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Abstract6

Here we address an important issue that has been embedded within the neuroimaging community for a7

long time: the absence of effect estimates in results reporting in the literature. The statistic value itself, as8

a dimensionless measure, does not provide information on the biophysical interpretation of a study, and it9

certainly does not represent the whole picture of a study. Unfortunately, in contrast to standard practice in10

most scientific fields, effect (or amplitude) estimates are usually not provided in most results reporting in the11

current neuroimaging publications and presentations. Possible reasons underlying this general trend include:12

1) lack of general awareness, 2) software limitations, 3) inaccurate estimation of the BOLD response, and 4)13

poor modeling due to our relatively limited understanding of FMRI signal components. However, as we discuss14

here, such reporting damages the reliability and interpretability of the scientific findings themselves, and there15

is in fact no overwhelming reason for such a practice to persist. In order to promote meaningful interpretation,16

cross validation, reproducibility, meta and power analyses in neuroimaging, we strongly suggest that, as part of17

good scientific practice, effect estimates should be reported together with their corresponding statistic values.18

We provide several easily adaptable recommendations for facilitating this process.19

Introduction20

Just as cartography requires a balance to be struck between the loss of important detail and the exactitude21

of a map that has “the scale of a mile to the mile” (Carroll, 1889), so too science rquires careful extraction and22

summarization following an experiment. In other words, to present concisely the important components of the23

data and analyses, an investigator reports the experiment and makes a generalized conclusion based on some24

supporting evidence: a small condensed set of numbers. The crucial question is: how much or to which extent25
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should the investigator compress the information without sacrificing too much? There are arbitrary choices26

that have to be made, but there are some definite thresholds under which loss of information is too great for27

optimal utility.28

For example, in a typical statistical analysis, two quantitative results are produced for each effect of interest:29

the estimation for the amplitude of the effect itself (e.g., a � value from regression analysis or GLM) and the30

associated statistic (e.g., t or z). The former provides the magnitude of a physical measurement, which is31

the essence of scientific investigation, while the latter offers statistical substantiation for the effect estimate in32

the form of a significance level (or confidence interval, the implied range that may contain the effect estimate33

with a certain likelihood). While the relationship between the two quantitates is tight, each conveys distinct34

information about the result of the experiment; in most scientific disciplines, it is considered unacceptable if35

only significance is reported (Sullivan and Feinn, 2012): the statistic value serves as auxiliary evidence for the36

existence of the targeted effect, and it is the effect estimate itself that is the center of investigation as the37

physical property of interest. For example, suppose that physicists would like to validate the predictions of38

the general relativity (Einstein, 1915) by investigating the gravitational waves from the merger of two black39

holes. It would be hard to imagine that they would only report a statistical value or the significance of their40

measurement (e.g., a chance of 1 event per 203,000 years, or a significance level of 3.4 ⇥ 10�7), but that they41

would not reveal the strength of the signal they have detected (a peak gravitational-wave strain of 1.0⇥ 10�2142

in the frequency range of 35 to 250 Hz) (Abbott et al., 2016).43

However, within the field of neuroimaging, it has remained the predominantly common practice to report44

only statistical mapping tests in publications and presentations, a custom which has been largely (and per-45

plexingly) immune to critical scrutiny. For instance, one typically sees brain results provided as blobs whose46

color spectrum corresponds to t- or z-values (or occasionally to p-values), and most of the time the underlying47

degrees of freedom are left out, rendering the statistics even harder to interpret. Similarly, in tabulated results48

for brain regions, standard reports usually contain the coordinates and statistic value at a single peak voxel49

(which is itself defined, again, as the maximum of the statistical values, not of the effect estimates, within50

the region), and the effect estimate at such a peak voxel is rarely reported. The same phenomenon commonly51

occurs in reporting results of seed-based correlation analyses for resting-state data, where the brain maps and52

tables usually show the statistic (often z) values instead of and without including inter-regional correlations.53

Recently there have been a number of discussions about the use and misuse of p-values in the scientific54

community (e.g., Wasserstein and Lazar, 2016; Nuzzo, 2014), and others have been more critical of the “cult” or55

“obsession” of statistical significance (e.g., Ziliak and McCloskey, 2009). The editors of the journal, Basic and56

Applied Social Psychology, have gone so far as to take the seemingly extreme step as to no longer accept papers57

with p-values due to the concern of the statistics being used to support lower-quality research (Trafimow, 2014).58

In a sense, our concern here is related, and addressing it would also alleviate many of these other topical issues,59

but the issue is specifically focused on the need for including the effect estimate in neuroimaging studies. To60
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frame the discussion here, we quote the six guiding principles on p-values in a recent statement released by The61

American Statistical Association (ASA) (Wasserstein and Lazar, 2016):62

1. P -values can indicate how incompatible the data are with a specified statistical model.63

2. P -values do not measure the probability that the studied hypothesis is true, or the probability that64

the data were produced by random chance alone.65

3. Scientific conclusions and business or policy decisions should not be based only on whether a p-value66

passes a specific threshold.67

4. Proper inference requires full reporting and transparency.68

5. A p-value, or statistical significance, does not measure the size of an effect or the importance of a69

result.70

6. By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.71

We believe that the neuroimaging field needs to move forward to promote the reportage of the effect estimates72

along with the corresponding statistics. We first discuss the statistical terms in the context of FMRI analyses,73

highlighting specific features related to that field. We then argue that full reporting in FMRI is necessary and74

promotes good scientific practice, clarity, increased reproducibility, cross-study comparability and allows for75

proper meta and power analyses. Finally, we provide several recommendations for researchers and software76

designers to facilitate these “best practices” actions.77

What is the effect estimate in neuroimaging?78

In neuroimaging, the ultimate focus is on the physical evidence for the brain’s neuronal response, which79

evidence is typically embodied in the strength of the FMRI BOLD signal. For task-related experiments, the80

response strength is reflected in the effect estimate (or � value) associated with a task/condition or with a linear81

combination of �’s from multiple tasks, such as the contrast between two tasks. For seed-based correlation82

analyses with resting-state data, time series correlation captures the relationship between a seed and the rest of83

the brain. Similarly, for naturalistic scanning, one measure is the “inter-subject correlation” (ISC) at a region84

that features the synchronization or similarity among subjects (Hasson et al., 2004). Here, we use the term85

“effect estimate” to refer generally to any of these or analogous cases: the estimated response magnitude (e.g., �86

value) of a regression model or GLM, the estimated correlation coefficient in the context of correlation analyses,87

etc.88

We note that in the statistical literature, the phrase “effect size” can typically encompass two distinct89

scenarios: one for describing absolute effect size (the estimated magnitude of an effect under investigation,90

e.g., sample mean or the estimated � in a regression model), and the other for describing standardized effect91
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magnitude (e.g., Cohen’s d), which is typically used when the measurement units have no intrinsic meaning92

(e.g., Likert-type scale adopted in survey research), when a comparison is performed between two different scales93

(e.g., relative effect sizes among different confounders such as age and sex), or when data variability is the focus94

of study (Sullivan and Feinn, 2012). While it is well known that the acquired BOLD signal has only arbitrary95

units, therefore it might seem that the second usage of effect size is a good candidate. However, FMRI data96

are commonly scaled to a more meaningful evaluation in terms of percent signal change (as discussed further97

below). As such, here we use the term “effect estimate” in FMRI to refer to the unit-bearing case of “effect98

sizes” in the context of percent signal change.99

What does a t-statistic value reveal in neuroimaging?100

A t-statistic value for an effect estimate is calculated as the latter divided by its standard error, which101

represents the reliability or accuracy of the effect estimate. Thus, the t-statistic is a mixture of the effect102

estimate and the noise estimate, and there is little reason to think that the noise estimate is directly relevant103

to neuroscience. As a dimensionless measure, the t-statistic is more susceptible to sample size (number of104

trials or subjects), signal-to-noise ratio (SNR), preprocessing steps/methods, experimental designs, unexplained105

confounds, and scanner parameters than the effect estimate itself. Therefore, statistic values only serve the106

purpose of a binary inference of null (e.g., there is no difference between the two conditions) versus alternative107

(e.g., there is difference between the two conditions) hypotheses, and it does not provide any information about108

the specific response magnitude. For example, two voxels (or regions) with the same t-statistic value in the109

brain do not mean the same response amplitude, and vice versa (Fig. 1). That is to say, the t-statistic does110

not carry enough interpretation information for the effect of interest.111

Practical realities/difficulties of FMRI112

There are several features inherent to FMRI acquisition and analysis that present challenges to an investiga-113

tor interpreting and reporting results. At first glance, some of these may seem to explain the present practices114

of reporting only statistic values as results. We describe them briefly here, and then discuss how they actually115

necessitate, rather than discourage, the inclusion of effect estimates in the end.116

Units and scaling117

As noted above, one complication of the FMRI signal is that the numerical value from the scanner does118

not have any specific physical meaning and is essentially arbitrary. As a consequence, the signal value may119

vary across brain regions, sessions, days, subjects, studies, and scanners. To deal with this arbitrariness, a120

normalization step is typically adopted by researchers by scaling the signal so that the relative magnitude of121

the BOLD response is comparable between different contexts. For example, by default in AFNI (Cox, 1996)122
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Figure 1: A statistic value alone does not reveal the relative magnitude for an effect of interest. Specifically, two
identical t-values (here, with 15 degrees of freedom) may have similar (A) or dramatically different (C) effect
estimates. On the other hand, two different t-statistic values may have the same (or opposite) sequence as (or
to) that of the corresponding effect estimates; for instance, a larger t-value could correspond to a larger effect
estimate if the standard error is roughly proportional to the effect estimate (D) or similar or even smaller effect
estimate if the standard error is smaller (B). The numbers inside the parentheses are the degrees of freedom for
the t-statistic, and asterisks indicate orders of magnitude in p-values: ⇤ 0.01  p < 0.05; ⇤ ⇤ p < 0.01. Effects
are scaled units of percent signal change.

the time series is scaled by the mean value at each voxel, so that the effect estimate can be directly interpreted123

as a percent signal change relative to the voxel-wise temporal mean; as a result, effect estimates themselves124

are interpretable, carry real information about the size of the BOLD effect, and are comparable across brain125

regions, conditions, subjects, groups, studies and scanners1.126

One may argue that the voxel-wise baseline, instead of the mean, is a more accurate candidate to serve127

as the scaling factor. However, in FMRI the drift effect (or the presence of low frequency components due to128

scanner drift, shim effects) embedded in the signal complicates the isolation of the “real” baseline value. In129

practice, the fluctuations due to the task effect are very small relative to the absolute values of the signal (e.g.,130

most task effects are around 1% or less relative to the BOLD signal mean), leading to a negligible difference131

when the voxel-wise mean, instead of the “true” but unknown baseline, is used in scaling2. Even if there are132

different preferred mechanisms of scaling, it appears to be a truth universally acknowledged that the BOLD133

1Similarly, “grand mean scaling” is typically performed in FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and SPM
(http://www.fil.ion.ucl.ac.uk/spm/), by dividing the signal by the average value across the brain as well as across time. The
purpose of grand mean scaling is to bring the effect estimates to a similar range so that they are roughly comparable across brain
regions, sessions, days, subjects, studies, and scanners. However, such a scaling method does not exactly lead to the interpretation
of percent signal change because of spatial heterogeneity. A separate toolbox MarsBaR (Brett et al., 2002) is often used to convert
the effect estimates into percentage at the regional level.

2The negligible effect of replacing the true “baseline” value by the voxel-wise mean can be demonstrated by a back-of-the-
envelope calculation. Suppose that the signal intensity at a voxel has a mean value of 2400 for the time series (after slow drift
effects are removed), peak intensity corresponding to a task is 2410, and a “real baseline” value is 2390. The scaled peak value
at the voxel by the mean is 100 ⇥ 2410/2400 ⇡ 100.417, and the scaled baseline value of 100 ⇥ 2390/2400 = 99.583. The percent
signal change for the task relative to the baseline is thus estimated as (100.417 � 99.583)/100 ⇡ 0.834% in the regression model.
Alternatively, if we analyze the data without scaling, the “true” percent signal change of the condition would be calculated as
(2410 � 2390)/2390 ⇡ 0.837%. The ratio of the difference between the two estimates relative to the true effect estimate is
(0.837� 0.834)/0.837 ⇡ 0.358%.
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signal can and should be calibrated through a normalization step, providing a meaningful and comparable134

measure. While there is not a single method for calibrating the effect estimate or signal change to a meaningful135

unit that is uniformly adopted by all researchers, such a difficulty should not be an excuse for not reporting136

the BOLD response.137

Modeling difficulties138

One aspect of FMRI data is that the hemodynamic response (HDR) is captured by a curve with a slow139

upstroke and a sluggish recovery; the curve may also contain an undershoot right after the stimulus onset or at140

the end of the recovery phase (D’Esposito et al., 1999). In addition to the overall amplitude, the response may141

vary across cognitive states, tasks, brain regions, and subjects with respect to response characteristics such as142

rise and fall speed, peak duration, undershoot shape, and overall duration. The nature of the HDR is still not143

fully understood due to the complicated and multifaceted biophysical processes involved.144

As the underlying components comprising the BOLD signal are still poorly understood, the performance145

of the regression model at the individual subject level is often poor. For example, attenuations across trials146

or within each block are usually not considered; the impact of physiological (cardiac and breathing) effects is147

mostly lacking, though it is occasionally modeled (e.g., ANATICOR, Jo et al., 2010). Because of these factors,148

the variance due to poor modeling overwhelms all other sources (e.g., across trials, runs, and sessions) in the149

total data variances (Gonzalez-Castillo et al., 2016); that is, the majority (e.g., 60-80%) of the total variance150

in the data is not properly accounted for in statistical models. There are also strong indications that a large151

portion of BOLD activations are usually unidentified at the individual subject level due to the lack of power152

(Gonzalez-Castillo et al., 2012). The detection failure (false negative rate) at the group level would probably153

be equally high, if not higher. Due to the presence of large variability and unaccounted-for noise, low reliability154

leads to inaccurate estimation of the effect of interest.155

Another modeling difficulty that arises when comparing effect estimates across studies is the dependence of156

the BOLD effect percent signal change on scanning parameters (e.g., B0, TE, slice thickness, etc.). The current157

state of modeling does not make combining/contrasting effect estimates from significantly different types of158

scans practicable. For this reason, it is important to clearly specify the MRI setup used.159

Limitations of statistical significance testing160

Under the methodology of null hypothesis significance testing (NHST), the statistic value is mainly used to161

determine the statistical significance level of an effect estimate so that false positive rate is controlled. Once the162

value surpasses the threshold, the specific value of the statistic is neither as informative nor as important as the163

response amplitude or effect estimate. The current misplaced focus on statistical significance when reporting a164

scientific result (Ziliak and McCloskey, 2009) is equally detrimental as shown by a popular statistical fallacy: If165

the result is not statistically significant, then it proves that no effect or difference exists. As the p-value under166
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a null hypothesis is a conditional probability, it cannot be stated that the probability of obtaining the data167

under the current study given the null is the same as that of the null given the data.168

There is a clear difference between statistical significance and practical significance. The absence (or ig-169

norance) of a real effect estimate in results reporting has prompted the distinction between the two types of170

significance: substantive significance or practical significance in terms of effect magnitude and statistical signif-171

icance in terms of probability threshold (Gelmen and Stern, 2006). For example, it was shown that “emotional172

contagion occurs without direct interaction between people (exposure to a friend expressing an emotion is suf-173

ficient), and in the complete absence of nonverbal cues” through Facebook (Kramer et al., 2013). However,174

it was later pointed out that the effect size measured by Cohen’s d = 0.02 was so small that such a tiny dif-175

ference in emotional contagion is not practically meaningful. In other words, a trivial effect (a tiny difference176

between two groups or conditions, or a negligible correlation) can become statistically significant with enough177

sample size. For example, a drug effect in a clinical trial, even if statistically significant, may not offer much178

practical benefit when the effect is small (e.g., lowering cholesterol level by 2.7 mmol/L). Similar pitfalls have179

been seen in studies which “demonstrated” that beautiful parents have more daughters, and violent men have180

more sons (Gelman and Weakliem, 2009). Importantly, without presenting the effect estimate, not only would181

one be unable to gauge the false negative rate or power of the study, (i.e., the probability of failure or success,182

respectively, to detect the effect), but it would also be impossible to assess two other useful but less known183

errors (Gelman and Tuerlinckx, 2000): type M (tendency to over- or under-estimate the effect magnitude) and184

type S (likelihood of obtaining the incorrect directionality or sign of the effect).185

Activation identification in FMRI data analysis heavily relies on contrasting between conditions; however,186

another subtlety is that the contrast between a significant effect and a nonsignificant one is not necessarily itself187

statistically significant. For example, suppose that, with 16 subjects (and 15 degrees of freedom), positive and188

negative conditions have effect estimates of 1.0 and 0.45 percent signal change, respectively, and both estimates189

have the same standard error of 0.3. Even though the positive condition is statistically significant (t(15) = 3.33,190

two-tailed p = 0.0045) and the negative condition is not (t(15) = 1.5, two-tailed p = 0.15) at 0.05 level, their191

contrast could be statistically insignificant (e.g., t(15) = 1.65, two-tailed p = 0.12) (Fig. 2).192

The classical statistical testing is consistent with the Popperian paradigm in which science advances through193

the proposition and refutation of hypotheses (Popper, 1963). However, the omnipresence of focus on statis-194

tic values alone, while ignoring the effect estimates, unavoidably encourages and facilitates a yes/no binary195

thinking, and has in fact led to the false interpretation that sub-threshold regions have no activation and that196

supra-threshold regions comprise the entire story (Gelman, 2013). In addition, the approach suffers from a “sta-197

tistical significance filter” (Gelman and Weakliem, 2009): results that reach a preset significance level inherently198

overestimate the effect and also tend to go in the wrong direction.199
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Figure 2: A statistically significant (blue) and insignificant (green) effect are shown both in scaled units of
percent signal change. However, their difference might be practically significant but not statistically significant
(yellow). Asterisks indicate orders of magnitude in p-values: ⇤ 0.01  p < 0.05; ⇤ ⇤ p < 0.01.

Why is it crucial to report effect estimates?200

The effect estimate provides a piece of hard, quantitative evidence in an analysis, and it should be reported201

as the main finding of a modeled or measured effect (Sullivan and Feinn, 2012). The corresponding statistic or202

p value usually indicates the reliability or accuracy of the effect estimate, but it cannot replace the information203

content of the effect estimate itself. For this reason, the importance of reporting the specific effect estimate under204

study has been repeatedly emphasized in various fields. For example, one recommendation from the American205

Psychiatric Association (Wilkinson et al., 1999) reads: “Always present effect sizes for primary outcomes...206

If the units of measurement are meaningful on a practical level (e.g., number of cigarettes smoked per day),207

then we usually prefer an unstandardized measure (regression coefficient or mean difference) to a standardized208

measure (r or d).” We enumerate here specific examples and applications of this principle within the FMRI209

context.210

Reproducibility211

Reproducibility is critical for scientific investigations, and it can be quite challenging for FMRI studies, as212

the data typically have low SNR and low reliability for each effect estimate. One should not overemphasize213

the statistical thresholding and lose sight of the scientific context, particularly where the noise is usually much214

stronger than the signal in the data. In recent surveys, about 60% of published experiments failed to survive215

replication in psychology (Baker, 2015) and about 40% in economics (Bohannon, 2016), and the situation with216

neuroimaging is likely not much better (Griffanti et al., 2016).217

In fact, the availability of the effect estimate in the literature becomes pivotal in cross-examining or repro-218

ducing the results across studies. Verification for regional activations based on statistical significance would219

partially serve the purpose, but reproducibility cannot be solely built on statistical values. The notion that220

statistical significance alone does not imply result replicability is nicely captured by Thompson (1999): “it221
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would be the abject height of irony if, out of devotion to replication, we continued to worship at the tabernacle222

of statistical significance testing, and at the same time we declined to (a) formulate our hypotheses by explicit223

consultation of the effect sizes reported in previous studies and (b) explicitly interpret our obtained effect sizes224

in relation to those reported in related previous inquiries.”225

With both the effect estimate and its standard error (or reliability, which is embedded in the t-statistic value,226

for example) available, one can readily compare the effect estimates across conditions, regions, subjects, groups,227

studies, scanners, etc. For example, suppose that a previous study indicated an effect estimate of 0.73% signal228

change with a statistic value of t(16) = 4.12 at a peak voxel (defined by the maximum effect estimate within a229

cluster). In such a case, a researcher would find that having an effect estimate of 0.65% with t(22) = 3.75 in230

her own study would be compatible with the existing result, while an effect estimate of 0.1% with t(22) = 3.35231

would unlikley be. Obviously such comparisons (or reproducibility) would be impossible if only statistic values232

are reported in the literature, as currently prevalent in neuroimaging.233

Furthermore, one can also use effect estimate reporting to easily spot unrealistic results at a region, either in234

one’s own pre-published work or, an unfortunate practical necessity, in an existing research article. For example,235

a region might show up having more than 3% signal change while still exhibiting a reasonable statistical236

significance due to modeling issues, noise, etc. If only statistics were used for thresholding, coloring and237

reporting, then such an artifactual result would likely go undetected by either the authors or, later, other238

readers. Thus, viewing the effect estimates themselves provides an extra layer of safety against false positives,239

increasing reproducibility in reporting.240

Clarity241

It is a common practice in FMRI literature to present brain activation maps that are both thresholded and242

colored by statistic values. However, such presentations entirely ignore the effect estimates, and such coloration243

has been shown to lead to distorted impression of the results in recent surveys (Engel and Burton, 2013). If244

only the significance level of a correlation or BOLD response at a region is given, one would have no idea about245

the strength of the effect or the association, and thus the scientific relevance is missing. In other words, with246

the current practice of reporting statistic values alone, at best the results are ambiguous and at worst they are247

misleading.248

To drive home the point that a statistic or p value is not the whole picture nor as informative as combining249

with the effect estimate, consider the following example. Suppose that at one region the effect estimate is250

0.03% signal change with p = 0.001 while at another region the response is 0.94% with p = 0.053. Is the251

higher statistical significance with the first voxel more worthy of reporting than the second? On the surface,252

the response of 0.03% at the first region occurred with greater confidence while the second region failed to reach253

the arbitrarily designated significance level of 0.05. However, the response magnitude of 0.94% is quite a bit254

stronger and might be more neurologically relevant or important than the statistically significant response of255
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0.03%. Furthermore, the second region might have reached the nominal significance level with a larger number256

of subjects. Looking at this example without the effect estimates, one might easily misinterpret the results.257

Directly relevant to the neuroimaging community is the moral from these examples: without the effect258

estimate, the sole focus on statistical significance often presents a distorted picture. Specifically, the power with259

neuroimaging data is typically low due to the the facts that large parts of the signal that cannot currently be260

accounted for and that there is large variability across subjects. The presence of many false negatives may lead261

to the illusion that a statistically insignificant effect is equivalent to a nonexistent effect, when in some cases262

there are not enough data to discern whether the effect is practically important. In other words, type M errors263

tend to increase, and a distorted interpretation may occur without the presence of effect estimates that may be264

assessed more accurately than the decontextualized statistic values.265

Validation of BOLD response detection power through effect estimates266

Although most research-oriented investigations place a heavily-lopsided emphasis on the false positive rate267

controllability, sensitivity (or power) may also be a primary focus under some circumstances, such as pre-surgical268

detection, where the efficiency is usually less than 10% (Button et al., 2013). Several particular factors may269

contribute to a cluster not being able to achieve the desired significance at the group level under a rigorous270

procedure.271

a) To achieve the desired significance or power at the cluster level (or in the FDR sense), it is usually272

necessary to have a large number of subjects, which most studies lack due to financial and/or time273

costs.274

b) Spatial alignment has multiple steps including cross-TR (“motion correction”), cross-session, cross-275

modality and cross-subject components, increasing the overall chance of misalignment. An erroneous276

or even suboptimal alignment procedure will surely impact the power performance at the group level.277

c) The variation in response magnitude or SNR across regions, as well as the variation of the underlying278

region’s spatial extent, may also lead to different efficiency in activation detection across the brain.279

An intrinsically small response magnitude or small region, such as the amygdala, requires a smaller280

voxel-wise p-values to survive the family-wise error (FWE) or false discovery rate (FDR) correction281

compared to their larger counterparts, and this may not always be realistic to achieve in a study. The282

popular small volume correction (SVC) is offered as a band-aid solution, but is not always rigorous283

or valid, and may become problematic when other regions are of interest at the same time.284

d) If a two-tailed test, when appropriate, is strictly performed instead of two separate one-tailed tests285

as typically practiced in the field, or if FWE/FDR correction is rigorously executed, many studies286

would rightly face the issue of power deficiency.287
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The issue of reporting marginally significant effects is controversial (e.g., Pritschet et al., 2016). Should288

one not report a cluster simply because it cannot pass the rigorous statistical thresholding through FWE/FDR289

control at the present group size? We argue that, even if a cluster fails to survive rigorous correction, it does290

not necessarily mean that the results are not worth reporting, because they may be suggestive and provide some291

benchmark for future confirmation. Statistical inference should not be a binary decision, and the inclusion of292

effect estimates allows for a consistent approach to avoid this and to achieve a balance between false positives293

and false negatives (Lieberman and Cunningham, 2009). Thus we propose a two-tier approach to reporting294

clusters. In addition to the conventional FWE control, we believe that, if the individual voxels within a region295

achieve a basic significance level (e.g., p  0.05) and if the cluster possesses some practically significant spatial296

extent, its reporting is warranted. Nevertheless, the reporting has to be combined with the corresponding effect297

estimate as well as a cautionary statement about the marginality. On the other hand, the activation of a cluster298

may become questionable with an unreasonable effect magnitude (e.g., 3.5% signal change) even if the cluster299

survives stringent statistical thresholding, and again, readers can only detect such suspicious results if the effect300

estimate is reported, providing a safeguard against potential false positives (Fig. 3).301

Figure 3: Modeling with multiple basis functions may provide more accurate characterization of the HDR as
well as more powerful activation detection. For example, differences in shape features such as undershoot (A)
and peak/recovery duration can be readily revealed in addition to peak (B). Furthermore, a false response
curve, although statistically significant, would be identified (C) if its estimated shape dramatically differs from
the signature shape of HDR.

Validation of BOLD response modeling through hemodynamic response curve302

There are three common approaches to modeling the BOLD HDR. The first one presumes a fixed shape (or303

model-based) impulse response (IRF), such as the gamma variate in AFNI (Cohen, 1997) or the “canonical” IRF304

in SPM and FSL (Friston et al., 1998a). With this method, a single regression coefficient (or �) associated with305

each condition in the individual subject analysis reflects the major HDR magnitude (e.g., percent signal change).306

The second approach makes no assumption about the IRF’s shape and estimates it with a set of basis functions,307

the number of which varies depending on the basis set and the duration over which the response is being modeled.308

For example, a common approach to this estimated-shape method consists of using a set of equally-spaced309
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TENT (piecewise linear) functions (linear splines), and each of the resulting regression coefficients represents310

an estimate of the response amplitude at some time after stimulus onset. This produces an ordered set of311

effect estimates for each modeled HDR. The third approach lies between the two extremes and uses a set of312

two or three basis functions (Friston et al., 1998b). In this adjusted-shape method, the first basis (canonical313

IRF) captures the major HDR shape, and the second basis (the time derivative of the canonical IRF) provides314

some flexibility in modeling the delay or time-to-peak. The third basis (resulting curve, which is the derivative315

relative to the dispersion parameter in the canonical IRF) allows the peak duration to vary. Here, as well,316

multiple effect estimates are associated with a single HDR.317

With only a single parameter per condition, the fixed-shape approach is the most efficient and statistically318

powerful among the three, if the presumed shape is reasonably close to the ground truth. This technique is319

widely adopted because the corresponding group analysis is the easiest. With the adjusted-shape method, the320

common practice at the group level is to focus only on the first effect estimate, ignoring the shape information321

captured by the second and third coefficients. Group analysis using multiple basis functions has recently been322

extensively explored (Chen et al., 2015), and the HDR shape information in the sequence of effect estimates323

can be carried from the individual level over to the group level. The powerful validation aspect of this approach324

is that, even if a region is marginally significant, the investigator may argue for the existence of an effect with325

the presence of the signature shape of HDR curve, as well as for subtle response differences in the undershoot,326

recovery phase, etc. The graphical representation of HDR profiles (see Fig. 3) gives one a reassuring observation327

or an extra confidence about their reliability that could not be gained only through the conventional statistical328

safeguards (e.g., when a cluster fails to pass rigorous thresholding). With the availability of effect estimates at329

the multiple time points of the whole HDR, it would be hard to fully deny the suggestive value of reporting the330

cluster together with its effect sizes and HDR profiles.331

Meta analysis and power analysis332

As an integration approach, meta analysis in FMRI is usually performed to combine and summarize the333

results from various studies that are importantly not necessarily fully consistent with each other. There have334

been multiple methods developed for meta analysis. For example, the summarization may be based on voxel-335

wise results, a specific region (ROI), labels, coordinates, image, or activation likelihood estimation (Radua and336

Mataix-Cols, 2012). Most of the existing methods do not consider the effect estimates, in large part because337

such information is missing in the literature.338

FMRI studies incorporate many factors that easily vary across sites, such as sample size (e.g., number of339

subjects and number of repetitions for each condition), specific task designs, scanners, etc.; and, as a result,340

both the magnitude of an effect and its reliability could be largely heterogeneous across reports. If the synthesis341

through meta analysis is solely based on coordinates or statistic value, the results could be unreliable. A recent342

study has shown that, when both effect estimates and their standard errors (which can be derived from the343
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t-statistics) are available, meta analysis through a mixed- or random-effects model (Maumet and Nichols, 2016)344

would be more robust than other alternatives such as label- and coordinate-based approaches (e.g., coordinates345

only: activation likelihood estimation, Eickhoff et al. 2012; coordinates and Gaussianized Z-values: Radua346

and Mataix-Cols, 2009; Costafreda et al., 2009; Yarkoni et al., 2011). Furthermore, if those studies in which347

a region marginally survives (or even fails to survive) the FWE correction at the cluster level are included, an348

approach with both effect estimates and their stability information incorporated in the meta analysis would be349

more immune to publication bias.350

The effect estimate is also a necessary quantity for power analysis. To design an experiment, the investigator351

may take information from previous studies and use power analysis to either 1) determine the sample size352

required to achieve a preset power (or false negative rate), or 2) assess the power of a given study (how likely353

one would detect a specific effect magnitude under a particular context). For both calculations, the statistic354

value as well as the effect estimate are needed as prior information. Even though mostly power analysis355

is currently performed with the peak value of t-statistic in the brain or a region (Durnez et al., 2016), the356

approach can be improved if the effect estimates are available in addition to statistic values. For example, the357

peak defined by the effect estimates within a cluster instead would be a more accurate representation than one358

by the t-statistic values. In addition, the availability of effect estimates would allow the investigator to perform359

conventional power analysis at the voxel, instead of region, level.360

Looking forward, as the amount of public data and subsequent cross validations, meta and power analyses361

increases, it is vital to start providing results from more robust results for agglomerative approaches.362

Recommendations and conclusion363

Scientific investigations usually involve data collection from observational studies or meticulously-designed364

experiments. Raw data with no or little extraction and compression would clutter or even obscure the intended365

message from the investigator. On the other hand, overly summarized data or missing information would present366

less convincing conclusions, or, worse, lead to misleading impressions. Statistic values alone do not represent367

the whole scientific endeavor, and there is no reason to believe that neuroimaging should be an exception368

in which physical measurement is largely ignored. As a crucial part of scientific investigation, good statistical369

practice should reveal relevant quantitative components of data summarization including the amplitude of brain370

response in neuroimaging. Such numerical and graphical information would promote reproducibility and aid371

power and meta analysis. In addition, the effect estimate may either offer extra support to or counter the372

interpretation made from the statistical significance alone; either case leads to more accuracy, and therefore its373

inclusion should be reassuring to researchers.374

As an antidote to p-hacking or the obsession with statistic values, complete rejection of p-values in scientific375

reporting would likely be an overreaction. We believe that it would be equally impropriate to report only the376

effect estimate without the auxiliary information about its reliability in the form of standard error, confidence377
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interval, or statistic value. Both pieces of information are needed to see the whole picture. In addition to the378

response magnitude’s serving as a benchmark, another benefit is that, if these multiple pieces of information379

were available in literature, one could identify those regions that showed substantial response magnitude but380

failed to achieve a significance level in the study due to large variability across subjects (such results are typically381

undisclosed.382

Some effort has been devoted to promote the standardization of the reporting process in neuroimaging383

analysis (e.g., Poldrack et al., 2008; Carp, 2012; Nichols et al., 2016), though the important issue of reporting384

effect estimates has not been paid much attention. In this commentary, we have argued that reporting effect385

estimates has the same goal and benefit as standardization and that it is in fact necessary in order to improve386

results reporting in the field. In addition to revealing modeling specifics such as all explanatory variables, the387

number and directionality of post hoc tests, we strongly believe that effect estimates (e.g., in a scaled unit such388

as percent signal change) should be reported along with statistic values, instead of having excessive focus only389

on the latter in graphical representation. In addition, reporting the standardized effect (e.g., Cohen’s d) may390

be a valid alternative as well.391

Regarding clusterization, we recommend that:392

1) the statistic values be used for thresholding only (not for colorization, determining maxima of activity,393

etc.);394

2) the activation patterns in brain images be colored by effect estimate values (e.g., percent signal395

change, correlation), not by statistic values; and396

3) the full set of parameters (threshold value, degrees of freedom for each statistic test, cluster-wise397

probability, etc.) be explicitly stated.398

Effect estimates should also be included in tabulated results at the regional level, with the peak defined as399

the maximum of the effect estimate, not of the statistic values. They can serve as another layer of supporting400

evidence in activation identification, and this becomes especially crucial when some practical constraints (e.g.,401

few subjects, suboptimal spatial cross-modality/subject alignment, small regions) lead to a situation in which402

a cluster fails to survive rigorous thresholding. Analytical toolboxes and software should facilitate, nurture, or403

even enforce a standardized process of generating proper and complete results reporting, thereby reducing the404

emphasis of p-values.405

Our suggestions are aligned with and complementary to a proposal of avoiding misinterpretations through406

graphical representation of confidence intervals (Engel and Burton, 2013), as well as the guiding principles407

regarding reporting statistics in the recent ASA statement (see Introduction; Wasserstein and Lazar, 2016).408

Einstein noted that, “It can scarcely be denied that the supreme goal of all theory is to make the irreducible409

basic elements as simple and as few as possible without having to surrender the adequate representation of a410

single datum of experience” (Calaprice, 2010). Within the applied field of FMRI, this notion of making results411
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“as simple as possible but not simpler” should be taken to heart and adopted as well. We feel that this can be412

done only by including the full model reports of effect estimates and statistics in the literature.413
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