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A quantitative model to genetically interpret the histology in whole
microscopy slide images is desirable to guide downstream immuno-
histochemistry, genomics, and precision medicine. We constructed
a statistical model that predicts whether or not SPOP is mutated in
prostate cancer, given only the digital whole slide after standard
hematoxylin and eosin [H&E] staining. Using a TCGA cohort of
177 prostate cancer patients where 20 had mutant SPOP, we trained
multiple ensembles of residual networks, accurately distinguishing
SPOP mutant from SPOP non-mutant patients. We further validated
our full metaensemble classifier on an independent test cohort from
MSK-IMPACT of 152 patients where 19 had mutant SPOP. Mutants
and non-mutants were accurately distinguished despite TCGA slides
being frozen sections and MSK-IMPACT slides being formalin-fixed
paraffin-embedded sections. Moreover, we scanned an additional
36 MSK-IMPACT patient having mutant SPOP, trained on this ex-
panded MSK-IMPACT cohort, tested on the TCGA cohort, and again
accurately distinguished mutants from non-mutants using the same
pipeline. Importantly, our method demonstrates tractable deep learn-
ing in this “small data” setting of 20-55 positive examples and quan-
tifies each prediction’s uncertainty with confidence intervals. To our
knowledge, this is the first statistical model to predict a genetic muta-
tion in cancer directly from the patient’s digitized H&E-stained whole
microscope slide.
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G enetic drivers of cancer morphology, such as E-Cadherin
[CDH1] loss promoting lobular rather than ductal phe-
notypes in breast, are well known. TMPRSS2-ERG fusion in
prostate cancer has a number of known morphological traits,
including blue-tinged mucin, cribriform pattern, and macronu-
clei [5]. Computational pathology methods [6] typically predict
clinical or genetic features as a function of histological imagery,
e.g. whole slide images. Our central hypothesis is that the
morphology shown in these whole slide images, having nothing
more than standard hematoxylin and eosin [H&E] staining,
is a function of the underlying genetic drivers. To test this
hypothesis, we gathered a cohort of 499 prostate adenocarci-
noma patients from The Cancer Genome Atlas [TCGA]', 177
of which were suitable for analysis, with 20 of those having mu-
tant SPOP (Figs 1, 2, and 3). We then used ensembles of deep
convolutional neural networks to accurately predict whether or
not SPOP was mutated in the patient, given only the patient’s
whole slide image (Figs 4 and 5 panel A), leveraging spatial
localization of SPOP mutation evidence in the histology im-
agery (Fig 5 panels B and C) for statistically significant SPOP
mutation prediction accuracy when training on TCGA but
testing on the MSK-IMPACT[7] cohort (Fig 6). Further, we
scanned 36 additional SPOP mutant MSK-IMPACT slides,
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https://doi.org/10.1101/064279

A. NS5 "@%%H%ﬁﬁﬁﬁ%ﬁ%ﬁ &

Fig. 1. Panel A: TCGA cohort of frozen section images. Top row shows 20 SPOP
mutants. Bottom rows are 157 SPOP non-mutants, where 25 patients had 2 and 6
patients had 3 acceptable slides available. Panel B: MSK-IMPACT cohort of formalin-
fixed paraffin-embedded sections, providing higher image quality than frozens. Top
row shows 19 SPOP mutants. Middle rows show 36 SPOP mutants scanned as
added training data for TCGA testing. Bottom rows are 133 SPOP non-mutants.

Significance Statement

This is the first automatic pipeline predicting gene mutation
probability in cancer from digitized H&E-stained microscopy
slides. To predict whether or not the speckle-type POZ protein
[SPOP] gene is mutated in prostate cancer, the pipeline (i) iden-
tifies diagnostically salient slide regions, (ii) identifies the salient
region having the dominant tumor, and (iii) trains ensembles of
binary classifiers that together predict a confidence interval of
mutation probability. Through deep learning on small datasets,
this work enables fully-automated histologic diagnoses based
on probabilities of underlying molecular aberrations.
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Fig. 2. SPOP mutations in the Integrated Genomics Viewer [1, 2], with lollipop plot showing mutations in most frequently mutated domain. For two of twenty patients, somatic
SPOP mutations fall outside the MATH domain, responsible for recruiting substrates for ubiquitinylation.

Fig. 3. SPOP tertiary structure with mutated residues labeled, common to one
site. Though most genetic aberrations affect a single Cullin-3 [CUL3] binding pocket
in SPOP, our method’s performance appears robust to two of 20 patients having
genetic changes outside this pocket. Mutation chr17:47677762 R368H in patient
TCGA-EJ-7782-01 not shown and not in site. Deletion chr17:47699392 in patient
TCGA-VP-A878 not shown and not in site. PDB structure 3HQI.

training on this expanded MSK-IMPACT cohort and testing
on the TCGA cohort. Our classifier’s generalization error
bounds (Fig 6 panels A and B), receiver operating charac-
teristic (Fig 6 panels C1 and D1), and independent dataset
performance (Fig 6 panels C2 and D2) support our hypothesis,
in agreement with earlier work suggesting SPOP mutants are
a distinct subtype of prostate cancer [8].

Previously, pathologists described slide image morphologies,
then correlated these to molecular aberrations, e.g. mutations
and copy number alterations [9, 10]. Our deep learning ap-
proach instead learns features from the images without a
pathologist, using one mutation as a class label, and quantifies
prediction uncertainty with confidence intervals [Cls] (Fig 4).

Others used support vector machines to predict molecular
subtypes in a bag-of-features approach over Gabor filters [11].
The authors avoided deep learning due to limited data available.
Gabor filters resemble first layer features in a convolutional
network. A main contribution of ours is using pre-training,
Monte Carlo cross validation, and heterogeneous ensembles
to enable deep learning despite limited data. We believe our
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method’s prediction of a single mutation is more clinically
actionable than predicting broad gene expression subtypes.

Support vector machines, Gaussian mixture modeling, and
principal component analyses have predicted PTEN deletion
and copy number variation in cancer, but relied on fluorescence
in situ hybridization [FISH], a very specific stain [12]. Our
approach uses standard H&E, a non-specific stain that we
believe could be utilized to predict more molecular aberrations
than only the SPOP mutation that is our focus here. However,
our method does not quantify tumor heterogeneity.

Tumor heterogeneity has been analyzed statistically by
other groups [13], as a spatial analysis of cell type entropy
cluster counts in H&E-stained whole slides. A high count,
when combined with genetic mutations such as TP53, im-
proves patient survival prediction. This count is shown to be
independent of underlying genetic characteristics, whereas our
method predicts a genetic characteristic, i.e. SPOP mutation,
from convolutional features of the imaging.

Results

Molecular information as labels of pathology images opens
a new field of molecular pathology. Rather than correlating
or combining genetic and histologic data, we predict a gene
mutation directly from a whole slide image with unbiased
H&E stain. This enables systematic investigation of other
genotype and phenotype relationships on the basis of deep
learning models such as ours, and serves as a new super-
vised learning paradigm for clinically actionable molecular
targets, independent of clinician-supplied labels of the his-
tology. Epigenetic, copy number alteration, gene expression,
and post-translational modification data may all be brought
to bear as labels for histology. Deep learning ensemble ap-
proaches such as ours may then learn to predict these labels
from images. Future work may refine these predictions to
single-cell resolution, combined with single-cell sequencing, im-
munohistochemistry, fluorescence in situ hybridization, mass
cytometry[14], or other technologies to label corresponding
H&E images or regions therein. We suggest focusing on la-
bels that are clinically actionable, such as gains or losses of
function.

SPOP mutation state prediction is learnable from a small set
of whole slides stained with hematoxylin and eosin. Despite
SPOP being one of the most frequently mutated genes in
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Fig. 4. Pipeline: a whole slide image is split into patches (bottom) at low magnification.

Salient patches are identified. The salient patch with the most cancer cells is deemed
the “dominant tumor” patch and further analyzed. At high magnification, a sliding
window within the dominant tumor patch finds the region with maximum abnormal
cells. Deep neural networks then predict SPOP mutation and a confidence interval is
calculated over these predictions.
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prostate adenocarcinomas(8], from a TCGA cohort of 499
patients only 177 passed our quality control and only 20 of
these had SPOP mutation. Meanwhile in the 152-patient
MSK-IMPACT cohort there were only 19 SPOP mutants, and
though we could scan an additional 36 SPOP mutant archived
slides, there are difficulties in practice acquiring large cohorts of
patients with both quality whole slide cancer pathology images
and genetic sequencing represented. This challenge increases
for rare genetic variants. Moreover, different cohorts may have
different slide preparations and appearances, such as TCGA
being frozen sections and MSK-IMPACT being higher quality
formalin-fixed paraffin embedded sections (Fig 1). Nonetheless,
our pipeline (Fig 4) accurately predicts whether or not SPOP
is mutated in the MSK-IMPACT cohort when trained on
the TCGA cohort (Fig 6), and vice versa. We leverage pre-
trained neural networks, Monte Carlo cross validation, class-
balanced stratified sampling, and architecturally heterogeneous
ensembles for deep learning in this “small data” setting of only
20 positive examples, which may remain relevant for rare
variants as more patient histologies and sequences become
available in the future. To our knowledge this is the first time
a mutation in cancer has been predicted through deep learning
on whole slides with standard H&E staining.

SPOP mutation state prediction is accurate and the predic-
tion uncertainty is bounded within a confidence interval. Our
pipeline’s accuracy in SPOP mutation state prediction is statis-
tically significant: (i) within held-out test datasets in TCGA,
(ii) within held-out test datasets in MSK-IMPACT, (iii)from
TCGA against the independent MSK-IMPACT cohort (Fig 6),
and (iv) vice versa. The confidence interval [CI] calculated
using seven ResNet ensembles allows every prediction to be
evaluated statistically: is there significant evidence for SPOP
mutation in the patient, is there significant evidence for SPOP
non-mutation in the patient, or is the patient’s SPOP muta-
tion state inconclusive. Clinicians may choose to follow the
mutation prediction only if the histological imagery provides
acceptably low uncertainty.

SPOP mutation state prediction is fully automated and does
not rely on human interpretation. Unlike Gleason score, which
relies on a clinician’s interpretation of the histology, our
pipeline is fully automated (Fig 4). The pipeline’s input
is the whole digital slide and the output is the SPOP mutation
prediction bounded within 95% and 99% CIs. Moreover, our
pipeline does not require a human to identify a representative
region in the slide, as is done to create tissue microarrays
[TMAs] from slides.

Molecular pathology, such as characterizing histology in
terms of SPOP mutation state, leads directly to precision
medicine. For instance, non-mutant SPOP ubiquitinylates an-
drogen receptor [AR], to mark AR for degradation, but mutant
SPOP does not. Antiandrogen drugs, such as flutamide, pro-
mote degradation of AR to treat the cancer, though mutant
AR confers resistance [15, 16].

SPOP mutation state prediction provides information regard-
ing other molecular states. SPOP mutation is mutually ex-
clusive with TMPRSS2-ERG gene fusion [8], so our SPOP
mutation predictor provides indirect information regarding
the TMPRSS2-ERG state and potentially others.
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Fig. 5. Panel A: ResNet-50 architecture [3], top. Customized Drop50 architecture supports ResNet-50 pretraining, but has additional dropout [4] and fully connected neuron
layers. In practice at least one of these architectures converges to a validation accuracy of 0.6 or more. Convolutional layers “conv”, fully-connected layers “fc”, 50% dropout layer
“drop”. ResNet-50 has 26,560 neurons and Drop50 has 28,574. All seven trials, each trial being a multiarchitectural ensemble of eleven residual networks, is 2,138,630 neurons
total for TCGA training and MSK-IMPACT testing, and 2,132,858 neurons total for MSK-IMPACT training and TCGA testing. Panel B: Region of interest and surrounding
octagon patches, each from an 800x800 pixel [px] patch cropped to 512x512px and scaled to 256x256px. At upper left, histological imagery leads to strong SPOP mutation
predictions shown in red. At lower right, no such evidence exists and SPOP mutation is not predicted here, indicated in heatmaps as white rather than red. For each of the nine
patches, the weighted mean prediction is calculated, shown in the heatmaps as the . column at right. Each classifier in the ensemble makes a prediction for a patch, and
classifiers having greater prediction variance among the nine patches are more weighted in the means for the patches. The metaensemble’s SPOP mutation prediction is
0.6244, with 95% Cl of 0.5218-0.7211 and 99% ClI of 0.4949-0.7489, so this patient’s tumor is predicted to have an SPOP mutation at 95% confidence but not 99% confidence.
Panel C: Another MSK-IMPACT patient shown for the TCGA-trained metaensemble, suggesting there is greater SPOP mutation histological evidence in the lower right. The
metaensemble’s SPOP mutation prediction is 0.5528, with 95% CI of 0.5219-0.5867 and 99% CI of 0.5128-0.5962, so there is 99% confidence of SPOP mutation.

Discussion

We summarize a whole histology slide with a maximally ab-
normal subregion within the dominant tumor, such that the
vast majority of the slide is not used for deep learning. Tis-
sue microarrays take a similar although manual approach, by
using a small representative circle of tissue to characterize a
patient’s cancer. In a sense, our patch extraction, saliency pre-
diction, and TMARKER-based cell counting pipeline stages
together model how a representative patch may be selected
to identify the dominant cancer subtype in the slide overall,
ignoring other regions that may not have the same genetic
drivers. This subregion has many desirable properties: (i) it
is salient at low magnification, i.e. diagnostically relevant to a
pathologist at the microscope [17], (ii) it has the maximum
number of malignant cells at low magnification, which is a
heuristic to locate the dominant tumor, presumably enriched
for cells with driver mutations such as SPOP due to conferred
growth advantages, (iii) it has the maximum number of abnor-
mal cells at high magnification, which is a heuristic to locate
a subregion with most nuanced cellular appearance, presum-
ably concentrated with cellular-level visual features that can
discriminate between cancers driven by SPOP versus other
mutations, and (iv) at 800x800 pixels, it is large enough at
high magnification to capture histology, e.g. gland structure.

A holistic approach that considers for deep learning patches
spatially distributed widely throughout the slide, rather than
only the dominant tumor, could improve performance and pro-
vide further insight. Gleason grading involves such a holistic
approach, identifying first and second most prevalent can-
cer morphologies in a whole slide. We leave for future work
the complexities of multiple representatives per slide, varying
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numbers of representatives per slide, and considering simulta-
neously multiple slides per patient.

We use multiple classifier ensembles to predict the SPOP
mutation state. Though each residual network [3] classifier
tends to predict SPOP mutation probability in a bimodal
distribution, i.e. being either close to 0 or close to 1, averaging
these classifiers within an ensemble provides a uniform distri-
bution representing the SPOP mutation probability (Fig S1).

Deep learning typically requires large sets of training data,
yet we have only 20 patients with SPOP mutation, nearly an
order of magnitude fewer than the 157 patients without somatic
SPOP mutation in the TCGA cohort. Deep learning in small
data is a challenging setting. Our metaensemble approach
confronts this challenge by training many residual networks
[ResNets] on small draws of the data, in equal proportions of
SPOP mutants and SPOP non-mutants, then combining the
ResNets as weak learners, to produce a strong learner ensemble
[18, 19], similar in principle to a random forest ensemble of
decision trees [20]. Empirically, the great depth of ResNets
appears to be important because CaffeNet [21] — a shallower 8-
layer neural network based on AlexNet [22] — so rarely achieved
validation accuracy of 0.6 or more predicting SPOP mutation
state than an ensemble could not be formed.

Pretraining the deep networks is essential in small data
regimes such as ours, and we use the ResNet-50 model pre-
trained on ImageNet [3]. We used both the published ResNet-
50 and our customized ResNet-50 that included an additional
50% dropout [4] layer and a 1024-neuron fully-connected layer.
In practice, for difficult training set draws, at least one of
these architectures would often converge to validation accu-
racy of 0.6 or more. For data augmentation, the 800x800px
images at high magnification are trimmed to the centermost

Schaumberg et al.
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Fig. 6. Stricter Cls reduce false negatives and maintain significant Fisher’'s Exact p-values, but ignore more predictions as inconclusive (panels C2, C3, D2, D3 — and
Alg S3). The metaensemble in panel C1 consists of seven ensembles, with Receiver Operating Characteristics for each shown in Fig S2. The MSK-IMPACT training to
TCGA testing performance (0.01 < p < 0.05, panels D2 and D3) is expected due to MSK-IMPACT fixed sections being higher quality than TCGA frozen sections (Fig 1).
Freezing distorts the slide by effecting watery and fatty tissues differently. Training on distorted data (TCGA) but testing on undistorted data (MSK-IMPACT) appears robust
(0.001 < p < 0.01, panels C2 and C3) as expected, due to the classifiers learning SPOP-discriminative features despite distortions in the data. This is similar in principle to

de-noising autoencoders learning to be robust to noise in their data.

512x512px in 6 degree rotations, scaled to 256x256px, flipped
and unflipped, then randomly cropped to 224x224 within Caffe
[21] for training. Learning rates varied from 0.001 to 0.007,
and momentums from 0.3 to 0.99. Test error tended to be
worse with momentum less than 0.8, though low momentum
allowed convergence for difficult training sets. Learning rates
of 0.001, 0.0015, or 0.002 with momentum of 0.9 was typical.
We used nVidia Titan-X GPUs with 12GB RAM for training.
At 12GB, one GPU could train either ResNet architecture
using a minibatch size of 32 images.

Materials and Methods

Schaumberg et al.

Digital slide acquisition and quality control: TCGA slides
and SPOP mutation state was downloaded from cBioPortal [23].
The MSK-IMPACT cohort was available internally. We discarded
slide regions that were not diagnostically salient [17]. We discarded
slide regions that were (i) over-stained eosin blue, (ii) > 50% ery-
throcytes, (iii) > 50% empty, or (iv) > 50% blurred, by inspection
(Alg S1). Patients having no regions remaining were discarded. A
region is a 800x800 pixel [px] patch at 8 microns per pixel [upp],
~100x magnification.

Region of interest identification: For each region, we used
TMARKER[24] to identify cell nuclei and classify them as benign,
malignant, or unknown — using a corresponding 12750x12750px
patch at level 0 of the slide SVS file (0.25 upp) for the 800x800px
region passing quality control (Fig 4). The 12750x12750px patch
having the most malignant cells in this slide was deemed the “domi-
nant tumor” after searching in a 10px grid for an 800x800px region
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of interest patch (at 4 upp) having maximal abnormal cells. A ma-
lignant cell is 1 abnormal cell while an unknown cell is 0.5 abnormal
cell and 0.5 normal cell. We expected a mutant driver gene, such as
SPOP, to confer a growth advantage evident in the region of interest
and show histological features, such as ducts. By maximizing abnor-
mal cell counts, we intended to find as many discriminative image
textures based on SPOP-mutation-driven cancer cells as possible.

Data augmentation: In an 800x800px region of interest patch,
the centermost 512x512px patch was selected, rotated in six degree
increments for rotational invariance, and scaled to 256x256px. Eight
800x800px patches were also selected in a surrounding octagon
formation around the region of interest, offset 115 and 200px away
from the central region of interest, so two adjacent octagon patches
were 230px away from each other and 230px away from the central
patch (Fig 5 panels B and C). These patches were rotated and
scaled. This integrates a circular area to summarize the slide, akin
to circular tissue cuts for TMA spots.

Deep learning: We used Caffe [21] for deep learning a binary
classification model given the 256x256px patches labeled by SPOP
mutation state. We adapted the ResNet-50 [3] model pre-trained on
ImageNet [25] data by re-initializing the last layer’s weights (Fig 5
panel A), then trained on pathology images. Classifier predictions
followed a sharply bimodal distribution of 0 or 1, but ensemble
predictions followed a uniform distribution suitable for ClIs (Fig S1).

Cross validation: For a trial, a test set of 5 positive and 5
negative [5+/5-] examples was used, where a positive example is a
patient with SPOP mutation (Table S1). If a patient had multiple
slides that passed quality control, at most one was used in the
trial, taken at random. With the test set held out, we ran Monte
Carlo cross validation 13 times, each time (i) drawing without
replacement a training set of 104/10- examples and validation
set of 5+ /5- examples, and (ii) training both a ResNet-50 and
Drop50 classifier (Fig 5 panel A). Our convergence criterion was
classifier validation accuracy >= 0.6 with 10000 — 100000 training
iterations. An ensemble was 11 classifiers, one per Monte Carlo
cross validation, allowing 2 of 13 Monte Carlo cross validation runs
to converge poorly or not at all (Alg S2). Empirically, this class-
balanced stratified-sampling ensemble approach reduces classifier
bias towards the majority class and broadly samples both classes.

Ensemble aggregation: To estimate generalization error, the
11 classifiers in a trial were selected by highest validation accuracy
to form an ensemble, and a metaensemble from 7 independent trial
ensembles. A 95% basic bootstrapped CI? indicated generalization
accuracy from these 7 trials was 0.58-0.86 on TCGA (Fig 6 panel
A) and 0.61-0.83 on MSK-IMPACT (Fig 6 panel B), — both signifi-
cantly better than 0.5 chance. On TCGA, metaensemble AUROC
was 0.74 (p=0.00024), accuracy was 0.70, and Fisher’s Exact Test
p=0.00070 (Fig 6 panel C1). On MSK-IMPACT, metaensemble
AUROC was 0.75 (p=0.00017), accuracy was 0.73, and Fisher’s
Exact Test p=0.00010 (Fig 6 panel D1). These two single-dataset
estimates indicate the method performs significantly better than
chance on unseen data. We formed tuned ensembles (Fig S3), where
11 classifiers in a trial were selected by highest ensemble test accu-
racy, which no longer estimates generalization error but promotes
correct classification on average across ensembled classifiers for each
test example (Fig 6, panels A and B, white versus gray at right).

Independent evaluation: We tested the TCGA-trained meta-
ensemble of 7 tuned 11-classifier ensembles on the MSK-IMPACT
cohort, and vice-versa. Each patient had one slide. For each slide,
a central region of interest and surrounding octagon of patches
were found, for nine patches per slide (Fig 5 panels B and C). We
hypothesized that SPOP mutation leads to 1-2 nine-patch-localized
lesions, meaning adjacent patches have similar classifier-predicted
SPOP mutation probability. Therefore, we first calculated the
SPOP mutation prediction weighted mean over all classifiers in
an ensemble, with classifiers having greater nine-patch prediction
variance being more weighted in the mean. Second, of the nine
patches we formed all possible groups of three adjacent patches
and assigned to a group the minimum SPOP mutation prediction
weighted mean of any patch in the grouped three, then took the
second-greatest group as a classifier’s overall patient cancer SPOP
mutation prediction. Within an ensemble, we weighted a classifier’s

2We used the R boot library for basic bootstrap Cls. Canty and Ripley 2016:
https://cran.r-project.org/web/packages/boot/index.html
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overall prediction by the classifier’s nine-patch mutation predic-
tion variance, because classifiers with high variance (e.g. mostly
mutant, but 1-3 of nine non-mutant) reflect the lesion hypothesis
better than classifiers that predict all non-mutant (0) or all mutant
(1). Thus on MSK-IMPACT, the TCGA metaensemble assigned
stochastically greater scores to mutants than non-mutants (AU-
ROC 0.86) and accurately distinguished mutants from non-mutants
(Fisher’s Exact p=0.00379) (Fig 6 panel C2). Moreover on TCGA,
the MSK-IMPACT metaensemble assigned stochastically greater
scores to mutants than non-mutants (AUROC 0.64) and accurately
distinguished mutants from non-mutants (Fisher’s Exact p=0.03056)
(Fig 6 panel D2).
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Supporting Information

Algorithm S1 Preprocessing: Each patient’s SPOP mutation
state is paired with the whole slide image patch having the max-
imum number of abnormal cells, where abnormal is either cancer
or unknown cell type, rather than healthy cell type. This patch is
taken from the dominant tumor patch. The dominant tumor patch
is both salient and has the maximum number of cancer cells. The
dominant tumor patch is at low magnification, while the abnormal
patch is at high magnification within the dominant.

for all prostate adenocarcinoma patients do
spop < SPOP normal/mutated state as 0/1
slide < whole slide image of cancer biopsy
patches < 75% overlap 800x800px images < slide
salient__patches < predict__saliency(patches)
pri__tumor__patch < max__cancer(salient__patches)
abn__patch < maz_abnormal(pri__tumor__patch)
if abn_ patch < 50% blurred then
if abn_ patch < 50% background then
if abn__patch < 50% erythrocytes then
if abn__patch not eosin overstained then

append (abn__patch, spop) to data__set
return data_set

Algorithm S2 Training: Train a residual network on the abnor-
mal patch representing each patient, labeled with SPOP mutation
state. The final predictor is an ensemble of eleven of such ResNets.
After drawing a test set, training and validation sets are drawn
from the remaining patients in the preprocessed data set (Alg S1).
Within a Monte Carlo cross validation run, training and validation
sets do not overlap. All draws are without replacement. Thirteen
Monte Carlo cross validation runs are attempted in parallel, where
training stops after eleven have validation accuracy of 0.6 or more.
Some runs do not achieve 0.6 after many attempts. See Fig 5 for
architecture details of 50 as “ResNet-50” and drp5 as “Drop50”.
for trial in 0,1,2,3,4 do
test__set < draw(5 SPOP mutants, 5 SPOP normal)
for monte in 1,2,...,13 in parallel do
train__set < draw(10 mutants, 10 normal)
valid__set < draw(5 mutants, 5 normal)
testable. model < null
repeat
r50_model < train_r50(train__set, valid__set)
drp5_model < train__drp5(train__set,valid__set)
r50__acc < accuracy(valid__set, r50_model)
drp5__acc < accuracy(valid__set, drp5_model)
if 750_acc >= 0.6 then
testable. model < r50 model
else if drp5_acc >= 0.6 then
testable__model < drpb__model

until 11 testable models or testable__model # null
append testable__model to testable__models

ensemble < testable__models with ensemble averaging
ensemble__acc <+ accuracy(test__set, ensemble)
append ensemble__acc to ensemble__accs

append ensemble to ensembles
return (ensembles, ensemble__accs)

Schaumberg et al.

Algorithm S3 Prediction: Use each of 7 ensembles to predict
SPOP mutation state, then compute a bootstrapped CI of SPOP
mutation state given these predictions. Each prediction is a prob-
ability of SPOP mutation in the patient. If this probability is
sufficiently high to surpass a defined threshold, the patient’s cancer
is predicted to have an SPOP mutation. Likewise, if this probability
is sufficiently low to fall below a defined threshold, the patient’s
cancer is predicted to not have an SPOP mutation relative patient
germline. Probabilities between these upper and lower thresholds
are inconclusive predictions. Threshold calibration depends both on
the dataset and the cost of false positives/negatives. For instance,
if the CI lower bound is > 0.5, there is significant confidence that
the patient has SPOP mutation. If the CI upper bound is < 0.5,
there is significant confidence that the patient does not have SPOP
mutation. Otherwise, the patient’s SPOP mutation state cannot
be confidently predicted. When training on TCGA and testing on
MSK-IMPACT with a 99% CI (Fig 6 panel C3), the metaensemble
did not commit any false negatives at a 0.5 cutoff, so we calibrated
the cutoff to 0.495 to make one more true positive while still not
committing false negatives. Thus SPOP mutation was predicted
when the lower CI bound was above 0.495, and SPOP was pre-
dicted to not be mutated when the upper CI bound was below
0.495, with the remaining cases being inconclusive (Fig 6 panels C2
and C3). When training on MSK-IMPACT and testing on TCGA,
false positives were an issue, presumably because TCGA frozen
sections are poorer image quality than MSK-IMPACT fixed sections
(Fig 1), so we changed the lower threshold to the mean, converting
many false positives to true negatives. Thus SPOP mutation was
predicted when the lower CI bound was above 0.495, and SPOP
was predicted to not be mutated when the metaensemble mean was
below 0.495 (Fig 6 panels D2 and D3), with the remaining cases
being inconclusive. In this way, the CI bounds or mean served as
thresholds in a calibrated dataset-dependent manner, and we rec-
ommend such calibration when testing on a new dataset. Section 2
defines Pjpqep(X|1o, I1, ..., I8,C1,C2, ..., C11), which calculates an
overall SPOP mutation prediction for the patient given the central
patch, surrounding octagon of patches (Fig 5 panels B and C), and
11 classifiers in an ensemble.

slide < whole slide image of cancer biopsy
patches < 75% overlap 800x800px images < slide
salient__patches < predict__saliency(patches)
pri__tumor__patch < max__cancer(salient__patches)
abn__patch < maz_abnormal(pri__tumor__patch)
for ensemble in ensembles do
Io, I, ..., Is < abn__patch and surrounding octagon
spop__prediction < Pingep(X|lo, I, ..., Is,C1,C2, ...,C11)

append spop__prediction to spop_ predictions
return confidence__interval(spop_predictions)
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1. TCGA dataset learning

See Fig 6 panel C1 for TCGA testing of the TCGA-trained metaen-
semble, with Fig S3 showing TCGA-trained tuned metaensemble
performance. Training was as follows:

1. Prearn(X = Mutant) = Pegrn(X = Normal) = 0.5. Each
classifier is trained on twenty patients, with ten having mutant
SPOP with respect to the patient germline. With this balanced
dataset for training, the probability that a training example is
a mutant is the same as the probability that a training example
is normal, 0.5. This differs from the proportion of patients
having a somatic SPOP mutation, ~10% in the TCGA dataset.
Classifiers that learn on unbalanced datasets may simply learn
to predict the predominant class.

2. Learning Pjeqrn (X|I,C1,Ca, ..., C11) for each patient represen-
tative histology image I and eleven classifiers C. This learns the
probability that a classifier will predict the patient is mutated,
given the representative histology image of the patient. An
ensemble of an infinite number of classifiers would give the ex-
pected value of this probability. We use eleven classifiers. Each
classifier tends to emit either a zero or one, predicting mutant or
normal, i.e. Peqrn(X|I,C) tends to be 0 or 1. We take the en-
semble average to be the probability Pjcq:yn, which tends to be
uniformly distributed rather than bimodal (Fig S1): Pegrn =

Plea'rn(X|17 C1,Cq, ..., Cll) = (1/11) * Zzlil }Dlearn(Xu:Ci)-

3. Training and validation sets consist of a central image patch
and eight surrounding image patches in an octagon formation,
where the distance between the central patch and a surrounding
patch is the same as the distance between any two adjacent
surrounding patches. All patches had the same label, either
1 for patients with somatic SPOP mutation or 0 for paients
without somatic SPOP mutation. This approximately circular
region of nine patches per patient provides more information
for training, more closely resembles the region available from a
circle of tissue in a TMA, and does not sample far away tissues
that may have different molecular drivers of disease.

4. The test set consists of a single patch per patient, without
a surrounding octagon of eight patches. Test accuracy and
squared loss were optimized from the converged trained models
having at least 0.6 validation accuracy, i.e. the “sel” ensembles
in Fig S3. This optimization selected at most one model from
11 of 13 Monte Carlo cross validation runs, where the selection
of 11 models for the ensemble had the highest accuracy and
lowest squared loss on the test set. This (a) ensures on unseen
data the ensemble has both the discriminative power and
diversity to correctly predict Pjeqrn, which is a function of a
single image, and (b) optimizes each ensemble according to a
different test set, with the aim of decorrelating ensembles for
a more general metaensemble, much like how decision trees
should be decorrelated for a more general random forest [20].

2. MSK-IMPACT dataset testing

See Fig 6 panels C2 and C3 for MSK-IMPACT testing of the TCGA-
trained metaensemble. Testing was as follows, and the analogous
procedure holds for TCGA testing of the MSK-IMPACT-trained
metaensemble (Fig 6 panels D2 and D3):

1. 9% Pipgep(X = Mutant) = Pipgep(X = Normal). The ensem-
bles learned on the TCGA dataset are tested on an independent
MSK-IMPACT dataset 152 patients, 19 having somatic SPOP
mutation, so the probability that one of these MSK-IMPACTed
patients is mutated is only ~10%. This is in sharp contrast
to the TCGA training set, where the probabilities of mutant
and non-mutant patients are equal, due to the stratified sam-
pling for training. Because Pjeqrn(X = mutant) = 0.5 is
greater than Pj,qep(X = mutant) ~ 0.1, additional scaling or
stringency is required to avoid false positives from the learned
classifier applied to the independent dataset.

2. Evaluating Pinqep(X|Io, I1,...I8,C1,C2, ...,C11) for each pa-
tient. Each of the eleven classifiers are evaluated on the pa-
tient’s central representative histology image and the octagon
of eight surrounding images (Fig 5 panels B and C), to predict
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SPOP mutation. Because each classifier has been trained on
only 10 mutants and 10 non-mutants, many classifiers will emit
a biased prediction of O for all nine images or 1 for all nine
images, lacking power to discriminate among the nine images.
Empirically however, 1-3 classifiers tend to have greater vari-
ance in their predictions for each of the nine images of the
patient. The classifiers with greater variance tend to correctly
predict SPOP mutation state, presumably because the fea-
tures learned from similar training data can distinguish image
regions showing mutant image textures from regions showing
non-mutant image textures. Such mutant and non-mutant re-
gions should spatially cluster, i.e. a classifier should make the
same SPOP mutation state prediction for adjacent images in a
patient, otherwise the classifier is predicting noise. Moreover,
classifiers with greater variance should agree which patches
have high evidence of mutation and which patches have low
evidence of mutation. Therefore, we take the classifier mean
prediction, for all 11 classifiers in the ensemble, weighting
more highly in this mean the predictions from classifiers with
higher interpatch prediction variance. We define the weighted
ensemble average as Pjnqep(X|I,C1,C2,...,C11) =

(leil Var; * Prearn(X|I,C;))/ Zzli1 Var;, where we define
8 — )2 )2
Vari = (Zj:()(Plearn(X|Ij7 Cz) - /~"i)2) + A=) -g(O b4i)

and p; = (1/11) 2;1:1 Prearn(X|Ik, C;), so that even clas-
sifiers that predict O for all images or 1 for all images still
have some small weight. If, for instance, the mean pre-
dictions (Pipdep(X|I,C1,Ca,...,C11)) suggest SPOP is mu-
tated in each of 4 adjacent images, there is significant ev-
idence for SPOP mutation at @ = 0.05: of 9 images, 16
possibilities exist of 4 adjacent images being SPOP mutants
and the other images being non-mutants, and 2° = 512
mutant/non-mutant configurations possible, so probability of
4 adjacent images is 16/512 = 0.03125 < 0.05 = «. Thus
for added stringency, one may take as the overall corrected
Pjpdep the maximum of all adjacent 4-image cluster mean
prediction minima: Pjpgepa(X|1o,I1,...18,C1,Co,...,C11) =
max(min;ea,p,c,d(Pindep(X |13, C1,Ca, ..., C11))).  However,
due to the noisy nature of the mean predictions from clas-
sifiers trained on little data, a mutant 4-cluster may not occur,
but additional adjacent images indicating mutation may offer
supporting evidence. From the observation that a 4-cluster
is two overlapping 3-clusters, we slightly loosen the correc-
tion stringency to Pjndepspen (X |10, I1,...18,C1,C2,...,C11) =
pen(min(Pingep(X|la, C1, Co, ..., C11),

Pindep(X|Iy, C1, C2, ..., C11), Pindep(X|Ic, C1, Co, ..., C11))),
V{la, Iy, I} € {lo,I1,..., I8} s.t I adjacent Iy, I adjacent I,
where pen(...) returns the second-greatest value, or penulti-
mate. In this way, Pipdep3pen is identical to Pjpgeps for a
4-cluster, but additionally allows partially- or non-overlapping
3-clusters to suggest SPOP mutation. Pj,gep3pen is strictly
greater than or equal to Pjpgepa-

3. Implementation Details

We studied a TCGA cohort of 499 prostate adenocarcinoma patients,
in particular the 177 patients that had both acceptable pathology
images and SPOP mutation state available (Fig 1, Alg S1). SPOP
mutation state was downloaded from cBioPortal [23]. After learning
on TCGA data, we tested on an MSK-IMPACT dataset of 19 SPOP
mutant patients and 119 non-mutant patients.

Microscope slides were scanned at 0.25 + 0.003 microns per
pixel [upp], using an Aperio AT2 scanner. The resulting SVS data
file consists of multiple levels, where level 0 is not downsampled,
level 1 is downsampled by a factor of 4, level 2 by a factor of 16,
and level 3 by a factor of 32. From each level, 800x800px patches
were extracted via the OpenSlide software library [26]. We refer
to level 2 as low magnification and level 0 as high magnification.
Level 2 approximately corresponds to a 10x eyepiece lens and 10x
objective lens at the microscope when the scan is 0.5upp. Our
saliency predictor assumed 0.5upp scans, though the scans here
were 0.25upp, but appeared robust.

Algorithm S1 describes data preprocessing for training. In prior
work, we developed a patch saliency predictor [17]. A TMARKER
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Fig. S1. TCGA classifier and ensemble mutation prediction scores, showing ensemble scores are uniform random variables representing the mutation probability when the
mutant and non-mutant classes are equally sampled, despite the sharply bimodal score distribution of individual classifiers (Table S1). Compared to the bimodal distribution of
single classifiers, this uniform random distribution enables valid confidence interval calculation over ensemble mutation prediction scores and additionally does not suffer
confounds such as p-value inflation, e.g. a disproportionate number of ensemble mutation prediction scores being close to zero. Panel A: Normal distribution of scores with
mean and stdev of TCGA-trained ensemble prediction scores, showing the distribution domain extends beyond the valid [0,1] domain of mutation prediction scores. Panel B:
Uniform distribution of scores, with all scores in the valid [0,1] domain and none outside. Panel C: TCGA-trained ensemble scores, following Uniform distribution (KS Test
p=0.9792). Corresponds to Fig 4 panel A, second from right. Panel D: TCGA-trained tuned ensemble scores, following a Uniform distribution (KS Test p=0.4687). Corresponds
to Fig 4 panel A, far right. The excess of predictions around 0.5 is an artifact of the tuning process, which tends to select classifiers for the ensemble such that the ensemble
prediction is at least 0.5 for mutants and less than 0.5 for non-mutants if the ensemble prediction was incorrect before tuning. See also Fig S3 for tuned ensemble performance.
Panel E: TCGA-trained classifier scores, following sharply bimodal distribution of 0 (non-mutant) or 1 (mutant) predictions. Panel F: TCGA-trained classifiers selected for the
tuned ensemble are also bimodal. Panel G: Q-Q plot showing outliers, indicating TCGA-trained ensemble scores do closely follow a Normal distribution. Panel H: Q-Q plot
showing close linear relationship, indicating TCGA-trained ensemble scores follow a Uniform distribution. Panel I: Q-Q plot showing oultliers, indicating TCGA-trained tuned
ensemble scores do not closely follow a Normal distribution. Panel J: Q-Q plot showing close linear relationship, indicating TCGA-trained tuned ensemble scores follow a
Uniform distribution.

classifier was trained to determine cell types [24]. We define the 2, and 3 used two Drop50 learners and nine ResNet-50 classifiers (Fig
dominant tumor patch as having the maximum number of cancer 5, Table S1). Trial 1 had six and five, respectively. Trial 4 had three
cells of all 800x800px salient patches at low magnification. Within ~ and eight. Trials 1 and 4 had the worst performance by AUROC
the 800x800px dominant tumor patch, we select an 800x800px patch  (Fig 6), both had at least one ResNet-50 predictor with 0.3 or worse
at high magnification having the maximum number of abnormal  test set accuracy (Table S1)), and both had more than two Drop50
cells. Malignant cells count 1 towards the maximum abnormal cell  learners in the final ensemble for the trial. For challenging draws
count, unknown cells count 0.5, and healthy cells count 0. The of training, validation, and test sets, Drop50 learners may slightly
dominant tumor is explored in increments of 10 pixels, until the  outperform ResNet-50 learners, though generalization accuracy may
bounding box with the maximum number of abnormal cells is found.  remain low due to the clustering of the data in the draws and limited
Whereas our saliency predictor operated on low-power tissue-level =~ sample sizes.

details of a patch, our SPOP predictor operates on high-power
cell-level details of a patch. A patient is discarded from the study if
the abnormal patch over-stained eosin blue, or is > 50% blurred, or
is > 50% background, or is > 50% blood — as determined by visual
inspection.

Algorithm S2 describes the neural network ensemble for training.
This procedure allows learning to occur despite a mere 20 patients
having an SPOP mutation, compared to 157 not having an SPOP
mutation. Additionally, having 5 ensembles — each trial yielding one
ensemble of 11 ResNets — allows a CI in predicted SPOP mutation
state to be calculated for both the generalization error estimate
during training and any future patient (Algorithm S3). Moreover, There is remarkable variability in test accuracy among the
such a large number of ResNets can fully sample the SPOP non-  testable models from each Monte Carlo cross validation run (Table
mutant patients, while each ResNet is still trained with an equal S1). If the test set is drawn from approximately the same distri-
proportion of SPOP mutants and non-mutants. We use two neural  bution as the validation set, where ResNet validation accuracy is
network architectures, both the published ResNet-50 architecture .6+ and ResNets are uncorrelated, then we can expect 6 of the
(r50 in Alg S2) and our custom ResNet-50 with a 50% dropout [4] 11 ResNets (6/11 < 0.6) in an ensemble to correctly predict SPOP
layer with an additional 1024 fully-connected layer as the top layer  mutation state on average. In this way the ensemble is a strong
(drp5 in 52, and shown as Drop50 in Fig 5). In practice, at least one  Jearner based on ResNet weak learners [18, 19]. Through ensemble
architecture tended to have validation accuracy > 0.6. Architecture  averaging, the mean SPOP mutation probability is computed over

diversity may increase intra-ensemble ResNet variance, and the ]l 11 constituent ResNets, to provide the final probability from the
decorrelation in errors should average out in the ensemble. Trials 0,  epsemble.

ResNets (both ResNet-50 and Drop50 architectures) were trained
on 10 mutant and 10 non-mutant patients, so with data augmen-
tation each ResNet was trained on 21600 images total. For each
training set, a validation set of 5 mutant and 5 non-mutant patients
was used and did not overlap with the training set, so with data
augmentation each ResNet was validated against 10800 images. The
test set for an ensemble consistent of 5 mutant and 5 non-mutant
patients which were not augmented and did not overlap with any
training or validation set for any classifier in the ensemble, so each
ensemble was tested against 10 images.
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A. s 1B. - Ic. s @0.5 cutoff:
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os2

B. AUROC=0.52 p=0.45841
F & @0.5 cutoff:

TP=3 FN=2 FP=2 TN=3
| ; Fisher's Exact p=0.39683

True positive rate
00 02 04 06 08 1.0
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Fig. S2. Ensemble performance, for comparison to ensemble performance in Fig 6 panel C1. Classifiers in ensemble selected by highest validation accuracy. This estimates
performance on unseen data. Performance for the classifiers instead selected by highest test set accuracy is shown in Fig S3.
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Fig. S3. Tuned ensemble performance, for comparison to ensemble performance in Fig 6 panel C. The tuned ensembles are used for prediction on the independent
MSK-IMPACT cohort (Fig 6 panels C2 and C3). Tuning provides limited additional training for each ensemble via model selection on the corresponding TCGA test set. Tuned
ensemble mutation prediction distributions shown in Fig S1.
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Table S1. TCGA test set images and accuracies, with prediction errors from single residual networks highlighted in red and prediction errors
from residual network ensembles highlighted in magenta. New 20-patient training and 10-patient validation sets are drawn for each Monte
Carlo cross validation run against the trial’s 10-patient test set. The far right column is used to calculate the mean classifier prediction, which
is used as the trial’s ensemble prediction. The Receiver Operating Characteristic of these ensembles in shown in Fig S2. The seven ensemble
predictions are used to calculate a confidence interval of generalization accuracy, shown in Fig 4 panel A second from right in gray and red.
Individual classifier predictions follow a sharply bimodal distribution of 0 (non-mutant) or 1 (mutant), while the ensemble predictions follow a
uniform random distribution (Fig S1). Table S1 is continued in Table S2, showing the final two enembles in the seven ensemble metaensemble
trained on TCGA data.

Trial0 Test # : SPOP Monte1Monte2Monte3Monte4Monte5 Monte6 Monte7 Monte8 Monte9Monte10Monte11  Mean
: 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9988 0.0000 0.0000 0.9987 0.1816
:11.0000 1.0000 1.0000 0.8637 0.0613 1.0000 0.1741 0.1386 1.0000 1.0000 0.9647 0.7457
: 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 1.0000 0.0000 0.9892 0.0000 0.1808
:1.0.3284 0.0000 0.0000 0.7208 1.0000 1.0000 1.0000 1.0000 1.0000 0.9691 1.0000 0.7289
: 0 1.0000 0.0006 0.0001 0.0020 1.0000 1.0000 1.0000 1.0000 0.9845 0.0001 0.0114 0.5453
:1.0.0124 1.0000 0.9970 0.2412 0.9999 0.9982 0.0000 0.0001 0.0017 0.0000 0.9990 0.4772
: 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0750 0.0000 0.9931 0.0001 0.0000 0.0000 0.0971
11 0.1069 1.0000 0.9992 0.8635 0.0054 1.0000 0.9991 1.0000 0.6994 0.9997 0.0036 0.6979
10 0.9990 0.0156 0.9989 0.0005 0.9978 0.9844 1.0000 0.1079 0.4288 0.0000 0.0000 0.5030
:1.0.0013 0.2339 0.9962 0.0001 0.9978 0.0000 1.0000 1.0000 0.8206 0.9975 0.0197 0.5516

—_

O W oo NO O~ WN

—_

Trial1 Test # : SPOP Monte1Monte2Monte3 Monte4Monte5 Monte6 Monte7 Monte8 Monte9Monte10Monte11  Mean

10 0.1674 0.0007 0.0041 0.0005 0.6145 0.0001 0.0002 0.0016 0.3730 0.9999 0.0000 0.1813

1@%}32 11 0.9580 1.0000 1.0000 1.0000 1.0000 1.0000 0.9973 1.0000 1.0000 1.0000 1.0000 0.9542

: 0 0.0839 0.0000 0.0001 0.0000 0.0000 0.0048 0.0000 0.0022 0.0000 1.0000 0.0000 0.0916

w,@&4 11 0.0845 0.0000 0.0000 0.0000 0.0008 0.0000 0.0000 0.0114 0.0000 1.0000 0.0000 0.0920

g’(; E ,_2{6 1 0 0.6265 0.9999 1.0000 0.9998 0.9747 0.9933 0.0001 1.0000 0.0000 0.3829 0.1641 0.5925

K

o o

-

:1.0.4271 0.1278 1.0000 0.0008 0.0010 0.0000 0.0000 1.0000 0.8001 1.0000 0.0003 0.3750
: 0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
:1.0.4438 0.0000 1.0000 0.0002 0.4147 0.0000 0.9095 0.0011 1.0000 1.0000 0.0000 0.3932
1 0 0.4236 0.0000 0.3012 0.0004 1.0000 0.9998 0.0000 0.0001 0.8132 1.0000 0.0000 0.4621
:10.8278 0.9999 1.0000 1.0000 1.0000 0.9312 1.0000 1.0000 0.9999 0.9729 1.0000 0.9030

2
3
4
5
6
7
8
9
10

Trial2 Test # : SPOP Monte1Monte2Monte3 Monte4Monte5 Monte6 Monte7 Monte8 Monte9Monte10Monte11  Mean

W

1:00.0744 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0001 0.0000 0.0000 0.0077 0.0075
:1.0.9993 0.0022 0.9999 0.1242 1.0000 0.0000 0.0412 1.0000 0.9674 0.9995 0.9880 0.6474
10 0.2742 0.0000 0.8778 0.0000 1.0000 0.0044 1.0000 0.1288 0.0040 0.0000 0.0000 0.2990
:11.0000 0.9989 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.0008 1.0000 0.9091
: 0 0.0000 0.0057 0.0000 0.0000 0.0000 0.0000 0.0000 0.0019 0.0002 0.0000 0.0000 0.0007
:1.0.9904 0.0003 1.0000 1.0000 1.0000 1.0000 0.9994 1.0000 1.0000 1.0000 1.0000 0.9082
10 0.9971 0.0002 0.0001 0.9961 1.0000 0.0000 0.9309 0.0000 0.0000 0.0019 0.9975 0.4476
:10.9968 0.0001 0.2478 0.0057 1.0000 0.0000 1.0000 0.0037 0.0000 0.9858 0.2014 0.4038
10 0.9628 0.4937 0.3145 0.0126 0.9987 0.6667 0.0002 0.0721 0.0000 0.0000 0.6324 0.3776
:11.0000 0.0000 1.0000 0.7263 1.0000 1.0000 0.9654 1.0000 0.0043 1.0000 0.4465 0.7402

O W oo NO U~ WN

Trial3 Test # : SPOP Monte1Monte2Monte3 Monte4Monte5 Monte6 Monte7 Monte8 Monte9Monte10Monte11  Mean

1:0 0.9820 0.0000 0.0000 0.0000 0.9999 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.2711
:1.0.0703 0.3796 0.0034 1.0000 0.0007 1.0000 1.0000 0.0000 0.9955 0.9872 0.0364 0.4976
10 0.9994 1.0000 0.1613 0.0000 0.9959 0.2808 1.0000 1.0000 0.0010 0.0003 0.0000 0.4944
:1 1.0000 0.0002 1.0000 0.3774 0.9294 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8461
: 0 0.0000 0.0419 0.0016 0.0009 0.0000 1.0000 1.0000 1.0000 0.0003 0.8270 1.0000 0.4429
:11.0000 1.0000 0.0104 1.0000 1.0000 1.0000 1.0000 0.0989 1.0000 1.0000 0.0011 0.7373
1 0 0.0688 0.9645 0.0434 1.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.9813 0.0009 0.3690
:10.9998 1.0000 0.8986 1.0000 1.0000 1.0000 1.0000 0.9981 1.0000 0.0004 0.0000 0.8088
10 0.0002 0.0147 1.0000 0.0000 0.5648 0.0002 0.0000 0.0000 0.0006 0.0000 0.9010 0.2256
:1.0.0000 1.0000 0.0003 0.9888 0.8783 0.0040 1.0000 1.0000 1.0000 0.9989 0.0000 0.6246

O W 0N U~ WN

Trial4 Test #: SPOP Monte1Monte2Monte3Monte4 Monte5 Monte6Monte7 Monte8 Monte9Monte10Monte11  Mean
: 0 1.0000 0.0167 1.0000 0.9963 1.0000 0.9630 0.8542 0.0000 0.0011 0.9922 1.0000 0.7112
1?)3%2

—_

:1.0.0000 0.0001 0.0000 0.0000 0.0086 0.9996 0.0001 0.0073 0.1754 0.0000 0.0001 0.1083
: 0 1.0000 1.0000 1.0000 0.9972 0.0000 1.0000 0.9999 1.0000 1.0000 1.0000 0.0003 0.8179
:1.0.3789 1.0000 0.3241 0.0000 0.9964 1.0000 1.0000 0.9993 1.0000 0.9718 0.0078 0.6980
: 0 0.0000 0.9928 0.9998 0.8345 0.0000 1.0000 0.9999 0.0000 0.9993 1.0000 0.9997 0.7115
:1.0.0039 1.0000 1.0000 0.9746 0.9988 0.9970 0.0001 0.0000 0.0038 1.0000 0.9988 0.6343
: 0 0.0000 0.0065 0.0000 0.1120 0.0000 1.0000 0.9833 1.0000 0.0000 0.0000 0.0057 0.2825
:11.0000 1.0000 1.0000 1.0000 0.9983 1.0000 1.0000 1.0000 0.8101 1.0000 0.9926 0.9819
: 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
:1.0.1585 0.9483 0.2321 0.8237 0.9974 1.0000 1.0000 0.0000 1.0000 0.0134 0.0000 0.5612

O ©W 0o NO O~ WN
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Table S2. Continuation of Table S1, for trials 5 and 6, the final two ensembles in the TCGA-trained metaensemble.

Trial5 Test # : SPOP Monte1Monte2Monte3 Monte4 Monte5Monte6 Monte7 Monte8 Monte9Monte10Monte11  Mean

—_

—_

O W oo NO U~ WN

10 0.0000 0.9732 1.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0000
:1.0.9999 1.0000 1.0000 0.9998 0.0033 1.0000 1.0000 1.0000 1.0000
: 0 0.0000 0.0000 0.0033 0.0000 0.0000 1.0000 0.0000 0.9999 1.0000
:1.0.0000 1.0000 0.9997 0.0068 0.0003 0.0008 0.4298 0.0000 0.0001
10 1.0000 0.0000 0.6263 0.0000 0.0000 0.9763 0.0000 0.0215 0.0002
:11.0000 1.0000 0.9967 0.9997 1.0000 1.0000 0.0000 1.0000 0.6760
: 0 1.0000 1.0000 1.0000 0.9991 1.0000 0.9998 1.0000 0.0624 0.0100
:1.0.0471 1.0000 1.0000 0.0008 0.0001 0.0052 1.0000 1.0000 1.0000
10 0.0442 0.0199 0.0000 0.0000 0.0000 0.0000 0.0000 0.0313 0.0000
:1.0.0000 1.0000 0.4090 1.0000 0.0008 0.0129 0.0013 0.0000 0.0001

0.0000
1.0000
1.0000
0.0000
0.5638
1.0000
1.0000
1.0000
0.0000
0.9782

0.9951 0.2699
1.0000 0.9094
0.0007 0.3640
0.0000 0.2216
0.9029 0.3719
1.0000 0.8793
1.0000 0.8247
0.9977 0.6410
0.7992 0.0813
1.0000 0.4002

Trialé Test # : SPOP Monte1Monte2Monte3 Monte4 Monte5Monte6 Monte7 Monte8 Monte9Monte10Monte11  Mean

1

O O 0N U~ WN

: 0 0.0000 0.0755 0.0001 0.0001 0.0000 0.0002 0.9998 0.0000 0.0000
:1 1.0000 0.9999 0.0736 0.0494 0.0039 0.9867 1.0000 0.0003 0.9948
: 0 1.0000 1.0000 1.0000 1.0000 0.9729 1.0000 1.0000 1.0000 0.2159
©10.8195 0.0009 0.2068 0.9985 0.0008 1.0000 1.0000 0.9998 0.9972
: 0 1.0000 1.0000 0.0000 1.0000 0.8761 1.0000 0.0061 0.0006 0.0000
:1.1.0000 1.0000 0.9995 1.0000 0.0000 1.0000 0.9854 1.0000 1.0000
: 0 0.0000 0.0000 1.0000 0.3800 0.0000 0.0041 0.0000 0.0012 0.0000
:1.0.0000 0.0179 0.9757 0.9564 0.0000 1.0000 0.0010 0.4151 1.0000
10 0.9971 0.2266 0.0038 0.4729 0.0000 1.0000 1.0000 0.1839 1.0000
:1.0.0000 0.0000 0.9995 0.0000 0.0000 0.0000 0.0103 0.0150 0.9993

0.0000
0.1567
1.0000
0.9983
0.9992
1.0000
0.0000
0.0003
0.9996
0.0000

0.0000 0.0978
0.0000 0.4787
1.0000 0.9263
0.9961 0.7289
0.9335 0.6196
1.0000 0.9077
0.0000 0.1259
0.0004 0.3970
0.0002 0.5349
0.9712 0.2723

https://doi.org/10.1101/064279

Schaumberg et al.


https://doi.org/10.1101/064279
https://doi.org/10.1101/064279
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Materials and Methods
	ACKNOWLEDGMENTS
	TCGA dataset learning
	MSK-IMPACT dataset testing
	Implementation Details


