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Summary:  
Gene expression changes with age have consequences for healthy aging and disease 
development. Here we investigate age-related changes in gene expression measured by 
RNA-seq of fat, skin, whole blood and derived lymphoblastoid cell lines (LCLs) expression 
from ~800 adult female twins. We see evidence of up to 60% shared transcriptional age-
related effects across tissues on level of expression and 47% on splicing; amongst these we 
highlight effects on genes involved in diseases such as Alzheimer and cancer. We identify 
137 genes with age-related changes in variance and 42 genes with age-related discordance 
between genetically identical individuals; implying the latter are driven by environmental 
effects. Investigation of methylation effects observed a widespread and stronger effect of 
age on methylation than expression however we did not find a strong relationship between 
changes in both expression and methylation. In contrast, we find 4 significant examples 
where the ageing process is modulated by genetic variants. In summary, we demonstrate 
that aging affects the splicing, level and variance of expression, and that these processes can 
be both environmentally and genetically influenced. 
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Introduction 
Aging is a complex process, characterized by a progressive decline in an organism's 
biological function and phenotype characteristics, which leads to an increased chance of 
developing disease and ultimately the death of the organism  (Valdes et al. 2013). Others 
have attempted to understand the aging process by identifying common denominators of 
aging in different organisms (López-Otín et al.). Many of these hallmarks, such as genome 
instability, epigenetic alterations, loss of proteostasis and telomere attrition, are 
accompanied by changes in gene expression. Identification of genes differentially expressed 
genes with age has proven useful in identifying pathways whose behavior is modified by 
age, as well as identifying biomarkers of aging and therapeutic targets (de Magalhaes et al., 
2009; Glass et al., 2013; Rodwell et al., 2004). Expression studies into aging using animal 
models and whole organisms have discovered that the expression of up to 75% of genes can 
be associated to aging (Viñuela et al., 2010). These modifications can occur by acting on the 
level of expression of genes, on the splicing of the mRNA produced or on the genetic 
regulation of gene expression (Li et al., 2009; Viñuela et al., 2010). On the other hand, 
human studies have only recently managed to identify thousands of genes associated with 
age in multiple tissues (Glass et al., 2013; Peters et al., 2015; Yang et al., 2015), but are still 
far away from identifying the same scale of aging effects in expression or the same variety 
of changes. Reasons for this include a reduced power to see interactions due to the 
uncontrolled human environment and inbred nature of model organisms, and importantly 
the lack of sufficient human expression data using appropriate technologies and tissues.  
 
In this study, we investigate changes in gene expression with age using RNA-seq 
measurements of fat, skin, whole blood and derived lymphoblastoid cell lines (LCLs) 
expression from ~800 monozygous (MZ) and dizygous (DZ) adult female twins (Supp. Table 
S1). We take a comprehensive approach that includes not only an analysis of the effect of 
age on the mean of gene expression and alternative splicing, but also analyses using gene 
expression variance and discordance between genetically identical MZ twin pairs. Although 
age-related changes in variance of gene expression have been identified in animal models, 
we believe this is one of the first human study succeeding in the identification of specific 
genes changing variance with age (Bahar et al., 2006; Lu et al., 2004; McCarroll et al., 2004; 
Somel et al., 2006). We show also how environmental exposures on MZ siblings change 
expression over time and how the aging process is a complicated interplay between genetic 
variance and environmental factors. To explore this in detail we also studied methylation 
changes with age in the same samples from fat tissue and genotype-by-age interaction on 
gene expression. Finally, in comparison with previous studies, we observe a greater degree 
of sharing of age expression effects across tissues, reflecting the large sample, benefits of 
the twin design and the more accurate quantification provided by RNA-seq. 
 

Results 
Effects of aging in gene expression levels 
To investigate the wide range of changes in gene expression with age, we used RNA-seq 
data from 855 healthy individuals drawn from the TwinsUK cohort (Supp. Table S1) in four 
tissues: i) photo protected skin, ii) subcutaneous fat, iii) whole blood and iv) lymphoblastoid 
cell lines (LCLs). We consider a gene associated with age if at least one exon was associated 
with chronological age. We discovered that 36.6% of tested genes (5,631 of 15,353) had at 
least one exon where expression levels was significantly associated with age in at least one 
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tissue (adjusted P value < 0.05; Figure 1A, Supplementary File 1). This number is roughly 
double that we previously reported (18.3%, 3,019 genes) using exactly the same skin, fat 
and LCLs samples but measuring expression using microarrays (Glass et al., 2013)(Figure 1A, 
Supp. Figure S1). We also found that the total number of expressed genes increased as a 
function of age in fat tissue (adjusted P value = 0.00264) but not in the other tissues, 
suggesting that the number of genes expressed at any given moment of life may be also a 
function of age in some tissues. Application of Gene Set Enrichment Analysis (GSEA) to the 
differentially expressed genes showed significant enrichment in GO terms (FDR < 0.05) 
related to RNA processing, fat metabolism and oxidation reduction in skin; and cell 
adhesion, membrane structure and sodium channel complex structure in fat tissue 
(Supplementary files 2). In blood, there was no specific enrichment for GO terms, and in 
LCLs only 7 genes showed significant association with age, 3 of which were previously 
reported (Glass et al., 2013). In conclusion, we identify thousands of genes whose 
expression was associated to age.  
 
To quantify the relative effect of age on gene expression, we estimated the proportion of 
variance of exon expression levels (removing technical confounders) explained by age and 
additive genetic effects (heritability). In exons associated with age, age explained only a 
small proportion of the variation in gene expression, with median values between 2.2% and 
5.7% depending on tissue and with maximum values ranging from 12% to 27% 
(Supplementary File 3). Globally, the effect of age on expression was greatest in blood, then 
skin, fat, and finally LCLs had the least. In comparison, the proportion of variance explained 
by additive genetic effects on the same set of age-affected exons was greater than that 
explained by age in all tissues (median h2

skin = 0.12, h2
fat = 0.22, h2

LCLs = 0.20, h2
blood = 0.23). A 

small global effect of age in gene expression may explain the difficulties in identifying 
biomarkers of aging in gene expression and suggest a need of larger sample sizes adjusting 
for genetic effects for such studies.  
 

Splicing is associated with aging 
As well as changes in the average level of expression, age can also cause changes in mRNA 
maturation and splicing. To identify changes in splicing with age, we quantified splicing 
based on link reads between exons using Altrans (Ongen and Dermitzakis, 2015a). As 
before, we consider the splicing of a gene to be associated with age if at least one link was 
associated with chronological age.  We found a total of 904 genes (6.3% of the 14,261 genes 
with more than one exon expressed) with at least one link differentially expressed with age 
in either fat or skin (adjusted P value < 0.05, Supp. Files 4, 5 and 6). For 51.8% of those 
genes in skin and 11.4% in fat, age was associated with level of expression as well. We did 
not see significant associations between age and splicing in LCLs and blood, probably due to 
the smaller age effect in LCL expression and the smaller sample size available for blood (N = 
384). Among genes with age-related differential splicing we found APOE (Figure 1-D and 
Figure 5)(previously associated to extreme longevity, Alzheimer disease and cholesterol 
metabolism), LMNA (causal of progeria, an accelerated aging syndrome, Figure 6), HTRA2 
(Parkinson disease) and AAP (Alzheimer disease). In fat tissue, many thrombospondins and 
collagen genes had differentially expressed links, as well as genes such as AKT1 and AKT2 
from the insulin-IGF1 pathway, which is known to play a central role in aging. Overall, we 
observed that some age-related changes in gene expression were associated to changes in 
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splicing, but that the effect of age in splicing was wicker than the observed in expression 
levels.  
 

Variance and differences in gene expression between MZ twins is dependent of age  
Age-dependent changes in the variance of gene expression (rather than mean expression 
levels) has been reported in different model organisms (Bahar et al., 2006; Lu et al., 2004; 
McCarroll et al., 2004), but previous studies in humans have not been conclusive (Somel et 
al., 2006). Changes in phenotypic variance with age can be due to different responses to 
environment, age-related damage accumulation leading to stochastic deregulation of gene 
expression or gene-age interactions where changes in relative genetic effects can increase 
heterogeneity across the population at a particular age (Paré et al., 2010). We looked for 
changes in variance with age and identified 137 genes where expression showed age-
dependent variance in at least one tissue (adjusted P value < 0.05, Figure 1B, Supplementary 
File 7). Since changes in phenotypic variance have mainly been reported to increase with 
age, we were surprised to observe that for the majority of these genes we report a decrease 
in variance of expression. The biological functions associated to the genes with age-
associated differential variance in skin included oxidation reduction, with affected genes 
such as SOD2, fatty acid metabolism with genes including CPT1B, ELOV3 and ELOV5 or cell 
cycle control like p21. In blood, enriched pathways included the VEGF signaling pathway 
with the PIK3CD and PXN genes (Figure 1B). Our analysis shows concrete examples of age-
related changes in phenotypic variance affecting expression in humans and identified 
changes in variance with age as another process by which aging may be linked to disease.  
 
Changes in variance with age occur either as a consequence of environmental exposures or 
as a result of changes in genetic regulation of gene expression. Since MZ twins are 
genetically identical (and the same age), differences in expression levels within twin-pairs 
must have an environmental cause, allowing us to learn whether changes in variance with 
age were indeed influenced by the environment experienced by the twins. Therefore, and 
exploiting the twin design, we calculated the difference in expression between MZ twins 
(Supp. Table S1). We have successfully used this strategy previously to classify genetic 
determinants of phenotypic variance in gene expression (Brown et al., 2014) and GxE 
interactions affecting allelic specific expression (Buil et al., 2015). Here, we identified 42 
genes where difference (discordance) in expression between MZ co-twins changed with age 
in at least one tissue (Figure 1C and Supp. File 8). Of the 34 genes identified in skin, 11 also 
showed a decrease in variance with age. This indicates that the observed change in variance 
for those genes was environmentally, and not genetically determined. However, for the 
remaining genes, either changing environments which were concordant across MZ twins, or 
GxE interactions remain plausible explanations for the change in variance. In conclusion, 
changes in phenotypic variation with age can be attributed to different environmental 
exposures among the individuals and not only to a general decline in regulatory functions 
and increase in genome damage with age, as others have suggested (Bahar et al., 2006).  
  
Age-related associations in expression are modulated by genetic variation 

Changes in variance in expression with age could also be a result of gene-by-age interactions 
affecting expression (GxA), when the genetic regulation of expression changes with age 
(Kent et al., 2012; Viñuela et al., 2010; Yao et al., 2014). To discover these effects, we 
searched for SNPs whose effect on expression depends on the age of the individual. It is well 
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known that the power to discover such second order effects is much reduced compared to 
standard main effects; for this reason it is common to restrict the search space to those with 
known main effects, either genetic or on aging (Wheeler and Kim, 2011). We used the latter 
approach, and chose not to restrict testing SNPs with known genetic effects as the strongest 
main-effect eQTL usually lie within promoter regions and are not often environmentally 
influenced. Therefore, we tested cis-GxA regulatory interaction effects for the 12,830 exons 
which were either 1) differentially expressed with age; 2) variance changes with age and 3) 
discordant in expression between MZ co-twins with age in fat or skin. After multiple testing 
corrections, we identified one significant gxa-eQTL, affecting the expression of CD82 among 
the genes differentially expressed with age in fat (Figure 2). We also detected three gxa-
eQTL among the genes that were discordant for expression in skin for the CNKSR1, ACO1 
and ACSS2 genes (Supp. Figure S3 and Supplementary Files 9, 10, and 11). Despite the 
inherent challenges in identifying interaction effects, we here identify four GxA effects on 
gene expression with a relatively modest sample size.  Given the many examples of GxA 
interactions reported in model organisms, we expected further studies with larger samples 
sizes to identify more examples.     
 
The effect of age on methylation in fat tissue  
Methylation levels and discordance in methylation between MZ twins has been shown to 
increase globally with age in promotor regions (Bell et al., 2012; Hannum et al., 2013). Given 
our findings of genes with age-dependent changes in variance and discordance of 
expression, and the difficulties of identifying genetic effects responsible for those changes, 
we postulated that epigenetic drift could explain some of the age-related changes in 
expression. Therefore, we used 552 Infinium HumanMethylation450 BeadChip methylation 
profiles generated from the same fat biopsies as the RNAseq data to investigate the role of 
methylation in age-related changes in gene expression (Grundberg et al.). Methylation data 
was not available in the other tissues. Firstly, using a linear mixed model we identified 
39,092 differentially methylated regions (DMRs) with age from the 370,731 array probes 
(10.54%)(Supplementary File 12). The proportion of DMRs associated with age was 
significantly larger (P value < 2.2e-16, X2 test) compared to the proportion of differentially 
expressed exons with age in fat RNAseq data (N = 1,511, 1.4%), showing that globally the 
association of aging with methylation levels is larger than for gene expression. Of the 39,092 
age-DMRs, 93.6% were hypermethylated with a median variance in methylation explained 
by age of 3.27% (Figure 3). In total, 3,555 genes have an age-DMR near their TSS (<200 bp), 
of which 444 were also differentially expressed with age, suggesting a possible influence of 
methylation in age-related expression. Secondly, we looked for associations between 
expression of all exons and methylation probes at less than 200 bp distance from their TSS. 
From 297,702 pairs of exon-methylation probes in the proximity of the TSS, we found 4,853 
to be significantly correlated, 53% negatively and 46.91% positively correlated with 
expression (Supplementary File 13). From those 4,853 exon-probe pairs, 16.8% of exons and 
15.3% of methylation probes were differentially expressed or methylated with age. In 
conclusion, we observed a widespread and stronger effect of age on methylation than 
expression and a lower number of significant associations between expression and 
methylation. 
 
To investigate whether interactions involving methylation markers could be responsible for 
changes of variance with age in gene expression, we looked for interactions between 
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methylation and age (methylation*age) affecting gene expression. Since only 3 genes had a 
significant association between variance in gene expression in fat and age at an adjusted P 
value < 0.05, we chose to relax our threshold to an adjusted P value < 0.10 and test nine 
genes. We identified a Bonferonni significant methylation x age interaction effect on 
expression of IRS1 at three methylation probes, the most significant at probe cg19451698 (P 
value = 6.6e-05, Figure 2, Supplementary File 14). This significant interaction implies that the 
expression of the IRS1 gene decreases with age in individuals with cg19451698 
hypomethylated. Such an effect was not present in individuals with high levels of 
methylation in the same region. Homologs of IRS1 and other members of the insulin/IGF-1 
pathway are known to regulate longevity in model organisms, a function that may be 
conserved in humans due to their involved in age-related diseases like diabetes. In 
summary, we detected interacting effects of methylation with age modulating genes 
expression. This indicates that more work is necessary to unravel these complex interactions 
and the relationship between changes in methylation and expression with age. 
 
Age effects in expression are shared across tissues  
Previous studies performed in multiple tissues identified a limited number of shared genes 
associated with age across tissues (Glass et al., 2013; Melé et al., 2015; Yang et al., 2015). 
Similarly, of the 5,631 genes (36.67%) affected by age in at least one tissues, we were only 
able to identify five genes significantly associated to age in all the three primary tissues 
(Figure 4). By pair-wise comparisons between tissues we found that 274 was the largest 
number of genes significantly associated between two tissues (Figure 4B). However, this 
degree of overlap of associated exons across tissues was significant (P value < 1e-216, 
Fishers test) indicating the presence of a common signature of aging across tissues. 
Furthermore, defining tissue-shared effects based on strict thresholds will underestimate 
the true sharing between tissues, particularly in blood which had reduced power to detect 
associations due to smaller sample size. Enrichment analysis, which can detect evidence of 
sharing which does not attain statistical significance by comparing the P value distributions 
across tissues, revealed shared age-related effects ranging from 21% to 60% (Figure 4), with 
skin and blood showing the least overlap while fat and skin showed the most. This is 
considerably greater than the degree of enrichment observed in microarrays, 27%-28% 
between fat and skin (Glass et al., 2013). For links associated with age reflecting changes in 
splicing, we observed similar levels of shared age-related effects between skin and fat and 
overall sharing ranging from 16% to 47%. Our results indicate that global biomarkers of 
aging with effects across multiple tissues are prevalent. It also supports the finding of multi-
tissues studies like GTEx pilot studies showing that the inclusion of more tissues types will 
also probably allow the identification of more biomarkers, as they identified thousands of 
genes associated in expression with age in at least one of the 43 tissues tested with a 
smaller sample size (Melé et al., 2015).  
  
Discussion 
The association between aging and disease has been extensively demostrated by 
epidemiological and GWAS studies (Jeck et al., 2012; López-Otín et al.), but the association 
between specific genes with a disease in the context of the aging process remains elusive. 
Our analyses have identified thousands of genes affected by aging, some of which may 
explain the influence of aging in the onset and outcome of diseases. From the genes 
reported to show age effects in expression, two examples of genes linked to age-related 
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diseases illustrate the complicated effects of ageing that we observed in their expression. 
The first example is the APOE gene. Activity of APOE has been associated with Alzheimer 
and cardiovascular diseases, and genetic variants within the TOMM40/APOE/APOC1 locus 
have been linked to longevity (Beekman et al., 2013). Our analysis showed that the 
expression of multiple exons and links of APOE change with age in skin tissue, producing 
different isoforms that can potentially induce changes in the activity of the gene (Figure 5). 
Furthermore, we previously reported an eQTL affecting the expression of APOE in skin and 
fat tissues (Buil et al., 2015). The skin eQTL (rs439401) has been implicated in triglycerides 
metabolism, Alzheimer and cardiovascular diseases (Chasman et al., 2009). Our gxa-eQTL 
analysis reported a nominally significant P value of 0.014. Given the strong association 
between expression and disease, such an effect could modulate age-related development 
and progression of the disease. The second example we choose to highlight here involves 
the LMNA gene (Figure 6), which causal of the Hutchinson-Gilford progeria syndrome. This 
syndrome is characterized by accelerated aging features as a consequence of the 
accumulation of a truncate progerin isoform of LMNA. The progerin transcript increases 
with age in normal cells (Rodriguez et al., 2009), with its protein known to accumulate in 
human skin in an age-dependent manner (McClintock et al., 2007). We reported changes in 
expression of exons (adjusted P values < 0.1) and links (adjusted P values < 0.05) between 
exons consistent with the production of different alternative isoforms in an age-dependent 
manner. Furthermore, we found an eQTL affecting the expression in skin, blood and LCLs 
tissues, the peak LCL eQTL (rs915179) has been previously linked to exceptional longevity in 
humans (Conneely et al., 2012; Sebastiani et al., 2012). The best gxa-eQTL with a P value = 
2.01e-03 was nominally significant but did not pass multiple testing correction. These 
examples illustrate that studying the global effects of the aging process may lead to the 
identification of gene involved in age-related diseases. 
 
An under-studied aspect of the relationship between aging and disease is the proposed link 
between aging and diseases as a consequence of a loss in regulatory capacities in aging 
organisms and manifested in an increase in phenotypic variance with age (Lu et al., 2004; 
McCarroll et al., 2004). Global changes in variance of gene expression have been reported to 
increase with age, but our analysis mainly identified individual genes with a decreased 
variance, contradicting the expectation of a stochastic increase of the phenotypic variance 
with age due to reduced regulatory capabilities. Three factors may induce changes in 
phenotypic mean or variance: genetic variation, environmental variation or an interaction 
between the two. Genes and pathways associated with longevity and age-related changes 
are often strongly regulated in older organisms with low levels of stochasticity and higher 
levels of heritability (Brown et al., 2015; McCarroll et al., 2004; Viñuela et al., 2010). Exons 
affected by age on the mean and variance of expression were highly heritable (Supp. Figure 
S4, Supp. file 3) suggesting, as previously reported, that age modulates genetic regulation of 
expression. We attempted to identify genetic and environmental factors involved in the 
changes of variance with age by testing for GxE interactions. We were able to identify a 
significant gxa-eQTL in fat tissue acting on the gene CD82 (rs10769002). This gene is 
associated with tumor progression as it codes for a metastasis suppressor glycoprotein 
highly correlated with p53 and its increase in expression has been associated with overall 
better survival to cancer (Gentles et al., 2015). In our analysis we observed that individuals 
homozygous for the reference allele increased gene expression with age compared to the 
alternative allele. Therefore, it is possible that the alternate allele in rs10769002 may be a 
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risk factor for some types of cancer in older individuals. Three other examples were 
identified in skin tissue for genes also previously implicated in cancer and metabolism. In 
conclusion, we identify changes in phenotypic variance with age that would be explained by 
GxE and changes in regulation, suggesting that damage accumulation is not the only 
explanation to the observed change in phenotypic variance with age in many other 
phenotypes. Moreover, we show that the study of phenotypic variance with age in gene 
expression may identify new candidate genes relevant for age-related diseases.  
 
We observed a widespread effect of age on methylation which is potentially stronger than 
the observed effect of age on gene expression, although both age effects were small 
compared to the relative influence of genetics. Our search for interactions that would 
explain changes in variance with age identified IRS1 as a gene which expression changes as a 
consequence of an age-methylation interaction. The IRS1 gene has been associated to T2D, 
an age-related disease and it has also been found to have T2D associated DMRs nearby 
(Nilsson et al., 2014). Our results suggest that although methylation changes are strong 
markers for the aging process their influence on expression changes with age may be only 
relevant for a small percentage of genes. In conclusion, our search to explain results on 
global changes in phenotypic variance with age indicates that increase or decrease in 
expression regulation jointly with the accumulation of environmental exposures may often 
be observed as multiple GxE interactions.  
 
In summary, we have performed a large human transcriptomic study of aging in multiple 
tissues. We found that the shared effect of aging in humans across four tissues as well as 
the number of affected genes is larger than previously reported. We also report that the 
global effect of age in gene expression is small (median variance explained by age is 
between 2.2% and 5.74%). When compared to the large global effect of genetic factors on 
gene expression, the low age-related values may explain the difficulties in identifying 
biomarkers of aging in gene expression, and highlight the need of larger sample sizes that 
account for genetic variation. On the other hand, we observed a larger global effect of age 
in methylation levels, with age explaining up to 60% of the variance observed in methylation 
levels in some regions. However, we observed a low number of associations between 
expression and methylation, suggesting that the relationship between both phenotypes and 
age-related changes may be independent for most genes. Moreover, we have shown that 
age alters gene expression in multiple complex ways, including variance, mRNA maturation 
and genetic regulation. Many of these affected genes have been linked to age-related 
diseases, showing the need for future studies into the relationship between age-related 
changes in gene expression and its regulation, and age-related diseases. This is particularly 
relevant for genome wide association studies (GWAS) where eQTL are routinely used to 
identify target genes of genetic variants without accounting for the effects of age. 
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Experimental Procedures 
 
Study design 
The sample collection, and mRNA extraction has been described in detail in (Grundberg et 
al., 2012). In sort, 856 Caucasian female individuals (336 MZ and 520 DZ twins) from the 
TwinsUK Adult twin registry (Spector and Williams, 2006) were recruited with a ranged age 
from 39 to 85 years (mean 59 years). Samples were prepared for sequencing and processed 
as described in (Brown et al., 2014) and (Buil et al., 2015). The number of monozygotic (MZ), 
dizygotic (DZ) and unrelated individuals (individuals with no relatives in the dataset) 
included in the final analysis per tissue are described on Supp. Table S1 

 

Exons and links quantification 
The 49-bp sequenced paired-end reads were mapped to the GRCh37 reference genome 
(The International Human Genome Sequencing Consortium, (2001)) with BWA v0.5.9 (Li and 
Durbin, 2009). We use genes defined as protein coding in the GENCODE v10 annotation 
(Harrow et al., 2012), removing genes with more than 10% zero read count in each 
tissue. For the analysis presented in this paper, only exons from protein coding genes and 
LincRNAs from verified loci (level 1) and manually annotated (level 2) were investigated. We 
calculated the relative quantification of splicing events using Altrans (Ongen and 
Dermitzakis, 2015a). Read counts assigned to links and exons were scaled to 10 million 
reads.  
Supp. Table S3 show the total number of exons and genes sequenced per tissue, as well as 
the total number of exons, genes used in the analysis here presented. 
 
Genotying and imputation. 
Genotyping of the TwinsUK dataset (N = ~6,000) was done with a combination of Illumina 
arrays as described in (Brown et al., 2014; Buil et al., 2015; Grundberg et al., 2012). Samples 
were imputed into the 1000 Genomes Phase 1 reference panel (data freeze, 10/11/2010) 
(2012) using IMPUTE2 (Howie et al., 2009) and filtered (MAF<0.01, IMPUTE info value < 0.8). 
 
Splicing junction quantifications 
We calculated the relative quantification of splicing events using Altrans (Ongen and 
Dermitzakis, 2015b). The method makes use of mate pairs mapped to different exons to 
count "links" between two exons based on the GENCODE v10 annotation for level 1 and 2 
from protein coding genes and lincRNA. Exons that overlap were grouped into "exon 
groups" to identify unique portions of each exon from an exon group. The unique portions 
were used to assign reads to an exon. The quantitative metric produced by Altrans is the 
fraction of one link's coverage over the sum of overages of all the links that the primary 
exon produced. The values range from 0 to 1, representing the proportion of a give link 
among all the links produced by the primary exon. The metric is calculated in 5'-to-3' 
(forward) and 3'-to-5' (reverse) directions to capture splice acceptor and donor effects 
respectively. Supp. Table S4 show the total number of links identify per tissue, as well as the 
total number of links per gene detected.  
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Age effects on mean exon expression and links  
Rank normalized reads per exon or links were used to assess the age effect on exon 
expression mean. A linear mixed model was fitted to examine age effect on gene expression 
in R (http://www.r-project.org/) with the lmer function in the lme4 package (Bates et al., 
2011). Confounding factors in all models included fixed (primer insert size, GC content mean 
and batch (only for blood samples)) and random effects (primer index, date of sequencing, 
family relationship and zygosity). The P values to asses significance for age effect were 
calculated from the Chi-square distribution with 1 degree of freedom using likelihood ratio 
as the test statistic. A set of 100 permutations were used to adjust for multiple testing. 
Expression values were permuted while maintaining samples from twin pairs together. To 
correct for the number of exons per genes, which would allow genes with more exons to 
have more significant associations by chance than genes with fewer exons, we calculated 
adjusted P values in 16 groups, one per group of genes with similar number of exons. The 
adjusted P value values were calculated as the proportion of permuted statistics more 
significant, divided by 100. P values < 0.05 were considered significant. A gene was 
considered as significantly affected by age in its expression if at least one exon was 
significantly associated with it. 
 
Tissue shared effects  
For each pair of tissues comparison we extracted Pvalues of exons in one tissue (e.g. skin) 
from significantly age associated exons in other tissue (e.g. fat). The Pvalues distributions 
were used to assess the enrichment of age associated exons in other tissues. Analysis were 
performed in largeQvalue (Brown, 2014), an implementation of the R statistical software 
qvalue package  (Dabney and Storey), for large datasets.   
 
Number of genes expressed with age 
Raw FPKM read counts were used to identify the number of genes expressed per 
individuals. A gene was considered expressed with FPKM read counts > 0.2. The numbers of 
expressed genes were rank normalized and used to assess the age effect on number of 
genes expressed. A linear mixed model with number of genes expressed per samples as 
response variable was used to assess the association between number of exons expressed 
and age. Confounding factors in all models included the same fixed and random effects as 
used before. P values were calculated from the Chi-square distribution as before.  
 
Age effect on variance of gene expression 
Residuals removing from technical covariates and family structure were used to assess the 
association for variance and age per tissue. Residuals were extracted from a linear mixed 
model fitted with the lmer function in the lme4 package (Bates et al., 2011) using R. 
Confounding factors in all models included fixed and random effects as detailed above. The 
residuals were fit on a loess function including age as response variable. Residuals from the 
loess regression were squared root to give a measure of the distance from the mean 
expression with age. A Spearman correlation test between this 'distance' and the age was 
used to asses evidences for an age effect on variance. Multiple testing corrections were 
performed as described for the expression association with age with 100 permutations.   
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Age effect on discordance of gene expression 
Residuals removing only technical covariates were used to assess the change in discordance 
of gene expression with age per tissue from complete MZ pairs of twins (Supp. Table S1). 
Association with age was assessed by regressing the maximum expression of each twin pair 
on the expression of the sibling plus age to detect whether the relationship between 
maximum and minimum expression was conditional on age. Multiple testing was assess 
using 100 permutations and as described for the expression association.  
 
Fat methylation analysis 
Infinium HumanMethylation450 BeadChip (Illumina Inc, San Diego, CA) was used to 
measure DNA methylation. Details of experimental approaches have been previously 
described (Grundberg et al.). To correct the technical issues caused by the two Illumina 
probe types, the beta mixture quantile dilation (BMIQ) method was performed 
(Teschendorff et al., 2013). The methylation data is also background corrected. DNA 
methylation probes that mapped incorrectly or to multiple locations in the reference 
sequence were removed. Probes with >1% subjects with detection P-value > 0.05 were also 
removed. Subjects with more than 5% missing probes were also removed. All probes with 
non-missing values were included.  

 
Differential methylation with age was investigated for probes around the 50,000 bp from 
the TSS of genes included in the age analysis, which give us a total of 370,731 probes tested 
from a total of 541,369 CpGs probes on the 450K array. A linear mixed model was fitted to 
examine age effect on gene expression as in previous analysis. Confounding factors in the 
models included fixed (beadchip, BS conversion efficiency and BS-treated DNA input) and 
random effects (family relationship and zygosity). Multiple testing was assessed using 100 
permutations. Methylation expression association was tested using expression residuals 
after removing technical covariates and family structure using a linear model in R with. 100 
permutations were used to correct for multiple testing.  
 
Effect sizes and heritability analysis.  
We calculated effect size of age in expression and methylation from the normalized data 
and as a proportion of variance attributed to age over the total variance in exon expression. 
We also calculated the variance attributed to additive genetic effects, common environment 
and unique environment. Variance components were calculated from a linear mixed model, 
as previously described in (Grundberg et al., 2012), and (Visscher et al., 2004) using all 
available complete twin pairs per tissue (Supp. Table S1). The model was fitted as described 
above. 
 
Genotype-by-age and methylation-by-age interactions 
Expression residuals removing from technical covariates and family structure were used to 
assess the association of exons and genetics variance interacting with age. To identify 
genotype-by-age interactions affecting gene expression we performed a linear regression of 
the residuals of each exon on the SNPs in a 1Mb window around the transcription start site 
for each gene, using a linear model in R. Only SNPs with MAF >= 0.05 were tested. We used 
10 permutations to assess the significance of the interactions for exons with age-related 
effects, namely mean expression changes, variance changes and discordant effects. We 
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used a similar strategy as used by (Gerrits et al., 2009) and based on (Anderson and Braak, 
2003). A linear model with main effects but without an interaction term was used to extract 
residuals for each exon-SNP association test. The residuals were permuted (10 times) and 
used in a linear association with a model for the interacting term (gxa). P values from this 
analysis were stored and used to adjusted P values correcting for the number of exons per 
genes, as described before.  
 
Methylation-by-age interaction analysis used expression and methylation residuals after 
removal of technical covariates and accounting for family structure. A linear model was used 
to test the association between expression and methylation levels with age. Significant 
associations were considered those with a P value < 1.0e-4 (Bonferroni correction).  
 
Code 
Supp. File 15 contains code use for the analysis presented in this manuscript.  
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Data availability 
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Figure 1 | Effects of aging in gene expression: The effect of aging in gene expression is not 
limited to changes in mean expression values with age (a), but includes also changes in 
levels of phenotypic variance (b,c), and splicing (d). The top row graphs show real data 
examples for the effects of aging in expression investigated. The middle graphs show bar 
plots with the percentage of exons with positive (+) or negative (-) age effects in each 
analysis. And finally the bottom tables provide the number of exons and genes with 
significant association for each of the effects presented. All the real examples are from skin, 
the tissue with larger age effect in expression overall analyses. a) Effect of aging in mean 
gene expression, usually referred as differentially expression with age in exons. The example 
shows the residuals (after removing technical covariates) of the expression of the ZBED3 
gene decreasing with age. Skin is the tissues with a larger effect of age in expression and 
LCLs the smaller. b) The effect of aging in variance of gene expression is shown with the 
ELOVL3 gene and a significant decrease of variance in expression with age. From the bar plot 
it is possible to appreciate that the majority of the significant exons had a decrease in 
variance with age. c) Differences in expression between monozygous (MZ) twins point out 
to environmental factors different among the siblings affecting gene expression, since MZ 
twins are genetically identical individuals with the same age. The example shows the 
difference in expression between MZ twins in the gene CCHR1. d) For the splicing analysis, 
only links (reads between two exons) were considered. The example shows the structure of 
the gene APOE with its exons (boxes) and lines connecting the exons representing reads 
spanning between two exons. The number of reads linking exons 3 and 4 (in purple) 
decreased in number with age, while reads linking exons 2 and 4 (blue) increased with age 
(Figure 5 for details). The model suggested that an isoform skipping the third exon (from the 
5') may be more abundant in older individuals compare to an isoform that includes the third 
exon linked to the last exon.  
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Figure 2 | Interacting effects of aging on gene expression: The two plots show the effects 
of genotypes (eQTL) and methylation on gene expression can be modulated by age. A) The 
graph shows a genotype-by-age expression quantitative trait locus (gxa-eQTL) in fat tissue 
affecting the expression of the CD82 gene. The expression of the reported exon increased 
with age in homozygous individuals for the CC alleles in rs10769002. Homozygous 
individuals for the alternative allele (TT) showed a decreased in expression with age. B) The 
graph shows a methylation-by-age interaction affecting gene expression. The expression of 
the IRS1 gene decreased with age in individuals with the methylation cg19451698 
hypomethylated. 
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Figure 3 | A) CpG islands showed mainly an increased in methylation with age, independent 
form the genomic position (B and C). D) The estimates for the proportion of variance 
attributed to age in methylation show that up to 60% of the variance in methylation would 
be attributed to age. E) The position of CpG markers respect to the near TSS from genes 
(only CpGs at <50Mb from the TSS are shown) show a larger effect of age on methylated 
regions near the TSS. F) The left and right panels show age-associated CpGs positions at the 
near 0-100bp at the 3’and 5’of each exon. The central panel show the relative position of 
the CpGs associated with age within each exon (blue box). The CpGs show higher associated 
with age in the exon 5’region, probably due to the proximity to the TSS of the genes.  
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Figure 4 | Tissue shared and specific effects of aging in gene expression changes with age. 
The top venn diagrams show A) the number of exons (left) and B) number of genes (right) 
significantly associated with chronological age in fat, skin and whole blood. Five exons were 
commonly associated to age in the three tissues. LCLs were not included, as only 7 exons 
were significantly associated with age. C) The P values of significant exons associated with 
age in one tissue were extracted from the analysis in the other tissues for enrichment 
analysis (π1). The histograms show the P values for association between expression and age 
in one tissue (left, green color) if the exons were significantly associated exons in another 
tissue (top, orange color). As show in the graphs, age-related signals detected in fat shared 
an estimated 60.2% of the age effect signal skin tissue and 45.6% with blood.   
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Figure 5 | Structure of the APOE gene. Mutations in this gene have been associated with 
alterations in fatty acid metabolism and cardiovascular diseases. Polymorphisms in and near 
the gene has been associated with Alzheimer and cardiovascular diseases. The gene 
produces multiple protein coding transcripts variants (yellow) and non-coding processed 
transcripts (blue). In the skin tissue, three exons and one link decreased their expression 
with age (green coloured exon and link between exons); and one link increase its expression 
(red coloured link). Furthermore, we detected one eQTL (rs439401) affecting the expression 
of the gene.  
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Figure 6 | Structure of the LMNA gene. Mutations in this gene has been associated with 
multiple diseases, including the Hutchinson-Gilford progeria syndrome, characterize by 
accelerated ageing features. The gene produces multiple protein coding transcripts (yellow) 
and non-coding processed transcripts (blue). In the skin tissue, two exons were affected in 
their expression by age by increasing expression (red coloured exon, corrected Pval < 0.1) 
and decrease expression with age (green coloured exon). Furthermore, two links were 
significantly associated with age in their expression (corrected Pval < 0.05). Our results 
suggested an increase in the production of isoforms using alternative 5’ 
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Tables: 
 

 Fat Skin Blood LCLs 

 All  Age All  Age  All  Age  All  Age  

Age 0.0012 0.0287 0.0026 0.0224 0.0039 0.0542 0.0006 0.0366 

Genetics 0.0809 0.2228 0.0856 0.1275 0.1301 0.2333 0.1089 0.2032 

Commo Env. 0.0236 0.0573 0.0000 0.0162 0.0380 0.0341 0.0971 0.1312 

Unique Env. 0.8550 0.6655 0.8566 0.7662 0.7403 0.6214 0.7320 0.6214 

N. of exons 101,133 1,511 96,736 11,695 71,393 688 98,372 7 

 
Table 1: Summary of median proportion of variance attributed to age, genetics, common 
environment and unique environment, for all exons (All) and for age-affected exons (Age). In 
general, age explained a small proportion of the variance attributed to gene expression. 
However, for exons affected by age in their expression, the genetic component (heritability) 
explained significantly higher proportion of the variance in expression compare to the rest 
of the genes in fat, skin and blood tissues (willconox test Pvalue < 2.1e-17).   
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Supplemental Figures 

 
 
 

 
 
Supp. Figure S1 | Venn Diagrams per tissue comparing differentially expressed genes in 
array expriments (Glass et al, 2012) and gene swith at least an exon differentially expressed 
with age from RNA-seq data.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supp. Figure S2 | Venn diagram showing the overlap in genes with at least one exon 
affected by changes in the mean (DE genes), variance and differences between MZ twins 
(discordance) in each tissue.  
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Supp. Figure S3 | Interacting effects of aging on gene expression: All the graphs show a 
genotype-by-age expression quantitative trait locus (gxa-eQTL) in skin tissue affecting the 
expression of three genes.  
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Supp. Figure S4 | Median proportion of variance explained by age (left) and genetics (right) 
in all tested genes (All genes), differentially expressed genes with age (diff. expressed), 
genes changing variance with age (Variance) and genes discordant in MZ twins with age 
(Discordant). In general, the amount of variance explained by age and heritability in genes 
significantly affected by age in different ways is larger than in the median of the whole 
genome. The exception applies to those groups of genes with very little number of genes, 
like discordance genes in fat with 1 gene. The complete variance decomposition analysis is 
shown in table S3.  
 
 

Tables 

Supp. Table S1 | Number of monozyigous (MZ), dizygous (DZ) and unrelated individuals 
(individuals with no relatives in the dataset) included in the final analysis per tissue are 
described on the following.  

 Fat Skin LCLs 
Whole 
Blood 

Samples 766 716 814 384 

MZ pairs 131 114 137 69 

DZ pairs 187 173 217 91 

Unrelated 130 142 106 64 
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 Fat Skin Blood LCLs 

 All DE Variance Discordance All Age Variance Discordance All Age Variance Discordance All Age Variance Discordance 

Age 0.0012 0.0287 0.0601 0.0263 0.0026 0.0224 0.0822 0.0658 0.0039 0.0542 0.0035 0.0225 0.0006 0.0366 0.0030 0.0018 

Genetics 0.0809 0.2228 8.9e-14 0.2649 0.0856 0.1275 0.3513 0.2380 0.1301 0.2333 0.2037 0.1560 0.1089 0.2032 0.1070 0.0901 

Commo Env. 0.0236 0.0573 0.172 -0.1066 0.0000 0.0162 -0.1017 -0.066 0.0380 0.0341 0.0716 0.0293 0.0971 0.1312 0.1966 0.0599 

Unique Env. 0.8550 0.6655 0.690 0.8094 0.8566 0.7662 0.6778 0.7512 0.7403 0.6214 0.6055 0.7179 0.7320 0.6214 0.6224 0.7644 

N. of exons 101,133 1,511 3 1 96,736 11,695 239 40 71,393 688 13 5 98,372 7 3 2 

 
 
Supp. Table S3 | Summary of mean proportion of variance attributed to age, genetics, common environment and unique environment, for 
exons affected by age in their variance (Variance) and exons discordant for expression with age (Discordant). The last row indicates the 
number of exons significant for each category (corrected Pvalue < 0.05).    
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