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Abstract
Summary: Single-cell RNA-seq (scRNA-seq) is increasingly used

in a range of biomedical studies. Nonetheless, current RNA-seq anal-
ysis tools are not specifically designed to efficiently process scRNA-
seq data due to their limited scalability. Here we introduce Falco,
a cloud-based framework to enable paralellisation of existing RNA-seq
processing pipelines using big data technologies of Apache Hadoop and
Apache Spark for performing massively parallel analysis of large scale
transcriptomic data. Using two public scRNA-seq data sets and two
popular RNA-seq alignment/feature quantification pipelines, we show
that the same processing pipeline runs 2.6 – 145.4 times faster using
Falco than running on a highly optimised single node analysis. Falco
also allows user to the utilise low-cost spot instances of Amazon Web
Services (AWS), providing a 65% reduction in cost of analysis.

Availability: Falco is available via a GNU General Public License
at https://github.com/VCCRI/Falco/

Contact: j.ho@victorchang.edu.au
Supplementary information: Supplementary data are available

at BioRXiv online.

1 Introduction

Major advancements in single-cell technology have resulted in an increas-
ing interest in single-cell level studies, particularly in the field of transcrip-
tomics [12]. Single-cell RNA sequencing (scRNA-seq) offers the promise of
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understanding transcriptional heterogeneity of individual cells, allowing for
a clearer understanding of biological process [14, 8, 4, 11].

Each scRNA-seq experiment typically generates profiles of hundreds of
cells, which is a magnitude larger than the typical amount of data gener-
ated by standard bulk RNA-seq experiments. Current RNA-seq processing
pipelines are not specifically designed to handle such a large number of pro-
files. To fully realise the potential of scRNA-seq, we need a scalable and
efficient computational solution. The premise of our solution is that state-
of-the-art cloud computing technology, which is known for its scalability,
elasticity and pay-as-you-go payment model, can allow for a highly efficient
and cost-effective scRNA-seq analysis.

There are a number of existing cloud-based next-generation sequenc-
ing bioinformatics tools based on the Hadoop framework, an open source
implementation of MapReduce [5], or the Spark framework [17]. Halvade,
written in Hadoop MapReduce, is designed to perform variant calling of
genomic data from FASTQ files, though it also offers support for transcrip-
tomic analysis [6]. SparkSeq [16] and SparkBWA [1], both written in Spark,
offers interactive sequencing analysis of BAM files and alignment of FASTQ
files respectively. These tools have limitations in the context of scRNA-seq
analysis. Of the three tools, only SparkSeq allows for multi-sample analysis,
although SparkSeq itself is also limited as it does not perform alignment,
which is the main bottleneck in sequence analysis.

Here we use a different approach to utilising cloud-based big data tech-
nology. Our framework – Falco – is a framework that allows users to ’plug-in’
their chosen RNA-seq alignment, quality control, preprocessing and feature
quantification tools, and enable the resulting pipeline to run multi-sample
analysis of large-scale transcriptomic data on the cloud. Falco utilises Ama-
zon Elastic MapReduce (EMR), a big data processing service for deploying
managed Hadoop and Spark clusters on the Amazon Web Services (AWS)
cloud.

2 Framework

The Falco framework consists of a splitting step, an optional pre-processing
step and the main analysis step. The first step, the splitting step, is a
MapReduce job which splits FASTQ input files stored in the Amazon S3
storage service into multiple smaller FASTQ files. In the case of paired-end
reads, the two reads are combined into a single record to ensure that paired-
end reads are processed together. The splitting process is performed in order
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to increase the level of parallelism in analysis and normalise the performance
of tools as each chunk will have the same maximum uncompressed size of
256 MB.

The next step in the pipeline is an optional step for performing pre-
processing of reads, such as adapter trimming and filtering reads based on
quality. The pre-processing step is another MapReduce job which performs
pre-processing of the split FASTQ files using any pre-processing tools chosen
by the user. The user is asked to supply a shell script with commands to
run their selected pre-processing tools, that is then called by the MapReduce
job.

The final step of the pipeline is the main analysis step. It performs
alignment and quantification of reads using the Spark framework. It was
designed such that any RNA-seq alignment and quantification tools can
be used within the Falco framework. In the current implementation, each
split FASTQ file can be aligned using either STAR [7] or HISAT2 [9] and
quantified using either featureCounts [13] or HTSeq [2]. By default, STAR
and featureCount will be used for alignment and quantification, however
the framework accepts any combination of the tools. The returned gene
counts per split are then reduced (i.e., merged) to obtain the total read
counts per gene in each sample. The gene count matrix is produced and
stored into Amazon S3 storage. Aside from the gene counts, the analysis
step also returns selected mapping and quantification reports generated by
the selected alignment and quantification tools as well as optional RNA-seq
alignment metrics from Picard tools [3].

As part of the pipeline, a script is provided to simplify the creation of
the EMR cluster and configure the required software and references on the
cluster. Similarly, each of the steps also has a corresponding submission
script which will upload the files required for the step and submit the step
to the EMR cluster for execution.

2.1 Customising Falco framework

The Falco framework allows the user to add custom alignment and/or quan-
tification tools beyond what is provided by default. Instructions are provided
in the github wiki which will take the user through the steps required to add
their selected tool(s) to the framework. It is expected that the user has mod-
erate to advanced Python proficiency in order to perform customisation of
the framework.

To ensure that the output of Falco matches that of non-Falco execution,
the tools must be compatible with divide-and-conquer approach. Examples
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Table 1: scRNA-seq processing time with or without Falco

System Nodes
Mouse - embryonic Human - brain

stem cell (hours) (hours)
S+F* H+H* S+F* H+H*

Standalone 1 (1 process) 93.7 233.6 154.7 198.8
1 (12 processes) 21.1 32.6 16.4 19.6
1 (16 processes) 18.5 28.4 13.6 16.2

Falco 10 7 11.2 2.7 4.1
20 4.1 6.4 1.6 2.3
30 3.3 4.8 1.4 2.0
40 2.8 4.0 1.1 1.5

*S+F = STAR for aligner and featureCounts for quantification; H+H =
HISAT2 for aligner and HTSeq for quantification. Standalone number of
processes indicates the number of FASTQ file pairs that are processed in
parallel. Timing for Falco includes initialisation and configuration time
which are approximately 16 minutes.

of tools which are not compatible with Falco approach include TopHat2 [10]
and StringTie [15] as those tools uses information from the entire read for
performing calling and quantification, respectively. The divide-and-conquer
approach used by Falco means that the tools only have partial information
from the entire read and thus the output will not necessarily be the same.

3 Evaluation

To evaluate the performance of Falco, the runtime of two popular RNA-seq
pipelines, STAR followed by featureCounts (S+F), and HISAT2 followed by
HTSeq (H+H), is evaluated using two scRNA-seq data sets with and without
using the Falco framework. A number of realistic scenarios for analysis in
a single computing node were devised – from the näıve single processing
approach to a highly parallelised approach. Furthermore, to demonstrate
the scalability of Falco, EMR clusters with increasing numbers of core nodes
(from 10 to 40) were used to show the effect of adding more computational
resources on the runtime of Falco.

In all the comparison, the AWS EC2 instance type used for computation
(core node for EMR) is r3.8xlarge (32 cores, 244GB of RAM and two 320GB
SSDs). For Falco’s EMR cluster, a single r3.4xlarge (16 cores, 122GB RAM)
was used as the master node for scheduling jobs and managing the cluster.
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The EMR cluster uses Amazon EMR release 4.6, which contains Apache
Hadoop 2.7.2 and Apache Spark 1.6.1, and takes 16 minutes for initialisation
and configuration in all cluster configurations used.

Two recently published scRNA-seq datasets were used for evaluation.
The first dataset (SRA accession: ERP005988), is a mouse embryonic stem
cell (mESC) single cell data containing 869 samples of 200 bp paired-end
reads, totalling to 1.28× 1012 sequenced bases, stored in 1.02 Tb of gzipped
FASTQ files [11]. The second dataset (SRA accession: SRP057196), is
a smaller human brain single cell data containing 466 samples of 100 bp
paired-end reads, totalling to 2.95× 1011 sequenced bases and 213.66 Gb of
gzipped FASTQ files [4].

Comparing the performance of a single node, with different parallelisa-
tion approaches, against Falco shows that running the S+F pipeline on Falco
results in a speedup of 2.6x (10 nodes vs 16 processes) to 33.4x (40 nodes
vs 1 process) for the mouse dataset and 5.1x (10 nodes vs 16 processed) to
145.4x (40 node vs 1 process) for the human dataset. For the H+H pipeline,
Falco gives a speedup of 2.5x (10 nodes vs 16 processes) to 58.4x (40 nodes vs
1 process) and 4.0x (10 nodes vs 16 processes) to 132.5x (40 nodes vs 1 pro-
cess) for the mouse and brain datasets respectively (Table 1). The disparity
in the speed-up between the two datasets is due to different pre-processing
tools being employed, with the human dataset utilising more pre-processing
steps in the original publication [4]. We also note that the gene expression
quantification produced by a given pipeline is the same regardless of whether
the Falco framework was used.

For the scalability comparison, it can be seen that the runtime of the
pipeline decreases with increasing cluster size (Table 1), though the trend
is gradual rather than linear. Analysis of the runtime for each step in the
framework shows a similar gradual decrease in runtime for pre-processing
and analysis steps (Supplementary Figure 2). For the splitting step, a dif-
ferent trend is seen where there is little to no decrease in runtime for cluster
size ≥ 20 nodes. The lack of speed up for splitting is due to the number of
executors exceeding the number of files to be split and the limitation of time
taken to split large files as the distribution of file size in both test datasets
is uneven (Supplementary Figure 1).

To save cost, EMR allows for the usage of reduced price spot computing
resources. The spot prices fluctuate depending on the availability of the
unused computing resource and the spot instance is obtained by supplying
a bid for the resource. The use of spot instances for analysis provide a
substantial saving of around 65% compared to using on-demand instances
(Table 2 and 3). The trade-off with using spot instances is that the comput-
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Table 2: Falco cost analysis: on-demand vs. spot instances for STAR +
featureCounts
Dataset Cluster size Time On-demand Spot cost % Savings

(hours) cost (USD) (USD)

Mouse - 10 node 8 247.20 85.67 65.34
embryonic 20 node 5 301.00 99.09 67.08
stem cell 30 node 4 258.00 115.71 55.15

40 node 3 356.40 114.11 67.98
Human - 10 node 3 92.70 32.13 65.34
brain 20 node 2 120.40 39.64 67.08

30 node 2 179.00 57.86 67.68
40 node 2 237.60 76.08 67.98

Time rounded up to whole hour including cluster startup. Price used for
r3.8xlarge instance is USD$2.660/hr (on-demand price) and USD$0.64
/hr(average spot price for June 2016).

Table 3: Falco cost analysis: on-demand vs. spot instances for HISAT2 +
HTSeq
Dataset Cluster size Time On-demand Spot cost % Savings

(hours) cost (USD) (USD)

Mouse - 10 13 401.70 139.10 65.37
embryonic 20 7 421.40 138.60 67.11
stem cell 30 5 447.50 144.50 67.71

40 4 475.20 152.00 68.01
Human - 10 5 154.50 53.50 65.37
brain 20 3 180.60 59.40 67.11

30 2 179.00 57.80 67.71
40 2 237.60 76.00 68.01

Time rounded up to whole hour including cluster startup. Price used for
r3.8xlarge instance is USD$2.660/hr (on-demand price) and USD$0.64
/hr(average spot price for June 2016).
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ing resource could be terminated should the market price for that resource
exceed the user’s bid price.

4 Summary

Falco is a cloud-based framework that enables massively parallelised se-
quence alignment, quality control, and feature quantification of single-cell
transcriptomic data in AWS cloud-computing environment.
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