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Abstract

Investigating the behavior of stochastic models of biochemical reaction networks gener-

ally relies upon numerical stochastic simulation methods to generate many realizations

of the model. For many practical applications, such numerical simulation can be com-

putationally expensive. The statistical inference of reaction rate parameters based on

observed data is, however, a significantly greater computational challenge; often relying

upon likelihood-free methods such as approximate Bayesian computation, that require the

generation of millions of individual stochastic realizations. In this study, we investigate

a new approach to computational inference, based on multilevel Monte Carlo sampling:

we approximate the posterior cumulative distribution function through a combination

of model samples taken over a range of acceptance thresholds. We demonstrate this

approach using a variety of discrete-state, continuous-time Markov models of biochemi-

cal reaction networks. Results show that a computational gain over standard rejection

schemes of up to an order of magnitude is achievable without significant loss in estimator

accuracy.
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Author Summary

We develop a new method to infer the reaction rate parameters for stochastic models of

biochemical reaction networks. Standard computational approaches, based on numerical

simulations, are often used to estimate parameters. These computational approaches,

however, are extremely expensive, potentially requiring millions of simulations. To alle-

viate this issue, we apply a different method of sampling allowing us to find an optimal

trade-off between performance and accuracy. Our approach is approximately one order

of magnitude faster than standard methods, without significant loss in accuracy.
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Introduction

Stochastic models of biochemical reaction networks often provide a more accurate descrip-

tion of system dynamics than deterministic models [1]. In many cases, this is due to the

inherent stochastic nature of many biochemical processes in which the system dynamics

is significantly influenced by relatively low populations of certain chemical species [2]. For

example, in eukaryotic cells, molecules that regulate gene expression occur in relatively

low numbers; as a result, stochastic fluctuations have a direct effect on the production

rates of proteins [3, 4].

A common approach to modeling biochemical systems is to consider a well-mixed

collection of molecules that react according to some known chemical reactions. The well-

mixed assumption simplifies the model by removing the spatial component [5, 6]. If the

model is deterministic, evolution of the concentrations of each chemical species is governed

by a system of ordinary differential equations (ODEs). Alternatively, a stochastic model

will typically consider the evolution of copy numbers (i.e., the numbers of molecules) of

each species, with each reaction occurring stochastically [6].

In the case of the stochastic model, the probability density function (PDF) for the

state of such a system at time t evolves according to a very large system of ODEs known

as the chemical master equation (CME), which is in general intractable due to the very

large, or countably infinite, number of possible system states [5,7]. As a result, stochastic

simulation techniques such as the exact Gillespie direct method (GDM) or approximations

like the tau-leaping method are applied to study these models [8, 9]. However, accurate

stochastic simulation is a computationally expensive task; the computation time for the

GDM, for example, scales with the number of possible reactions yet the performance im-

provements gained using approximations can introduce approximation errors. Therefore,

the development of efficient and accurate stochastic simulation algorithms is an area of

active research [10–16].

In order to make quantitative predictions of real biochemical systems or to perform

model validation, unknown reaction rate parameters must be determined through infer-

ence. The Bayesian approach to estimate an unknown parameter vector, θ, given some
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observational data, D, is based on Bayes’ Theorem,

p (θ | D) =
p (D |θ) p (θ)

p (D)
, (1)

where p (θ) is the a priori PDF of the unknown parameter, p (D |θ) is the likelihood

of making observations D under the assumption of a particular value for θ, p (D) is

often referred to as the evidence and p (θ | D) is the a posterior PDF of θ given the

observations [17]. Informally, Equation (1) represents the process of updating current

understanding based on previous experience and observational data. The classical ap-

proach to inference is to maximize the right hand side of Equation (1) to determine the

mode of the posterior. However, more generally, the Bayesian approach can be used to

quantify the level of uncertainty associated with such parameter estimates.

Theoretically, given perfect observational data from a biochemical reaction network,

it is possible to determine a closed form expression for the likelihood term in Equation (1)

and the method of maximum likelihood may be directly applied [6]. In practice, however,

such a process is sampled imperfectly and is subject to measurement errors; thus requiring

solution of the CME to form the likelihood term. However, as we have noted, exact closed

form solutions of the CME are rarely available for practical applications.

Approximate Bayesian computation (ABC) refers to a family of computational meth-

ods for performing inference for problems with intractable likelihoods [17,18]. As a result,

ABC methods are routinely applied to practical inference problems [19–24]. The funda-

mental concept is to approximate the posterior PDF, p (θ | D), by p (θ | ρ(Ds,D) < ε),

where Ds is simulated data, ρ is a suitable distance function and ε is the acceptance

threshold. If a simulation process exists for the prior distribution, p (θ), and the under-

lying model of interest can be simulated to estimate p (Ds |θ), then the approximated

posterior can be simulated using an ABC approach.

The computational overhead for ABC inference is significantly greater than that of

stochastic simulation alone. This is because the computation time is inversely propor-

tional to the probability of ρ(Ds,D) < ε over all possible parameter values θ; that is,

many stochastic simulations are required for every sample computed from the poste-

rior [17]. A considerable computational problem arises from this, because the acceptance

rate decreases exponentially as the number of unknown parameters increases [25]. This
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problem, referred to as the curse of dimensionality, is mitigated to some degree for certain

classes of problems through the use of more advanced ABC techniques [26–29]. However,

in general, the curse of dimensionality is an unresolved problem [17].

In this study, we propose, implement and analyze a method for accelerating ABC

inference using a multilevel Monte Carlo (MLMC) approach [30]. MLMC is a framework

for constructing computationally efficient and accurate estimators of system statistics

for stochastic processes. MLMC was developed by Giles et al. [31, 32] as a stochastic

variant of multigrid methods used for obtaining numerical solutions to differential equa-

tions. Since then many other applications have benefitted from MLMC including Markov

process simulation [14, 33, 34], uncertainty quantification [35] and univariate probability

distribution approximation [36, 37]. To the best of our knowledge, our work represents

the first application of MLMC to full Bayesian inference with intractable likelihoods.

To summarize our approach, we construct an approximation to the posterior cumu-

lative distribution function (CDF) using a MLMC estimator that is constructed from

a sequence of ABC approximate posteriors. While we focus on stochastic biochemical

reaction networks models, our inference method is applicable for any problem that could

traditionally utilize ABC inference. We demonstrate that our method is guaranteed to

out perform standard ABC methods under a few reasonable assumptions.

Methods

In this section, we describe a commonly used stochastic approach to modeling biochemi-

cal reaction networks along with standard algorithms for both simulation and parameter

inference. We also describe the fundamental concepts of MLMC. Finally, we present our

multilevel approach to ABC inference and derive the asymptotic performance improve-

ment of the method.
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Discrete-state, continuous-time Markov processes

Consider a biochemical reaction network involving N chemical species with copy numbers

X1, X2, . . . , XN that react via a network of M chemical reactions of the form

N∑
i=1

ν−i,jXi
kj→

N∑
i=1

ν+i,jXi, j = 1, 2, . . . ,M, (2)

where kj is the kinetic rate constant of reaction j, and ν−i,j and ν+i,j are, respectively,

the reactant and product stoichiometries for the species Xi in reaction j. Under the

assumption that the molecules are well-mixed, the probability that the jth reaction occurs

in the time interval (t, t+∆t] is given by aj(X(t); kj)∆t where aj is the propensity function

of the reaction, and is given by

aj(X(t); kj) = kj

N∏
i=1

ν−i,j!

(
Xi(t)

ν−i,j

)
, (3)

where X(t) = [X1(t), X2(t), . . . , XN(t)]T is the column vector of copy numbers represent-

ing the system state at time t.

We can model the reaction network defined by Equation (2) as a discrete-state,

continuous-time (DSCT) Markov process in which each reaction channel is governed by

a time-varying Poisson process with rate parameter λ(t) =
∫ t
0
aj(X(s); kj) ds. Such a

DSCT Markov process can be represented according to the Kurtz representation [38] as

X(t) = X(0) +
M∑
j=1

Yj

(∫ t

0

aj (X(s); kj) ds

)
νj, (4)

where the Yj(λ) are unit time Poisson processes with rate parameter λ and νj is the

state transition that results when reaction j takes place, that is νj = [ν+1,j − ν−1,j, ν+2,j −

ν−2,j, . . . , ν
+
N,j − ν

−
N,j]

T.

Let p (x, t |y, s) denote the transitional density function of the DSCT Markov process

given in Equation (4), that is, the probability X(t) = x given X(s) = y where t > s.

Given an initial condition, X(0) = x0, the evolution of p (x, t |x0, 0) is governed by the

CME,

dp (x, t |x0, 0)

dt
=

M∑
j=1

aj(x− νj)p (x− νj, t |x0, 0)− aj(x)p (x, t |x0, 0) . (5)
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It should be noted that Equation (5) is actually a system of ODEs that is potentially

countably infinite since x ∈ NN . With the exception of reaction networks involving only

zeroth and first order reactions the CME has no closed form solution, and it is generally

only computationally tractable when the number of possible states is small [7, 39].

The chemical master equation and Bayesian inference

The solution of Equation (5) is of critical importance to the Bayesian approach of pa-

rameter inference for DSCT Markov processes [6]. Given a realization of Equation (4),

Xd(t), observed at Nt discrete points in time, t1 < t2 < · · · < tNt , the inference problem

is to determine the posterior PDF, p (θ |Xd(t1),Xd(t2), . . . ,Xd(tNt)), for the kinetic rate

parameters, θ = [k1, k2, . . . , kM ]. If we denote p (θ) as the prior PDF, that represents

some prior knowledge about θ, then the posterior PDF is given through application of

Bayes’ Theorem (Equation (1)),

p (θ |Xd(t1),Xd(t2), . . . ,Xd(tNt)) ∝ p (Xd(t1),Xd(t2), . . . ,Xd(tNt) |θ) p (θ) . (6)

The likelihood, p (Xd(t1),Xd(t2), . . . ,Xd(tNt) |θ), can be expressed in terms of the

transitional density function p (x, t |y, s;θ); that is, the solution to the CME parameter-

ized by the kinetic rate parameter vector θ. The likelihood term becomes,

p (Xd(t1),Xd(t2), . . . ,Xd(tNt) |θ) =
Nt∏
i=1

p (Xd(ti), ti |Xd(ti−1), ti−1;θ) , (7)

where t0 = 0 and Xd(0) = x0.

We now introduce two models with convenient closed form solutions to the CME

for theoretical purposes. Our aim in studying these two relatively simple models with

closed form solutions is to illustrate the mathematical rigor of our analysis. Once we

have established this, we will then apply our method to more practical examples where

the CME is intractable.
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Example 1: Degradation

The simplest chemical reaction model one could conceive is the stochastic form of expo-

nential decay; that is, the degradation model. This model has a single reaction,

X
k→ Y, X(0) = x0, (8)

where Y represents any chemical species that is not of interest, k is the kinetic rate

constant for the reaction, and x0 is the initial condition. Figure 1(a) shows some typical

realizations of this model generated using the GDM; note that X can never increase in

time.
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Figure 1. Degradation model. (a) Example realizations with k = 0.1 (sec−1) and

x0 = 200. (b) Evolution of the CME solution, p (x, t |x0, 0; k). The posterior (c) PDF

and (d) CDF, for X(0) = 200 and X(30) = 9.

Let p (x, t |x0, 0; k) be the transitional density function of the DSCT Markov process

for Equation (8); that is, the solution to the CME parameterized by the kinetic rate

parameter, k. The closed form solution to the CME can be obtained by noting that

p (x, t |x0, 0; k) = 0 for any x > x0, hence the CME can be truncated into a finite system
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of ODEs that may be solved through induction. The solution is given by [40]

p (x, t |x0, 0; k) =

(
x0
x

)
(1− e−kt)x0−xe−kxt. (9)

The evolution of p (x, t |x0, 0; k) is shown in Figure 1(b).

For the purposes of inference of k, if it is given thatX(t) = x, we can view Equation (9)

as the likelihood term in Equation (1) when the number of observation times is Nt =

1. This enables the direct evaluation of the posterior PDF and cumulative distribution

function (CDF) for the degradation model. Examples are given in Figure 1(c)-(d).

Example 2: Degradation/Production

A natural extension to the degradation model (Equation (8)) is to incorporate a produc-

tion reaction,

X
k1→ Y, Z

k2→ X + Z, X(0) = x0, Z(0) = 1, (10)

where k1 and k2 are, respectively, the degradation and production kinetic rate constants

and x0 is the initial condition. Again, Y denotes any chemical species that is not of

interest, and Z represents a chemical species or process that produces X. We note that

the copy number of Z is constant, thus it is not required to be included in the CME.

The example realizations that are shown in Figure 2(a) demonstrate the fact that X is

not strictly decreasing in time, thus the CME cannot be truncated into a finite system

of ODEs without approximation.

In this case, we denote the transitional density function as p (x, t |x0, 0; k1, k2). Despite

the countably infinite nature of the CME in this case, it can also be solved analytically [41]

to give

p (x, t |x0, 0; k1, k2) = e−|b(t)|
∞∑
i=0

b(t)i

i!

(
x0
|x− i|

)(
1− e−k1t

)x0−|x−i|
e−k1|x−i|t, (11)

where b(t) = k2(e
−k1t − 1)/k1. The evolution of p (x, t |x0, 0; k1, k2) approaches a steady

state by approximately t = 30 (sec) as shown in Figure 2(b). Just as with the degradation

model, the exact posterior PDF can be derived using Equations (7) and (11) for the

purposes of inference of both k1 and k2 given X at discrete points in time. Figure 2(c)-

(d) shows examples of the posterior PDF and CDF.
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Figure 2. Degradation/production model. (a) Example realizations with

k1 = 0.1 (sec−1), k2 = 1.0 (sec−1) and x0 = 200. (b) Evolution of the CME solution,

p (x, t |x0, 0; k1, k2). The posterior (c) PDF and (d) CDF, for X(0) = 200, X(15) = 60

and X(30) = 29.

Stochastic simulation: Gillespie direct method

In general, only models dealing with zeroth and first order reactions have closed form

solutions [41]. If we wish to study stochastic models of chemical reaction networks that

have higher order reactions, then stochastic simulation must be utilized. The most well

known exact stochastic simulation algorithm is the GDM [8].

The GDM arises naturally from Equation (4) by recalling that the time to the next

event of a Poisson process with rate parameter λ is exponentially distributed with pa-

rameter λ. Therefore at time t, if a0 =
∑M

j=1 aj (X(t)), then ∆t ∼ Exp(a0) where the

next reaction occurs at t+ ∆t. The next reaction, R, to take place can be determined by

sampling the probability mass function p (R = j) = aj/a0. The state vector can then be

updated by adding νj. The result of repeating this process up to a given end time, T , is
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the GDM, as shown in Algorithm 1.

Algorithm 1 The Gillespie direct method

1. Initialize X and t.

2. Compute total propensity a0 ←
∑M

j=1 aj(X).

3. Sample next reaction time ∆t ∼ Exp(a0).

4. If t+ ∆t > T , go to line 8, otherwise continue to line 5.

5. Select reaction j with probability aj(X)/a0.

6. Update state vector, X← X + νj.

7. Update time, t← t+ ∆t.

8. Terminate and return X.

In this study, we restrict our experimentation and discussion to the GDM for stochastic

simulation to ensure the only source of approximation error is due to our inference method.

As a result, we do not consider approximations such as the tau-leaping method [9].

Parameter inference: ABC rejection

ABC methods provide a means of sampling an approximation to the posterior when the

stochastic process of interest has an intractable likelihood but can be simulated [6, 17].

In the context of biochemical reaction networks, this means that repeated sampling of

the model using the GDM replaces the explicit solution of the CME.

Given a data set, D, and a prior distribution for the parameter of interest, θ, we

approximate Equation (1) with

p (θ | ρ(Ds,D) < ε) ∝ p (ρ(Ds,D) < ε |θ) p (θ) . (12)

In Equation (12), Ds is simulated data from the model of interest, ρ is a suitable distance

metric and ε is a sufficiently small acceptance threshold, such that p (θ | ρ(Ds,D) < ε) ≈
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p (θ | D). The most direct approach to sampling the posterior in Equation (12), given in

Algorithm 2, is the ABC rejection sampling method [6, 17,18].

Algorithm 2 ABC rejection sampling: Generates θ∗ ∼ p (θ | ρ(Ds,D) < ε)

1. Sample the prior θ∗ ∼ p (θ).

2. Simulate stochastic processes D∗s ∼ p (Ds |θ∗).

3. If ρ(D∗s ,D) < ε, accept θ∗ as a posterior sample and terminate, otherwise go to

line 1.

For this study, the data set, D, for the model of interest is assumed to be the observa-

tion of a single realization, Xd(t), observed at Nt uniformly spaced time points ti = i∆t

with i = 1, 2, . . . , Nt. That is, D(Xd) = [Xd(∆t),Xd(2∆t), . . . ,Xd(Nt∆t)]. Similarly,

simulated data is given by D(Xs) = [Xs(∆t),Xs(2∆t), . . . ,Xs(Nt∆t)], where Xs(t) is a

sample path generated by the GDM using the candidate parameter vector, θ∗, that has

been sampled from the prior distribution p(θ). A natural distance metric, ρ, for such

data is

ρ(D(Xs),D(Xd)) =

(
1

Nt

Nt∑
i=0

|Xs(i∆t)−Xd(i∆t)|22
|Xd(i∆t)|22

) 1
2

, (13)

where |·|2 is the `2-norm.

Multilevel Monte Carlo sampling

To explain the basics of MLMC, consider the task of computing E [f(X)] for a random

variable X with unknown distribution and a suitably defined functional f . If we have

another random variable Y that approximates X then we have,

E [f(X)] = E [f(Y )] + E [f(X)− f(Y )] . (14)

That is, an unbiased estimator for E [f(Y )] will be a biased estimator for E [f(X)]. If

it is possible to simulate X, then we can correct for this bias by using an estimator for

the bias E [f(X)− f(Y )] [31]. If Y can be constructed in such a way that the estimator
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for E [f(Y )] and the bias E [f(X)− f(Y )] can be computed more efficiently than the

estimator for E [f(X)] then we have a net computational gain.

MLMC extends this idea to the case when there exists a sequence random variables

{Y`}0≤`≤L, such that as ` increases the simulation time for E [f(Y`)] increases and the bias

E [f(X)− f(Y`)] decreases at a suitable rate [31,37]. The resulting recursive application

of Equation (14) yields the telescoping sum

E [f(X)] = E [f(Y0)] +

[
L∑
`=1

E [f(Y`)− f(Y`−1)]

]
+ E [f(X)− f(YL)] . (15)

Under certain conditions, constructing an estimator based on Equation (15) is signifi-

cantly faster than estimating E [f(X)] directly [31,33,34].

A multilevel approach to inference

In this section, we develop a new approach to ABC inference using MLMC and provide

key theoretical results about the performance gain using our approach. The method,

which we refer to as multilevel approximate Bayesian computation (MLABC), combines

ABC rejection sampling using a sequence of acceptance thresholds to approximate the

CDF of the posterior to within a prescribed level of accuracy defined in terms of the

root mean squared error (RMSE). For brevity, we only present the key features of the

analysis here; for detailed analysis of the method, based on the work of Giles et al. [37],

see Appendices S1–S3.

Derivation

We present, for the sake of simplicity, our MLABC method in terms of the degrada-

tion/production model (Equation (10)). However, we note that applying the ideas to

different models with different numbers of unknown parameters is straightforward exten-

sion of the degradation/production method. Given observed trajectory data, D(Xd), the

task is to approximate, at a point (s1, s2) ∈ R2, the posterior CDF given by

F (s1, s2) =

∫ s1

0

∫ s2

0

p (k1, k2 | D(Xd)) dk2dk1. (16)
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We can reformulate Equation (16) as the expectation,

F (s1, s2) = E
[
1(0,s1]×(0,s2] (k1, k2)

]
, (17)

where 1(0,s1]×(0,s2] is the indicator functional,

1(0,s1]×(0,s2] =

1 (k1, k2) ∈ (0, s1]× (0, s2]

0 otherwise.

Assuming distance metric ρ, as defined in Equation (13), along with a suitably chosen

acceptance threshold, ε, the standard Monte Carlo estimator is

F (s1, s2) ≈ F̂ (s1, s2) =
1

n

n∑
i=1

1(0,s1]×(0,s2]
(
(k1, k2)

(i)
ε

)
, (18)

where the number of samples, n, is sufficiently large and (k1, k2)
(i)
ε is the ith accepted

sample from p (k1, k2 | ρ(D(Xs),D(Xd)) < ε) using ABC rejection.

Now, consider a geometric sequence of acceptance thresholds ε` = ε0K
−` for integer

K ≥ 2 and ` = 0, 1, 2, . . . , L and denote (k1, k2)ε` as the random vector distributed

according the approximation p (k1, k2 | ρ(D(Xs),D(Xd)) < ε`). Using this sequence of

posterior distribution approximations, a multilevel estimator for the posterior CDF at

the point (s1, s2) can be determined as

F (s1, s2) ≈ F̂ (s1, s2) =
1

n0

n0∑
i=1

1(0,s1]×(0,s2]
(
(k1, k2)

(i)
ε0

)
+

L∑
`=1

µbias
` , (19)

with

µbias
` =

1

n`

n∑̀
i=1

[
1(0,s1]×(0,s2]

(
(k1, k2)

(i)
ε`

)
− 1(0,s1]×(0,s2]

(
(k1, k2)

(i)
ε`−1

)]
,

where the sample sizes, n`, are sufficiently large to ensure the estimator variance is below

some predetermined value. In terms of bias, the multilevel estimator in Equation (19)

is equivalent to the standard Monte Carlo estimator with ε = εL in Equation (18). By

evaluating Equation (19) at a set of points in R2 combined with a suitable interpola-

tion scheme (see Appendix S3), an approximation of the entire posterior CDF can be

constructed.

The estimator given in Equation (19) is the essence of the MLABC method. Although

we present the method in terms of the degradation/production model with two unknown
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parameters, an equivalent general estimator can be formed for any stochastic model with

M unknown parameters by evaluating the indicator functional over the region (−∞, s1]×

(−∞, s2]×· · ·× (−∞, sM ] . We now aim to analyze and demonstrate that, under certain

reasonable assumptions, this approach can always provide a computational gain over

standard ABC rejection sampling for a sufficiently small target bias level.

Assumptions

There are three main assumptions required for the analysis of Equation (19) [37]. The

first two assumptions are related to the convergence rates of the posterior approximation

as `→∞. The third is a condition on the computation time for generating a sample pair[
(k1, k2)ε` , (k1, k2)ε`−1

]
which is required when computing the bias correction term µbias

` .

Such a sample pair is a sample from the joint distribution of (k1, k2)ε` and (k1, k2)ε`−1
.

More specifically, given a geometric sequence of acceptance thresholds ε` = ε0K
−` for

integer K ≥ 2, we assume there exist constants α > 0, β > 0 and γ > 0 such that:

1 as `→∞, 1(0,s1]×(0,s2] ((k1, k2)ε`) converges weakly to 1(0,s1]×(0,s2] (k1, k2) with order

α. That is,
∣∣E [1(0,s1]×(0,s2] ((k1, k2)ε`)

]
− E

[
1(0,s1]×(0,s2] (k1, k2)

]∣∣ = O(εα` );

2 as `→∞, (k1, k2)ε` converges strongly to (k1, k2) with order β. That is,

E
[
|(k1, k2)ε` − (k1, k2)|1

]
= O(εβ` ). Here, |·|1 is the `1-norm;

3 the computation time for sampling the distribution of
[
(k1, k2)ε` , (k1, k2)ε`−1

]
is

O(ε−γ` ).

Assumptions 1 and 2 are reasonable due to the convergence properties of ABC rejection

itself [18]. However, obtaining exact values or estimates for α and β is generally difficult.

In practice, exact values of α and β is not required, though we assume these are known

in order to analyze the asymptotic computational gain.

The constant γ depends on the dimensionality of the parameter space, since the

computation time is inversely proportional to the average acceptance rate of the ABC

rejection method. The general proof of Assumption 3 is given in Appendix S1. For the

degradation/production model we have γ = 2.
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Theoretical performance gain

In this section, we present asymptotic bounds on both the RMSE of the standard ABC

inference and our MLABC method. We then express the asymptotic computation time

given a target RMSE, h. This allows us to construct an expression for the asymptotic

computational gain in terms of the convergence parameters α and β. We do this in the

context of a two parameter inference problem, such as the degradation/production model

(Equation (10)), leaving more general analysis to Appendix S2.

Assume that the posterior PDF, p (k1, k2 |Xd), has compact support in the region R =

[smin1 , smax1 ]×[smin2 , smax2 ]. Such an assumption is reasonable for a sufficiently large number

of observation times Nt; for the degradation/production model, this assumption is valid

for Nt ≥ 2. Now apply a regular discretization to R using D divisions in each dimension,

resulting in (D+ 1)2 grid points {(si1, s
j
2)}0≤i,j≤D, where (si1, s

j
2) = ((i/D)(smax1 − smin1 ) +

smin1 , (j/D)(smax2 − smin2 ) + smin2 ).

By applying estimators Equation (18) or Equation (19) we obtain a discrete approx-

imation, µi,j = F̂ (si1, s
j
2), to the true posterior CDF. The RMSE of this approximation

is

RMSE(µ) =

√
E
[

max
0≤i,j≤D

∣∣F (si1, s
j
2)− µi,j

∣∣2]. (20)

For simplicity, we will ignore the interpolation of µi,j for a continuous approximation to

F over the entire region R. It is important to note, however, our analysis (Appendices S2

and S3) accounts for this, and is crucial to our results.

The standard Monte Carlo estimator is given by µ = {F̂ (si1, s
j
2)}0≤i,j≤D where F̂ (si1, s

j
2)

is computed using Equation (18) with ε = εL. If the convergence parameter α is known,

the RMSE for the standard Monte Carlo estimator, µ, is bounded, for some constant c1,

by

RMSE(µ) ≤ c1

√
K−2αL +

vL
n

loge(D + 1)2, (21)

where vL is the variance of (k1, k2)ε and n is the number of Monte Carlo samples.

Under Assumption 3, and by taking L = (1/α) logK(1/h), the cost of using standard

Monte Carlo to construct an approximation, µ, to the posterior CDF with RMSE(µ) =
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O(h) is bounded, for some constant c2, by

cost(µ) ≤ c2h
−(2+γ/α) loge h

−1. (22)

This bound is identified by bounding the right hand side of Equation (20) by h and

solving for a lower bound on the number of accepted samples, n.

Bounding the RMSE for the multilevel estimator, µML = {F̂ (si1, s
j
2)}0≤i,j≤D with

F̂ (si1, s
j
2) computed using Equation (19), is a relatively straightforward application of the

method for obtaining Equation (20) along with invoking Assumption 2. The equivalent

result for the multilevel estimator, for some constant c3, is

RMSE(µML) ≤ c3

√√√√K−2αL +

(
v0
n0

+
L∑
`=1

M−β`

n`

)
loge(D + 1)2, (23)

where v0 is the variance of (k1, k2)ε0 and n` are the Monte Carlo sample numbers for each

level.

The upper bound on the computation time for µML depends on the choice of the

number of samples for each level, n`. We can use a Lagrange multiplier method to choose

the n` such that the asymptotic cost is minimized under the constraint of RMSE(µML) =

O(h). The choice of n` is

n` ≥
loge(D + 1)2

h2

(
1 +

K(γ−β)/2 −K(L+1)(γ−β)/2

1−K(γ−β)/2

)
K−`(γ+β). (24)

Using Assumption 3 and the optimal n` given by Equation (24), we arrive at an expression

for the asymptotic bound on the computation time for evaluating µML. In the case of

β < γ, then there exists some constant c4 such that

cost(µML) ≤ c4
(
1− h−(γ−β)/2α + h−(γ−β)/α

)
h−2 loge h

−1. (25)

The results from Equation (22) and Equation (25) directly yield a reduction in the order

of the computation time upper bound from using the multilevel method. We denote the

reduction as the asymptotic computational gain, given by

AG(µ, µML) =
h−(2+γ/α) loge h

−1

h−(2+(γ−β)/α) loge h
−1 = h−β/α. (26)

Note that Equation (26) indicates that, assuming the upper bounds are achieved asymp-

totically, it is always possible to choose a target RMSE, h, such that the multilevel
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approach achieves some desired level of computational gain. The rate of growth of this

gain as a function of h depends on the convergence characteristics of the sequence of ABC

posterior approximations, however it is always an improvement since α > 0 and β > 0.

Practical application of MLABC

In practice, the convergence parameters α and β are unknown. In this section, we present

a practical implementation of an algorithm for MLABC that does not depend on explicit

knowledge of α and β. We find that our algorithm can obtain up to an order of magnitude

performance improvement while still maintaining a desired level of accuracy.

Removing dependence on convergence parameters

First, note that when ABC methods such as ABC rejection are used in practice, there are

certain assumptions made about the weak convergence rate, α. If we expect n accepted

samples using acceptance threshold ε to provide an acceptable estimator of the real pos-

terior CDF, then we are implicitly assuming α ≥
(

loge
√

(loge(D + 1)2)/n
)
/ (loge ε).

Therefore, we can determine, for a given scale factor, K, and base level threshold, ε0,

the number of levels, L, required to match the final bias of the standard ABC rejection

method. As a result, we can treat α as a known parameter in the sense of equivalence to

the standard ABC rejection estimator.

Second, consider the role of β in determining the n` in Equation (24). While the details

are given in Appendix S2, we informally state that the summation in Equation (24) can

be derived by showing that Assumption 2 implies, for some constant c5,

Var
[
1(0,s1]×(0,s2]((k1, k2)ε`)− 1(0,s1]×(0,s2]((k1, k2)ε`−1

)
]
≤ c5K

−β`. (27)

That is, K−β` is used to bound the variances of the bias correction terms in Equation (19).

It is important to note that the rigorous version of Equation (27) requires a smoothing

process to be applied to the indicator functional to ensure the Lipschitz continuity con-

ditions discussed in the supporting information (Appendix S2 and S3).

If we knew exactly, for each level `, the computation time to generate a posterior
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Algorithm 3 Sampling method for variance reduction of bias correction term µbias
`

1. Let nd denote the number of samples accepted at levels ` and `− 1.

2. Initialize nd ← 0.

3. Set sample counter j ← 1.

3.1 Sample the prior (k1, k2)
∗ ∼ p (k1, k2).

3.2 Generate Xs(t) using the GDM with kinetic rates (k1, k2)
∗.

3.3 If ρ(D(Xs),D(Xd)) < ε`, accept (k1, k2)
∗ as both a level ` and a level ` − 1

sample, increment nd ← nd + 1 and go to line 3.5.

3.4 If ρ(D(Xs),D(Xd)) < ε`−1, accept (k1, k2)
∗ as a level `− 1 sample only.

3.5 If j < n`, increment j ← j + 1 and go to line 3.1, otherwise go to line 4.

4. Reset sample counter j ← 1.

4.1 Sample the prior (k1, k2)
∗ ∼ p (k1, k2).

4.2 Generate Xs(t) using the GDM with kinetic rates (k1, k2)
∗.

4.3 If ρ(D(Xs),D(Xd)) < ε`, accept (k1, k2)
∗ as a level `.

4.4 If j + nd < n`, increment j ← j + 1 and go to line 4.1, otherwise go to line 5.

5. Terminate and return all accepted sample pairs.

realization, c`, and the variance, v`, of each bias correction term, µbias` , then we could cal-

culate the optimal n` using the same Lagrange multiplier approach as for Equation (24).

The result would be,

n` =

√
v`

h2
√
c`

L∑
m=0

√
vmcm. (28)

In practice we can can only estimate c` and v`. Using the approach used by Anderson

et al. [33] and Lester et al. [34] we generate a relatively small number of trial samples

at each level to obtain estimates for c` and v` that work well in practice. Using this

approach we do not have the same theoretical bounds on the RMSE. However, accurate

approximations for the variances will result in estimators with a RMSE that is close to
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the target in practice.

Algorithm 4 MLABC (Multilevel approximate Bayesian computation): Estimates the

posterior CDF F (s1, s2)

1. Let n, ε and D be parameters from equivalent ABC estimator.

2. Calculate number of levels, L, using L← logK(
√
D + 1)/ logε

√
(loge(D + 1)2/n).

3. Calculate n0, n1, . . . , nL using Equation (28) with c` and v` estimated using 100

samples on each level.

4. Generate n0 samples {(k1, k2)(j)ε0 }j=n0

j=1 from p (k1, k2 | ρ(D(Xs),D(Xd)) < ε0) using

ABC rejection.

5. Generate n` correlated sample pairs {((k1, k2)(j)ε` , (k1, k2)
(j)
ε`−1)}

j=n`
j=1 for ` = 1, 2, . . . , L

using Algorithm 3.

6. Repeat steps 6.1-6.4 for every point (s1, s2) ∈ G where, G is a grid of (D + 1)2

points over the support of the posterior.

6.1 Initialize base level estimator, E0 ← 0, and bias level estimators B` ← 0.

6.2 Compute base level estimator, E0 ← 1
n0

∑n0

j=1 1[0,s1]×[0,s2]

(
(k1, k2)

(j)
ε0

)
.

6.3 Compute bias correction estimators for every ` = 1, 2, . . . , L,

B` ← 1
n`

∑n`

j=1 1[0,s1]×[0,s2]

(
(k1, k2)

(j)
ε`

)
− 1[0,s1]×[0,s2]

(
(k1, k2)

(j)
ε`−1

)
.

6.4 Compute CDF point estimate F̂ (s1, s2)← E0 +
∑L

`=1B`.

Improving performance with variance reduction

In Equation (28), note that n` ∝
√
v`. Furthermore, note that for the bias correction

terms in Equation (19), our only concern is the expected difference between indicator

function values at each level rather than the expected values themselves. As a result, if

we can introduce some correlation in the generation of accepted samples at each level, then

the variance of the estimators and hence the number of samples required will decrease. In

this work, we implement a simple method to ensure such correlation. Given a simulated
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trajectory, Xs(t), then ρ(D(Xs),D(Xd)) < ε` implies ρ(D(Xs),D(Xd)) < ε`−1, since

ε` < ε`−1. As a result, we can sample level ` − 1 first and keep track of any samples

that can also be accepted at level `; such samples can be validly taken as samples from

both levels. A pair constructed this way will make no contribution to the bias correction

term, hence reducing the variance. We arrive at the method presented in Algorithm 3

for reducing the variance when sampling for the bias correction term µbias
` .

The multilevel ABC algorithm

By combining Equation (28) with Algorithm 3, we construct a practical implementation of

the MLABC estimator (Equation (19)). This MLABC method, presented in Algorithm 4

for the degradation/production model, is implemented as a prototype using the C pro-

gramming language. The prototype (Code S3) is specific to biochemical reaction network

models, however, only minor changes are required to change the target application.

Results

In this section, we examine the accuracy and performance of MLABC using the previously

presented degradation and degradation/production models because we can directly evalu-

ate the estimator RMSE using the exact solution to the CME. We then compare MLABC

with standard ABC rejection using two more complex biochemical reaction networks.

Estimating convergence parameters

The asymptotic computational gain using MLABC is presented in Equation (26). To

validate this theoretical result, we need to estimate α and β. We use the ABC rejection

method (Algorithm 2) and linear regression to estimate α and β for the degradation

model and the degradation/production model using data observed at Nt discrete points

in time for Nt = 2, 3, . . . , 10. For the degradation model and degradation/production

model, respectively, data is generated using k = 0.1 and (k1, k2) = (0.1, 1). A univariate

uniform prior distribution with support {k : k ∈ [0, 1]} is utilized for the degradation
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model and a bivariate uniform prior with support {(k1, k2) : (k1, k2) ∈ [0, 1] × [0, 10]}

is utilized for the degradation/production model. Estimates are produced using 1, 000

accepted samples for threshold levels ε` = ε0K
−`, ` = 1, 2, . . . , L with K = 2, ε0 = 1 and

L = 5. These estimates are shown in Figure 3(a)-(b).
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Figure 3. Estimated convergence rates. Least squares approximation of α and β

for the (a) degradation model with k = 0.1 and (b) degradation/production model with

(k1, k2) = (0.1, 1) using observation times Nt ∈ [2, . . . , 10]. Asymptotic computational

gain functions AG = O(h−β/α) for the (c) degradation and (d) degradation/production

models.

Using these estimates of α and β it is possible to predict the asymptotic growth

of computational gain by using MLABC based on sample numbers chosen according

to Equation (24). These computational gains are given in Figure 3(c)-(d) for Nt =

2, 3, . . . , 10. By using Equation (24), we expect minimal increase in the RMSE compared

with standard ABC rejection.
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Performance using estimated convergence parameters

We now compare numerical simulation results against the theoretical performance and

error analysis. Throughout we refer to the measured computational gain of our MLABC

approach that is given by

MG(µ, µML) =
C(µ)

C(µML)
, (29)

where µ and µML are the standard ABC rejection and MLABC estimators, respectively,

and C(·) is the averaged measured computation time to evaluate the estimator.

For the degradation model, 20 independent MLABC and ABC rejection CDF estima-

tors are computed for target RMSE h ∈ [0.1, 0.25]. The CDF is approximated over the

interval [0, 0.5] on a grid of 1, 000 nodes using data with Nt = 8. The sample numbers,

n`, are computed according to Equation (24) using the estimated convergence parameter

values of α ≈ 0.96 and β ≈ 1.54. As shown in Figure 4(a), the increase in computa-

tional gain (Equation (29)) is the same order of magnitude as the theoretical asymptotic

prediction (Equation (26)), albeit at a smaller absolute scale. In Figure 4(b), we see

that the target of RMSE ≤ h is achieved with the exception of h = 0.1, however, the

fact that there is also an increase in RMSE at h = 0.1 for the standard ABC estimator

indicates that this is a feature of the problem that can be probably be improved with the

application of smoothing to the indicator functional (see Appendix S3).

For the degradation/production model, 20 independent MLABC and ABC rejection

CDF estimators are computed for target RMSE h ∈ [0.1, 0.25]. The CDF is approximated

over the region [0, 1] × [0, 10] on a grid of 100 × 100 nodes using data with Nt = 4.

The sample numbers, n`, are computed according to Equation (24) using the estimated

convergence parameter values of α ≈ 0.75 and β ≈ 0.25. Figure 4(c)-(d) provides, for

the production/degradation model, the computational gain using MLABC over ABC

rejection and the RMSE versus the target RMSE. Compared to the degradation model,

the computational gain is significantly less; however, it is consistent with the theoretical

results. Similarly, Figure 4(d) shows practically no increase in the RMSE of the CDF

estimator.

An important remark must be made about these results. They do not represent
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Figure 4. Measured performance gain and error. (a) Computational gain and

(b) RMSE for the degradation model results using data with Nt = 8 observation times

and convergence rate estimates α ≈ 0.96 and β ≈ 1.54. (c) Computational gain and (d)

RMSE for the degradation/production model results using data with Nt = 4

observation times and convergence rate estimates α ≈ 0.75 and β ≈ 0.25.

the best computational gain that can be achieved in practice, but rather they provide

experimental validation for our theory. If the values of α and β are known, then it

is possible to predict the asymptotic computational gain available whilst maintaining

control on the RMSE of the estimator. Furthermore, we note that, as predicted by the

theory, the computational gain grows proportionally to a power of h−1.

Performance using empirical sample numbers

We now look to the more practical approach to MLABC, as presented in Algorithm 4.

Here we specifically focus on the degradation/production model. In the first experiment,

20 independent MLABC (using Algorithm 4) and ABC rejection CDF estimators of the
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degradation/production model are computed for target RMSE h ∈ [0.1, 0.25]. The CDF

is approximated over the support region {(k1, k2) : (k1, k2) ∈ [0, 1]× [0, 10]} on a grid of

100× 100 nodes using data with Nt = 4.

Results in Figure 5 are analogous to the results in Figure 4(c)-(d). By using Al-

gorithm 4, we have achieved greater computational gain, whilst maintaining reasonable

control over the RMSE (i.e., still within target h). The main advantage is that values

for α and β have not been required. While the performance results in Figure 5(a) are

an improvement over those in Figure 4(c), the new results still show the same order of

magnitude increase in performance. However, we now demonstrate that Algorithm 4 can

out perform the asymptotic results by an order of magnitude.
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Figure 5. Measured performance gain and error for the

degradation/production model. Using data with Nt = 4 observation times and 100

samples at each level to select sample numbers n`. (a) Measured computational gain

and (b) RMSE as a functions of h.

In the second experiment, the target RMSE is kept constant at h = 0.2. MLABC

and ABC rejection estimators for the posterior CDF are computed using data with Nt =

2, 4, 6, . . . , 20. For each value of Nt, 20 simulations are executed, with computation times

being the average. Figure 6(a) demonstrates a significant improvement in computation

time for MLABC over ABC rejection in this case. Note that the computational gain

shown in Figure 6(b) is an order of magnitude greater than the asymptotic analysis

shown in Figure 3(d) predicts for Nt = 10.

We now compare the quality of the posteriors computed by MLABC and ABC rejec-

tion. For this we consider the posterior mean and the marginal distribution 90% credible
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Figure 6. Comparison of ABC and MLABC: degradation/production.

Performance of ABC and MLABC for the degradation/production model as Nt

increases. (a) Computation time. (b) Computational gain. (c) and (e) ABC parameter

estimates. (d) and (f) MLABC parameter estimates. The true parameter values,

(k1, k2) = (0.1, 1.0), are indicated with dashed lines, posterior means and 90% credible

intervals are indicated with solid lines and shaded areas, respectively.
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intervals. The mean, representing the central tendency of the posterior, represents a

likely parameter candidate, (km1 , k
m
2 ), given by

kmi =

∫∫
R2

kip (k1, k2 | ρ(Ds,D) < εL) dk1dk2. (30)

Given the joint CDF, F (s1, s2), the marginal CDFs, F1(s) and F2(s), can be deter-

mined using

F1(s) = lim
s2→∞

F (s1, s2), F2(s) = lim
s1→∞

F (s1, s2). (31)

For some significance level, a, the (1−a)100% credible interval for parameter ki, denoted

by [l(ki), u(ki)], is

l(ki) = sup {s ∈ R : Fi(s) < a/2} , u(ki) = inf {s ∈ R : Fi(s) > 1− a/2} . (32)

The credible interval provides a measure of uncertainty around the parameter estimates.

Figures 6(c) and 6(e) present the estimates produced by standard ABC for different

values of Nt. These are to be compared with the estimates produced by MLABC as

shown in Figures 6(d) and 6(f). These results show that, from a practical perspective,

the MLABC method is just as appropriate as ABC rejection. That is, the true parameter

values lie within the credible region of the posteriors and these credible intervals are

almost the same for MLABC compared with ABC rejection. Both methods yield very

similar mean and credible interval values.

Higher dimensional and higher order models

We now investigate the validity of our MLABC approach to inference for higher dimen-

sional and higher order models. In the first instance, we investigate the inference problem

in four-dimensional parameter spaces for first order reactions. We then investigate a more

biologically inspired enzyme kinetics model that includes a second order reaction.

Mono-molecular chains

A general mono-molecular chain biochemical reaction network has the form

Z
k1→ X1 + Z, X1

k2→ X2, · · · , Xi−1
ki→ Xi, · · · , XM−2

kM−1→ XM−1, XM−1
kM→ Y. (33)
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As shown by Jahnke et al. [41], the CME for Equation (33) has a closed form solution,

however, it is non-trivial to evaluate. For the purposes of this study, we suppose the

CME of the mono-molecular chain to be intractable.

When M = 4 we have the four reaction mono-molecular chain

Z
k1→ X1 + Z, X1

k2→ X2, X2
k3→ X3, X3

k4→ Y, (34)

with initial conditions

X1(0) = x1,0, X2(0) = x2,0, X3(0) = x3,0, Z(0) = 1. (35)

We compute 20 independent MLABC and ABC rejection CDF estimators for the four

reaction mono-molecular chains (Equation (34)) using data with Nt = [2, 4, . . . , 20] obser-

vation points. The CDFs are approximated over the region {(k1, k2, k3, k4) : (k1, k2, k3, k4) ∈

[0, 3]× [0, 0.3]× [0, 0.03]× [0, 0.03]} using the target RMSE h = 0.2. Computation times

are averaged over the 20 samples.

For the four reaction mono-molecular chain model, we note in Figure 7(b) that a

peak computational gain of approximately five times is achieved before a reduction back

to four times. Figures 7(c)-(j) also provides the resulting parameter estimates using ABC

and MLABC. In this case, the MLABC and standard ABC estimates are in very close

agreement across all four parameters. The MLABC estimator displays more variability in

u(ki) for Nt ≥ 10, however these oscillations follow the same trend as the ABC estimates.

We note that for a three reaction mono-molecular chain the results (not shown) are very

similar, however, a peak of 10 times computational gain is observed.

One final remark on the results for mono-molecular chains: note that the degrada-

tion/production model is actually a mono-molecular chain with M = 2. In light of

this, it is interesting to note that the peak computational gain achieved for the degrada-

tion/production model in Figure 6(b) is around 20 times (M = 2), for the three reaction

mono-molecular chain it is around 10 times (M = 3)(results not shown) and for the

four reaction mono-molecular chain it is around five times (M = 4) (Figure 7(b)). This

could indicate that the ratio of the convergence rates, β/α, is inversely proportional to

the number of reactions, M . There could be other factors at work here, but given the
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curse of dimensionality inversely affects the order of the acceptance rate, γ, it is logical

to conclude that there is also an additional influence on the convergence rates α and β.

More experimental and theoretical work is needed to analyze the relationship between

these convergence rates and the dimensionality of the parameter space.
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Figure 7. Comparison of ABC and MLABC: Four reaction mono-molecular chain. Performance of ABC and MLABC for the

four reaction mono-molecular chain as the number of observation times, Nt, increases. (a) Computation time. (b) Computational gain.

(c)-(f) ABC parameter estimates. (g)-(j) MLABC parameter estimates. The true parameter values, (k1, k2, k3, k4) = (1, 0.1, 0.01, 0.01),

are indicated with dashed lines, posterior means and 90% credible intervals are indicated with solid lines and shaded areas, respectively.
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Higher order models

We now test the applicability of MLABC to more general biochemical reaction networks

with higher order reactions. Such networks rarely yield a tractable solution to the CME [7,

39]. As a result, such higher order models are practical target applications for MLABC.

We consider a Michaelis-Menten enzyme kinetic model [42], which describes the dynamics

of an enzyme-catalyzed reaction of a substrate S into a product P with the enzyme E

acting as a catalyst. A three reaction Michaelis-Menten model is given by

S + E
k1→ ES, ES

k2→ S + E, ES
k3→ P + E, (36)

with initial conditions

S(0) = s0, E(0) = e0, ES(0) = 0, P (0) = 0. (37)

An example realization demonstrating the additional complexity of the dynamics of this

model is provided in Figure 8. The realization displays the conversion of S into P . Note

that as S(t)→ (k2+k3)/k1, the propensity function of the third reaction a3(ES(t); k3)→

k3e0/2, so the shape of the ES curve depends crucially on this ratio of parameters. As a

result, more observations time points are required to ensure the assumption of compact

support for the posterior is reasonable.

t

0 20 40 60 80

0

20

40

60

80

100

S
E

E
S

P

Figure 8. Michaelis-Menten model realization. Example realization with

k1 = 0.001 (sec−1), k2 = 0.005 (sec−1), k3 = 0.01 (sec−1) and s0 = e0 = 100.

The Michaelis-Menten model given in Equation (36) is the first we investigate with an

intractable CME. As a result we investigate how the performance of MLABC is affected

by both the choice of target RMSE, h, and the choice of the number of observation points,

Nt.
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First, we consider the computational gain achieved for the inference on the Michaelis-

Menten model as the target RMSE, h, decreases. This time, the CDF estimators are

constructed using ABC and MLABC with a uniform prior with support {(k1, k2, k3) :

(k1, k2, k3) ∈ [0, 0.003]× [0, 0.015]× [0, 0.03]} and fixed number of observation point, Nt =

12. Estimators are computed for target RMSEs of h = 0.125, 0.15, . . . , 0.2. Computation

times are averaged over 20 independent simulations. Results are shown in Figure 9,

confirming the growth in computational gain as h→ 0.
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Figure 9. Comparison of ABC and MLABC: Michaelis-Menten model. The

performance of MLABC as the target error h decreases. (a) Computation time. (b)

Computational gain.

For our last experiment, we take data over a much larger interval Nt = [2, 12, . . . 192].

We choose this interval to highlight the fact that as Nt is increased the computational

gain reaches a maximum then plateaus. We conjecture that this reflects a point at which

little information is gained through the additional observations. Just as with our other

models we compute 20 independent CDF estimators using ABC and MLABC for each

value of Nt with target RMSE h = 0.2. In this case, we take a uniform prior with

support {(k1, k2, k3) : (k1, k2, k3) ∈ [0, 0.005]× [0, 0.025]× [0, 0.05]}. The result is a peak

computational gain of six times followed by a plateau between four and six times, as

shown in Figure 10(b).

The associated parameter estimates are given in Figure 10(c)-(h). The MLABC es-

timator follows very closely the ABC estimator in terms of the mean for all parameters

however the uncertainties in the MLABC estimate for k2 are nearly double that of the

ABC estimator for some values of Nt. Interestingly, this seems to occur for values of Nt
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Figure 10. Comparison of ABC and MLABC: Michaelis-Menten model.

Performance of ABC and MLABC for the Michaelis-Menten model as the number of

observation times, Nt, increases. (a) Computation time. (b) Computational gain. (c),

(e) and (g) ABC parameter estimates. (d), (f) and (h) MLABC parameter estimates.

The true parameter values, (k1, k2, k3) = (0.005, 0.025, 0.05), are indicated with dashed

lines, posterior means and 90% credible intervals are indicated with solid lines and

shaded areas, respectively.
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in which the computational gain is lower. Further investigation is required to explain the

reasons for this.

Conclusion

In this study, we present a new approach to computational Bayesian inference using

MLMC sampling. We perform a general analysis based on the approximation of poste-

rior CDFs using MLMC techniques developed by Giles et al. [37], to show that under

our convergence assumptions, asymptotically, a net computational gain is always achiev-

able for some sufficiently small value of RMSE, h, and simulation results confirm this

prediction.

We also develop a practical implementation of the MLABC method that does not

require the convergence rate parameters to be known a priori. Numerical estimates of

the posterior CDF over a range of models suggest that a computational gain of four

to 20 times can often be achieved over standard ABC rejection, with larger data set

dimensionality improving this gain, up to some maximum. Under the right conditions,

such as one-dimensional inference problems, a computational gain of up to 60 times is

achievable.

Though the target application of this work is parameter inference for stochastic bio-

chemical reaction network models, the MLABC method is as general as ABC rejection.

From a practical perspective, MLABC can be used in place of ABC rejection if the stan-

dard assumptions on weak and strong convergence hold. Minor modifications to the

provided prototype code are required to achieve this.

While our current approach is a step towards dealing with the curse of dimensionality,

there is still much work to be done. For the purposes of this initial investigation, we use

ABC rejection for our benchmark inference method and as the basis of the MLABC

method. The most natural extension of this work is the application of the MLMC

framework to other ABC methods. We acknowledge that more advanced approaches

such likelihood-free Markov chain Monte Carlo [26] and likelihood-free sequential Monte

Carlo [27] will generally deal with higher dimensional models and data more efficiently
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than ABC rejection. Our MLABC framework, however, is sufficiently general that it is

not intimately tied to ABC rejection and there will be future opportunities to apply this

approach to these more advanced methods.
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