contain all group 1 

subjects’ and group 2 subjects’ data, respectively. Next, the model is fit in the same 

manner as before on each group separately. We recommend the same number of chains 

and MCMC samples be used for each group: 

 

output_group1 = gng_m4(data_group1, nchain=3, ncore=3) 

output_group2 = gng_m4(data_group2, nchain=3, ncore=3) 

 

Make sure to check if MCMC samples are well mixed and converged to stationary 

distributions (Section 5.4.3). Next, compute the difference between the hyper (group) 

parameters of interest by making a simple subtraction. For example, if we want to 

compare the Pavlovian bias parameter (π ) across the two groups: 

 
diffDist = output_group1$parVals$mu_pi - 

output_group2$parVals$mu_pi 

 

The above command subtracts the mu_pi parameter of group 2 from that of 

group 1. Note that these parameter values are stored within the parVals element of an 
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hBayesDM object. To test if the groups are “credibly” different, users can check if the 

95% HDI excludes 0. The following command will print the 95% HDI to the R console: 

 
HDIofMCMC(diffDist) 

 

Users can also visually inspect 95% HDI with the following command (95% HDI is also 

printed to the R console with the command): 

 
plotHDI(diffDist) 

 

Figure 5B shows the result of the plotHDI() command above. The red bar 

along the bottom of the plot encompasses the 95% HDI. Here, 95% HDI excludes zero, 

so we can conclude that the groups are credibly different with respect to the model 

parameter that is being compared.  

	

5.5. Extracting trial-by-trial regressors for model-based fMRI/EEG analysis 

In model-based fMRI or EEG (Mars et al., 2008; e.g., O'Doherty et al., 2007), 

model-based time series of a latent cognitive process are generated by computational 

models, and then time series data are regressed again fMRI or EEG data. This model-

based neuroimaging approach has been particularly popular in cognitive neuroscience 

(e.g., Ahn, Krawitz, Kim, Busemeyer, & Brown, 2011a; Behrens, Woolrich, Walton, & 

Rushworth, 2007; Daw et al., 2006; Gläscher et al., 2009; Gläscher, Daw, Dayan, & 

Doherty, 2010; Hampton, 2006; Iglesias et al., 2013; Kable & Glimcher, 2007; O'Doherty 

et al., 2007; O'Doherty, Critchley, Deichmann, & Dolan, 2003; Xiang et al., 2013) to 

identify brain regions that presumably implement a cognitive process of interest.  
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Figure 6. Steps of model-based fMRI. With the hBayesDM package, users can perform the steps 
highlighted in blue. Users need to use a neuroimaging tool of their choice (e.g., SPM) to perform 
steps highlighted in red. 

 

The hBayesDM package allows users to extract various model-based regressors 

that can be used for model-based fMRI or EEG analysis (see Figure 6). All model-based 

regressors are contained in the modelRegressor element. Note that in the current 

version (version 2.3.0), only the orthogonalized GNG task provides model-based 

regressors. The hBayesDM package provides the following model-based regressors, and 

users can convolve these trial-by-trial data with a hemodynamic response function with 

their favorite package (e.g., in Statistical Parametric Mapping (SPM; 

http://www.fil.ion.ucl.ac.uk/spm/), users can use the ‘parametric modulation’ command 

with a model-based regressor): 

 

1. Stimulus value: Vt (st )  (stored as SV) 

2. Action value: Qt (go)  (stored as Qgo) and Qt (NoGo)  (stored as Qnogo)   

3. Action weight: Wt (go)  (stored as Wgo) and Wt (NoGo)  (stored as Wnogo)   

 

For example, to retrieve the stimulus value (=Vt (st ) ) of the group 1 in the 

previous example (output is saved as output_group1), type: 

 

Trial-by-trial performance Computational model 

Parameter estimates 

Time courses of mental processes Brain activations 

Brain regions whose activity correlates with mental processes 

Hierarchical Bayesian parameter estimation 

General Linear Modeling 
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sv_all = output_group1$modelRegressor$SV  # store SV in ‘sv_all’ 

 

Here, sv_all is an array (the number of rows = the number of subjects & the 

number of columns = the number of trials). Similarly, to retrieve action weight values (

Wt (go)  and Wt (NoGo) ), type: 

 
wv_all = output_group1$modelRegressor$WV  # store WV in ‘wv_all’ 

 

Users can use these values for each subject to perform model-based fMRI analysis 

with their favorite neuroimaging package (O'Doherty et al., 2007). Once model-based 

regressors are entered as parametric modulators in the GLM, neuroimaging tools 

convolve the regressors with the HRF and construct a GLM. For step-by-step tutorials for 

model-based fMRI, see the following online documents 

(http://www.translationalneuromodeling.org/uploads/Mathys2016_SPMZurich_ModelBa

sedfMRI.pdf; 

http://www.translationalneuromodeling.org/uploads/DiaconescuAndreea_Model-

based_fMRI.pdf; 

http://www.srndna.org/conference2015/files/2014/11/SRNDNA_RL_Modeling_wk

shp2.pdf	

). 

 

6. Future directions 

 In the current version (version 2.3.0), the hBayesDM package implements just 

eight RLDM tasks and their models, but we plan to expand the list of tasks and models, 

so that the hBayesDM can handle an extensive list of RLDM tasks. Latent model-based 

regressors are available only for a single task, but they will be available for all the tasks 

in the hBayesDM package in a future release. The hBayesDM package is useful also for 

experts in computational modeling, not just for beginners – hBayesDM systematically 

implements HBA of various computational models and we find it useful and easier to 

build new models based on the existing framework. We welcome collaboration and 
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others’ contributions to the package. We plan to release a more detailed tutorial on how 

to modify existing codes and build new models based on our framework.  

 In our HBA framework, it is assumed that there is a single hyper-group across all 

subjects. While it allows more precise estimates with a modest number of subjects (Ahn, 

Krawitz, Kim, Busemeyer, & Brown, 2011a; Katahira, 2016), the assumption might be 

invalid with a large (e.g., ~1000) number of subjects (Ahn & Busemeyer, 2016; Ratcliff 

& Childers, 2015). Bayesian hierarchical mixture approaches (Bartlema, Lee, Wetzels, & 

Vanpaemel, 2014) or HBA on subgroups first clustered by behavioral indices (Ahn et al., 

in preparation) might be an alternative solution when we need to fit large number 

samples.  

 In conclusion, the hBayesDM package will allow researchers with minimal 

quantitative background to do cutting-edge hierarchical modeling on a variety of RLDM 

tasks. With hBayesDM, researchers can also easily generate model-based regressors 

required for model-based fMRI/EEG analysis. It is our expectation that the hBayesDM 

package will contribute to the dissemination of computational modeling and 

computational psychiatric research to researchers in various fields including mental 

health.  
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