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Abstract 
A large number of genomic studies are underway to determine which genes are 
abnormally regulated by methylation in disease. However, our understanding of how 
disease-specific methylation changes potentially affect expression is poorly understood. 
We need better tools to explain specific variation in methylation that potentially affects 
gene expression in clinical sequencing. We have developed a model, Methylation 
Interpolated Gene Signatures (MIGS), that captures the complexity of DNA methylation 
changes around a gene promoter. Using data from the Roadmap Epigenomics Project, 
we show that MIGS significantly outperforms current methods to use methylation data to 
predict differential expression. We find that methylation changes at the TSS and 
downstream ~2kb are most predictive of expression change. MIGS will be an invaluable 
tool to analyze genome-wide methylation data as MIGS produces a longer and more 
accurate list of genes with methylation-associated expression changes. 
 
 
Introduction 
Establishment of specific patterns of DNA methylation is necessary for normal 
development (1, 2), and aberrant methylation is frequently observed in cancer (3, 4). 
CpG islands, regions of high CpG density, are typically unmethylated and associated 
with 40-70% of mammalian gene promoters (5). Hypermethylation of CpG islands 
overlapping the transcription start site (TSS) downregulates tumor suppressor genes, 
thus promoting tumorigenesis (6, 7). Typically, promoters are labeled as either 
methylated and silenced or unmethylated and potentially active (8, 9). Although most 
analysis techniques rely upon this simple binary characterization (10), studies that 
model methylation using a single window (SW) of ~2kb around the promoter region find 
only modest negative correlations with expression levels (5, 11).  Recent work, 
however, has indicated that a large number of patterns that associate with differential 
gene expression (12). For example, methylation at CpG island-shores, regions of 
decreased CpG density flanking CpG islands, correlate with differential gene expression 
in colon cancer (13). Further, long hypomethylated domains in cancer often contain 
down regulated genes (13). Positive correlations between gene body methylation and 
gene expression have also been frequently observed (14, 15).  
 
The most common current approach to associate DNA methylation and expression 
changes is to first identify differentially methylated regions (DMRs) and then associate 
them with nearby genes. Numerous statistical tools have been developed to identify 
DMRs (reviewed in (10)). Generally, DMRs are found by segmenting the genome into 
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equally spaced regions and the statistical significance of each region is calculated using 
a generalized Fisher’s method. To infer biological insight, known genomic regulatory 
elements are associated with DMRs within a certain distance. However, DMR methods 
rely on a set of arbitrarily defined thresholds for the size and number of CpGs to include 
in the DMR. It is often recommended that these parameters be adjusted for each 
individual dataset, and choices in these parameters can have substantial implications in 
terms of the numbers of DMRs and genes nearby. However, studies find only weak 
correlations between DMRs near gene promoters and differential gene expression. One 
possible reason that both the SW and DMR methods fail to find a strong association 
between differential methylation and expression is that they attempt to reduce DNA 
methylation to a single differential value to associate with gene expression change. 
Neither method considers the surrounding context of these changes.  
 
Here we seek to develop a new approach to model the relationship between changes in 
DNA methylation and changes in gene expression that accounts for the local 
methylation context. Our lab previously conducted an unbiased survey of patterns of 
differential DNA methylation that are putatively associated with gene expression in 
cellular senescence and upon 5-Azacitidine treatment in Acute Myeloid Leukemia (12, 
16, 17). Here we extend this method to classify patterns of methylation change with 
differential expression. To infer the expression change of novel patterns of differential 
methylation that may be functionally relevant it would be beneficial to have an algorithm 
with few assumptions about genic positions, robust in identified regions, and extensible 
across samples. Therefore, we have developed a supervised classifier, MIGS 
(Methylation Interpolated Gene Signatures), to identify DNA methylation patterns that 
associate with transcriptional change. Such a tool will help us understand the functional 
importance between differential methylation and gene expression. 
 
Materials & Methods 
 
Genome-wide DNA methylation data 
Samples from 17 tissues with matched whole genome bisulfite sequencing (WGBS) and 
RNA-seq were obtained from the Roadmap Epigenomics Project (18). We obtained 
consolidated methylation data, which was previously cross-assay standardized and 
uniformly processed. All CpG sites were filtered for ≥4x coverage. 
 
RNA-seq data 
We used uniformly processed protein-coding gene level annotations from Genecode 
V10 to obtain standardized RPKM values. Each Genecode V10 annotation was 
converted to Refseq annotations (refGene.hg19.21_12_15.txt) using the myGene.info 
python API (19). Only genes with unique transcription start sites (TSSs) with complete 
annotations were considered. All genes with less than 4 exons were removed from 
analysis for direct comparison with the ROI classifier. If a gene had less than 0.2 
methylation change, it was excluded from analysis. All genes shorter than 5 kb (based 
on genomic distance) were excluded from analysis. If the differentially expressed gene 
had less than 40 CpGs, it was excluded from the analysis. Differentially expressed 
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genes were defined as genes with ≥2-fold difference between samples after an applied 
floor of 5 RPKM. 
 
SW (Single Window) 
We compute the average methylation across a single, fixed +/-1 kb window around the 
TSS of each gene (13). We perform logistic regression using the average methylation in 
the SW. Logistic regression cross-validation was run with 1000 maximum iterations for 
the optimization algorithm. 
 
DMRs (Differentially Methylated Regions) 
We use DSS-single to compare DMRs between individual samples (20). We identified 
DMRs (p<0.01) and used their size (bp), average differential methylation, and stranded 
distance (bp) to the closest TSS (0 if overlapping) as features for gene expression 
change classification with a Random Forest classifier with 1001 estimators. 
 
ROI (Regions of Interest) 
The ROI classifier reduces DNA methylation across the entire gene and surrounding 
regions to multiple averaged values. The ROI classifier was implemented as described 
in Lou et al. (21).  
 
MIGS (Methylated Interpolated Gene Signatures) 
We applied z-score normalization to each of the CpG values within a 10kb window 
surrounding the TSS based upon the distribution of methylation values in a 100kb 
surrounding anchor window. To compare multiple methylation values between different 
genes, we create methylation signatures using a piecewise cubic hermite interpolating 
polynomial (PCHIP) to interpolate a curve of z-score normalized differential DNA 
methylation with a 10kb window around the TSS for each differentially expressed gene. 
This approach is appropriate since CpG sites exist in different places relative to the TSS 
of each gene, and CpG methylation values are highly autocorrelated (12, 22, 23). The 
interpolated curve is then subjected to Gaussian smoothing with a bandwidth of 50bp. 
To obtain discrete features, we subsample our interpolated methylation signature at 
20bp resolution. We then use these features with a Random Forest classifier with 1001 
estimators. 
 
Evaluation Framework 
We applied a strict evaluation framework to test the predictions of each method (Figure 
2). From 17 samples from the Roadmap Epigenomics Project, we selected 17 pairwise 
comparisons.  All 17 samples were unbiased in the number of CpGs or their mean CpG 
coverage of the CpGs in the centered 10kb window. We performed 17-fold samplewise 
cross validation, while holding out any individual samples from the training set that 
would appear in the testing pairwise comparison. Then for each testing pairwise 
comparison, we perform 10-fold cross validation for each of the genes in the testing 
pairwise comparison. To compare between different samples, performance is reported 
as the accuracy and rejection rate of the number of genes. 
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Machine Learning Methods 
For each of these approaches we applied machine learning methods to classify the 
direction of differential expression (Table 1). All methods have applied a Random Forest 
classifier except for the SW method which relies upon logistic regression. Average 
performance based on the accuracy, reject rate, positive predictive value (PPV), and 
negative predictive value (NPV) is reported across all genes treated as a large pool 
from all samples. The ROC curves and the PR curves are averaged to provide a 
sample-wise level of reporting. All machine learning methods are implemented with 
scikit-learn and MIGS is publically available on Github at 
http://github.com/cschlosberg/migs. 
 
 
Results 
MIGS 
MIGS is built as a supervised framework using a spatial representation of DNA 
methylation surrounding the TSS. We model methylation using a signature in the +/- 5kb 
window around the TSS. This signature allows the model to incorporate the entire 
profile of methylation changes across the area in and around the gene’s promoter 
including any associate CGI and CGI-shore regions. Interpolation and smoothing of the 
data decreases the influence of sequencing error at individual CpGs (12). Similar 
approaches have shown a marked improvement in the ability to determine DMRs (24). 
Since the goal of most studies is to identify how changes in methylation alter expression 
in a disease, we examine the ability of methylation to predict differential expression 
change. The Random Forest classifier provides a nonparametric model of expression 
change classification with a low number of hyperparameters, generation of an internal 
unbiased estimate of testing error, and identification of feature importance (25).   
 
Implementation of Other Methods 
To understand the performance of MIGS we compared it to the most common methods 
used in the literature (Figure 1). The first method is to model methylation using a single 
window (SW) +/- 1kb window around the TSS, and use logistic regression to predict 
differential expression based on the average methylation in this window. The second 
method is a DMR approach.  Each gene was first associated with its closest DMR as 
identified by DSS (20). We extracted features including the distance from the DMR to 
the gene, the average methylation over the DMR, then associate the DMR with the 
closest gene. These features were then used in a Random Forest classifier to predict 
differential expression. The third method was to implement the ROI (Region of Interest) 
classifier for differential expression. The ROI, originally developed for use on individual 
samples, uses the average methylation across bins at and nearby the gene’s promoter 
and exon and intron boundaries as features for a Random Forest to predict expression 
(21).  
 
MIGS best predicts gene expression change from differential methylation 
To compare classifiers we used whole genome bisulfite sequencing (WGBS) DNA 
methylation and RNA-seq data from the Roadmap Epigenomics Project for 17 tissue 
samples (18). We have implemented a sample-wise and 10-fold gene-wise cross-
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validation framework to ensure that each testing gene does not observe an example of 
either its own gene or sample (Figure 2). Since patterns of differential DNA methylation 
can be very similar between datasets, this evaluation framework tests the strength of 
the DNA methylation representation and the universality of DNA methylation patterns 
rather than the ability to simply recall an observed gene’s expression class. Since 
transcription can be controlled by multiple factors other than DNA methylation, we 
introduce a reject rate. The reject rate excludes genes that cannot be reliably predicted 
(i.e. they likely do not have methylation-associated expression changes). Each classifier 
provides a probability of classification, which can be used as a threshold to compute the 
rejection rate.  
 
In Figure 3a, we observe that MIGS outperforms ROI, SW, and DMR methods in 
accuracy and proportion of the genes returned (1-Reject Rate) across all rejection rates. 
Importantly, MIGS returns many more genes more accurately at high levels of its 
probability of classification. MIGS further outperforms the other methods when 
classifying the entire dataset by ROC and precision-recall analysis (Figure 3b,c). We 
next examined whether there was any implicit bias between the expression classes 
called at each probability of classification for each method. We observe that MIGS does 
not appear to have any bias towards the positive (up-regulated) or negative (down-
regulated). In contrast, there appears to be a slight bias in favor of the positive class for 
the ROI, SW, and DMR methods at higher probabilities of classification (Figure 3d,e). 
 
While it is important to examine the performance of each classifier over a range of 
probabilities of classification, in practice, we would set an operating parameter to 
examine the accuracy and the number of genes returned. Since it is unclear what 
threshold to set for the probability of classification when examining a new dataset, we 
examined the performance of accuracy versus probability of classification for each 
sample. MIGS matches the accuracy given the probability of classification indicating 
that this probability can be used as an estimate of the final classification error in cross-
sample comparisons. At an operating probability of classification at 90%, we observe 
that MIGS returns the largest number of genes (Figure 3g), and that those genes are 
returned at the highest level of accuracy (Figure 3f). Each of these evaluation metrics in 
our framework indicate that MIGS provides the most optimal representation of DNA 
methylation in comparison to the methods analyzed.   
 
3’ proximal and TSS regions are most predictive of differential expression  
We next examined which features are most important for classification. We first 
developed a series of MIGS classifiers each using signatures from 5kb windows 
centered at varying distances away from the TSS (Figure 4a,b). Performance peaks for 
a window centered 2kb downstream of the TSS, indicating that the most important 
features exist downstream of the TSS.  Performance only moderately improved for the  
entire 10 kb window compared for the best 5kb window. An analysis of feature 
importance in the Random Forest using a classifier trained from all 17 samples showed 
that the most important features for gene expression classification occurs downstream 
~1-2kb of the TSS with a minor contribution centered on the TSS and ~0.5kb upstream 
(Figure 4e).  
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We next designed a series of MIGS classifiers to examine how the size of the centered 
window affects performance, with constant 20bp subsampled resolution. Increasing the 
window size showed steady improvements in performance. However, after the window 
size increases greater than 10 kb there is a substantial loss in the number of genes 
returned, which can be attributed to increased noise from DNA methylation in regions 
distal to the TSS (Figure 4d).  
 
Discussion 
MIGS outputs a ranked gene list to identify genes where there exists a putative 
association between methylation and expression. At any probability of classification, 
MIGS returns the largest numbers of genes at the highest level of accuracy. The SW 
can achieve high levels of accuracy, but only a much lower number of genes. 
Conversely, the DMR method generally returns a low level of accuracy with a much 
higher level of genes. DMRs require a large amount of tuning to find appropriate 
genome segmentation parameters, which implies that the nearest DMR might not 
necessarily be the most informative DMR to predict the expression class. The ROI 
classifier returns a relatively low number of genes with a larger variation in the accuracy 
of the genes returned.  
 
When applied to expression in a single sample, bins around the TSS were most 
important for classification. Incorporating the complexity of patterns rather than reducing 
methylation to a single or even multiple averaged values is critical for the success of 
MIGS. Further, interpolation and smoothing serve to decrease inaccuracy of low 
coverage methylation calls, as has been observed in DMR callers. MIGS performance 
demonstrates that full methylation profiles across the TSS region are most predictive of 
differential gene expression. The association of methylation and expression 
downstream of the TSS agrees with multiple other cancer- and tissue-specific studies 
(26-30). Given differential methylation data, MIGS takes full advantage high resolution 
DNA methylation data to provide accurate predictions and probabilities of expression 
change. 
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Figure 1: Methods of predicting differential gene expression change from differential 
DNA methylation. a) Methylation status of an example gene in normal and tumor 
samples. b) Differential DNA methylation across the example gene. c) Single window 
(SW) and differentially methylated region (DMR) of the data in (b). d) Region of interest 
(ROI) representation of the gene in (b). e) Methylation interpolated gene signatures 
(MIGS) representation of the gene in (b). 
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Table 1: DNA methylation features and classification methods. 

 
  

DNA Methylation 
Representation Features

Gene Expression Change 
Classification Method

Single Window (SW) Δ mCG/CG +/-1kb of 
TSS

Logistic Regression (LR)

Differentially Methylated 
Regions (DMR)

Distance from TSS to 
DMR (bp)

Random Forest (RF)

DMR width (bp)

Avg. Δ mCG/CG

Regions of Interest (ROI) Avg. Δ mCG/CG: Random Forest (RF)

Five 400bp bins 5’ of 
TSS 

1st Exon 

1st Intron 

Avg. Internal Exon 

Avg. Internal Intron 

Last Exon 

Last Intron 

Five 400bp bins 3’ of 
txEnd

Methylation Interpolated 
Gene Signatures (MIGS)

Δ mCG/CG of 500 bins 
(20bp) +/-5kb of TSS

Random Forest (RF)
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Figure 2: Cross validation comparison framework. Evaluation is performed sample-wise 
across the 17 samples (left) and then gene-wise across the differentially expressed 
genes (right).  
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Figure 3: Evaluation of each classifier using 17 tissue samples. a) Accuracy versus 1- 
Reject Rate b) ROC curve c) PR curve d) PPV versus 1-Reject Rate e) NPV versus 1-
Reject Rate f) testing accuracy at 90% operating probability of classification g) number 
of genes returned at 90% operating probability of classification.  
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Figure 4: DNA Methylation downstream of TSS is important for classification. a) ROC 
curve AUC and b) 1-Rejection Rate for MIGS methylation signatures created for 5 kb 
windows centered at varying distances to TSS. c) ROC curve AUC and d) 1-Rejection 
Rate for MIGS methylation signatures created using varying window sizes each 
centered at the TSS. e) MIGS RF feature importance.  
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