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Abstract. Our understanding of the wiring map of the brain, known as the connectome, has
increased greatly in the last decade, mostly due to technological advancements in neuroimaging

techniques and improvements in computational tools to interpret the vast amount of available
data. Despite this, with the exception of the C. elegans roundworm, no definitive connectome

has been established for any species. In order to obtain this, tracer studies are particularly

appealing, as these have proven highly reliable. The downside of tract tracing is that it is
costly to perform, and can only be applied ex vivo. In this paper, we suggest that instead

of probing all possible connections, hitherto unknown connections may be predicted from the

data that is already available. Our approach uses a ‘latent space model’ that embeds the
connectivity in an abstract physical space. Regions that are close in the latent space have a

high chance of being connected, while regions far apart are most likely disconnected in the

connectome. After learning the latent embedding from the connections that we did observe,
the latent space allows us to predict connections that have not been probed previously. We

apply the methodology to two connectivity data sets of the macaque and we demonstrate that

the latent space model is successful in predicting unobserved connectivity, outperforming two
alternative baselines in nearly all cases. Furthermore, we show how the latent spatial embedding

may be used to integrate multimodal observations (i.e. anterograde and retrograde tracers)
for the mouse neocortex. Finally, our probabilistic approach enables us to make explicit which

connections are easy to predict and which prove difficult, allowing for informed follow-up studies.

1. Introduction

Recent years have seen a surge in research effort devoted to obtaining the human connectome, a
map of all the connections in the human brain at the level of macrosopic brain regions (Sporns et al.
2005, Hagmann 2005). Technological advances, in particular diffusion-weighted MRI (dMRI), have
enabled bundles of white-matter fibers to be identified in vivo in unprecendented detail. However,
dMRI suffers from a number of drawbacks (Jones et al. 2013, Schultz et al. 2014, Reveley et al.
2015). For instance, it is an indirect measuring technique (Jbabdi et al. 2015): Rather than directly
observing axons or large fiber bundles, these must be inferred from the diffuse movement of water
molecules, using a process called tractography. In practice, the problem tractography tries to solve
may be underspecified, as a single voxel may contain fibers that cross, ‘kiss’, merge or split (Jbabdi
& Johansen-Berg 2011). As a result, it may be unclear which path the estimated fibers follow.
Further problems arise when interpreting the output of (probabilistic) tractography. The number
of streamlines (i.e. candidate fiber trajectories) that connect two regions of interest is often used
synonymously with fiber count, yet the actual number of streamlines between two regions is an
intricate function of the actual fiber count and several parameters of the dMRI acquisition and
tractography procedure (Jones et al. 2013, O’Donnell & Pasternak 2015). In all, despite dMRI
having greatly advanced the field of connectomics by being applicable in living human subjects,
it is far from the be-all end-all solution to finding gross anatomical connectivity.

Earlier approaches for studying brain connectivity (Catani et al. 2013) involve techniques such
as post-mortem dissection (Broca 1861, Gall & Spurzheim 1812) as well as tract tracing in animal
subjects (Köbbert et al. 2000). In the latter approach a tracer (such as a fluorescent dye or a virus)
is injected into neuronal tissue of a living animal. After appropriate waiting time, the animal is
sacrificed to allow the tracer material to spread through the tissue, either in the direction from
cell soma to axon terminal (known as anterograde tracing), or vice versa (retrograde tracing).
Inspection of the virus expression or the fluorescence of the dye is subsequently used to determine
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to which other neurononal populations the injection site was connected (Oztas 2003, Lanciego &
Wouterlood 2011, Lu 2011). Tract tracing has a number of advantages over dMRI-based con-
nectivity estimation. First of all, tract tracing provides unequivocal proof that two regions are
connected. In dMRI, there is always a possibility that fiber tracts follow the same highway, but do
not mix. Furthermore, tract tracing can recover the direction of the tracts it recovers, something
which is impossible to do with dMRI. Furthermore, the probed connections are measured directly,
without the need for an additional processing step such as tractography. This results in very
accurate connectivity estimates, in particular regarding long-range connections (Dauguet et al.
2007, Jbabdi et al. 2015) and has prompted researchers to use tract tracing methods as a means
to evaluate the performance of dMRI-based structural connectivity estimation (Azadbakht et al.
2015, Dyrby et al. 2007, Seehaus et al. 2015).

Compared to dMRI, tract tracing is a very expensive procedure for probing connectivity (Bakker
et al. 2012, Sporns 2010). It requires sacrificing animal subjects, as well as substantial manual
labor in administering the tracers and processing the treated brain tissue. Through a process
known as ‘link prediction’ (Lü & Zhou 2011, Liben-Nowell & Kleinberg 2007, Clauset et al. 2008)
the number of experimental studies needed to evaluate all possible connections in a connectome
may be reduced. The general idea behind this technique is that the connections that have been
observed carry enough information for the missing connections to be predicted. One class of models
used for making link predictions assumes that connections are the result of hidden properties of the
nodes in the network (i.e. regions of interest or neuronal populations). For instance, stochastic
block models assume the nodes of a network have latent class labels, and that the probability
of a connection between two nodes depends on whether they share the same label (Nowicki &
Snijders 2001). By learning this latent structure from the data, i.e. which node has which label,
new connections (or the absence thereof) may be predicted (Guimerà & Sales-Pardo 2009, Kemp
et al. 2006, Herlau et al. 2014, Mørup et al. 2010, Schmidt & Mørup 2013). The concept of latent
node classes also forms the basis of community detection (Newman 2010), for which the goal is
to identify sets of nodes that have more connections among themselves than with nodes outside
the set. Another latent structure approach assumes that the nodes of a network are actually
embedded in an unknown physical space (a ‘latent space’) (Bullock et al. 2010, Barthélemy 2011).
When a latent space model (LSM) is used for link prediction, the (Euclidean) distance between
the positions of nodes in the latent space is used to determine the likelihood of a connection. This
approach is clearly applicable when networks represent geographically restricted phenomena, like
traffic, power grids and the internet, but may also be used in more abstract settings, such as a
social network with ties dependent on political ideology, rather than spatial location (Bullock et al.
2010). In this sense, LSM subsume latent class models, as one of the (non-spatial) dimensions of
the model can simply reflect class label, making such models a special case of LSM (Miller et al.
2009).

While stochastic block models have been used for modeling and prediction of links in structural
connectivity (Hinne et al. 2015, Ambrosen et al. 2013, 2014), LSMs have so far mostly been applied
to social network analysis (Hoff et al. 2002, Sarkar & Moore 2005, Sewell & Chen 2015) instead
of to structural connectivity. However, clearly the connectome is spatially embedded (Zitin et al.
2014, Bullmore & Sporns 2012, Ercsey-Ravasz et al. 2013), suggesting that the use of LSM can
improve the quality of link prediction. In the current study, we describe an extended probabilistic
LSM with which we embed tract-tracing connectomes into a latent space. This allows us to predict
unknown connections in macaque visual cortex (Felleman & Van Essen 1991) and macaque cerebral
cortex (Markov et al. 2014). Additionally, the procedure is applied to combine anterograde and
retrograde tract tracing data for the mouse neocortex (Zingg et al. 2014). While in this data
set all connections have been observed, the different tracer directions disagree about connection
strengths. We show that by embedding the network into a latent space, both sources of data
can be explained by a single connectome. The probabilistic nature of our approach provides an
intuitive representation of the uncertainty in the parameters we estimate, in the form of their
posterior distribution. This uncertainty may be used to determine which predicted connections
are reliable and which require more data to be estimated with confidence.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 14, 2016. ; https://doi.org/10.1101/063867doi: bioRxiv preprint 

https://doi.org/10.1101/063867
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

Table 1. For each of the different connectivity data sets, the table shows the number
of source nodes, the number of target nodes, the numbers of observed and unobserved
connections and finally the number of observed connection strength classes K.

Connectome Sources Targets Observed Unobserved K

Macaque visual system 32 32 653 339 2
Macaque cerebral cortex 91 29 2610 5580 4
Mouse neocortex, both modalities 49 49 2352 — 4

2. Materials and Methods

2.1. Data. The data sets used in this paper are publicly available. Surface data was available for
the macaque data sets, but not for the mouse data as the node definitions for this data set are
layer-specific. The properties of each of the data sets are summarized in Table 1 and discussed in
detail below.

2.1.1. Macaque visual system. The macaque visual system connectome consists of the combined
results of 31 studies, collected by Felleman & Van Essen (1991). The result is a partially observed
connectome of size 32× 32, consisting of both anterograde and retrograde tracings for one hemi-
sphere. Connections are classified as either absent, present or unknown. Of the 32 · 31 = 992
possible connections, 653 candidate connections have been probed and of these, 286 are consid-
ered to represent connected node pairs. The other 339 connections remain unknown, and will be
predicted using the proposed method.

2.1.2. Macaque cerebral cortex. A macaque cerebral cortex connectome was obtained by Markov
et al. (2014) by injecting retrograde tracers into 29 of 91 architectonic areas, all mapped to the left
hemisphere. The result is a partially observed connectome of size 91× 29. Connection strengths
are quantified using the extrinsic fraction of labeled neurons (FLNe) index, which is the fraction
of labeled neurons in the source area (i.e. those that send a projection to the injection site),
divided by the total number of labeled neurons in the brain except for those in the injection area.
Although these scores provide a continuous scale, Markov et al. (2014) propose a set of thresholds
to categorize the connections into strong, moderate, sparse and absent. Throughout this paper,
we use this ordinal representation to predict the unobserved connections.

Mouse neocortex. Zingg et al. (2014) have collected both anterograde and retrograde tracings
for the mouse neocortex, which have been aggregated into two 49 × 49 connectivity matrices,
shown in Fig. 1A-B, for which the connection strengths have been manually assigned to the
categories strong, moderate, sparse and absent. While the connectomes have been fully observed
and therefore contain no missing connections, the anterograde and retrograde tracings are not
in complete agreement, as is shown in Fig. 1C. This may for example be due to experimental
variability, e.g. differences in volume or location of injections) or different sensitivity for the
retrograde or anterograde tracers. It is unclear how the two data sources may best be combined.
In (Zingg et al. 2014), the combination is performed using a logical AND-operator on the two
matrices: a connection is considered present if it is present in both observations. The result is a
binary connectome, in which the information contained in the connection strengths is effectively
lost. In the following, we will use our methodology to estimate a single connectome using both
sources of data, thus cleaning up and reconciling the experimental variability.

2.2. The latent space model. The goal of our method is to predict connectivity for potential
connections for which no tracer data is available, informed by the connections that do have observed
data. To accomplish this, we assume that the p nodes of the network are in fact embedded in a
latent space with dimensionality D, so that each node i has a latent position zi ∈ RD (Bullock et al.
2010, Hoff et al. 2002, Sarkar & Moore 2005, Zitin et al. 2014, Barthélemy 2011). Furthermore, we
assume that the propensity for two nodes to be connected, or the strength of such a connection,
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Figure 1. The mouse neocortex data (Zingg et al. 2014). A Shows the anterograde tracing
result, B shows the retrograde tracing result, and C shows the differences between the two, using
the following numerical representation for connection strengths: 0: absent, 1: sparse, 2: moderate
and 3: strong.

depends on the distance lij = ‖zi − zj‖2 between the two nodes in the latent space. If no tracer
data was available, the nodes are considered to be distributed uniformly within this latent space.
As soon as connections between pairs of nodes become observed, this latent arrangement becomes
constrained — for example, nodes that are strongly connected should be close to each other and
conversely, disconnected nodes should be far apart. The higher the dimensionality of the latent
space, the more complex configurations of the connectome the model can represent. For example,
in a 1D model the latent positions are ordered on a line, which can host only a limited number
of different connectivity structures. On the other hand, in a high-dimensional space the degrees
of freedom of the model will be sufficiently high to capture a more complex network topology
(although for our purposes, a high-dimensional latent space will be prone to overfitting).

As tracer data is typically available in a thresholded form, e.g. binary connections or ordinal
connection weights, the latent space is accompanied by a set of boundaries that determine which
range of distances corresponds to a particular connection weight. This idea is implemented using
an ordinal regression model (Hoff 2008, Chu & Ghahramani 2005). It defines the probability of
an ordinal connection class k between nodes i and j as fijk = Φ(i, j, k)− Φ(i, j, k − 1), in which

Φ(i, j, k) =

∫ h(i,j,k)

−∞
N (x | 0, 1) dx (1)

gives the cumulative density of the standard normal distribution on the interval [−∞, h(i, j, k)].

Here, h(i, j, k) =
bk−lij
σ serves to scale and translate the Euclidean distance in the latent space

to the intervals of the normal density function. Note that bk and σ are the same for all connec-
tions. The categorical observed connection weights A = {aij} are assumed to follow a categorical
distribution with probability vector fij , subject to 0 ≤ fijk ≤ 1 and

∑
k fijk = 1. If anterograde

and retrograde tracer data are available separately, as in the data collected by Zingg et al. (2014),
both A = {aij} and R = {rij} follow such a distribution.

Importantly, once the latent positions zi and the class boundaries hijk have been learned using
the available observations, the same parameters can be used to predict the class weight probabilities
fij for unobserved connections, and subsequently predict A. Thus, the latent space model as
described here serves as a mechanism to ‘complete’ a partially observed connectome.

The latent space model describes only symmetric connectivity behavior, as the Euclidean dis-
tance is a symmetric function. However, some nodes may be more prone to incoming or outgoing
connections than distance alone can explain. For example, some nodes may be hubs — nodes which
a large number of connections compared to the rest. To allow this phenomenon in our model, we
add an ‘asymmetric effect’ which is captured in the vectors δ ∈ Rp and ε ∈ Rp that model the
additional likelihood of nodes having incoming and outgoing connections, respectively (Wang &
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Wong 1987). The earlier distance measure is then replaced by

lij = ‖zi − zj‖2 + δi + εj . (2)

The generative model complete with priors on hyperparameters is shown in A, which also discusses
constraints to make the model identifiable. Importantly, connections for which no tracer data is
observed, provide no information to the model. Instead, by finding the spatial embedding of
nodes within the latent space, the ordinal probabilities fij for these unknown connections may be
inferred. The result is a probabilistic connectome that assigns for each connection a probability
for each ordinal category.

To compute the posterior distribution of the latent locations and connection class probabilities,
a Hamiltonian Monte Carlo sampling scheme is used as described in more detail in B. The result
of this procedure is a collection of samples that collectively represent the distribution over the
parameters of interest, i.e. the latent positions and the unobserved connection weights.

2.3. Optimal number of dimensions. To determine the optimal dimensionality of the latent
space, 10-fold cross-validation was used for each of the different data sets. For each fold, the
model was trained using nine-tenth of the observed connections and evaluated using the likelihood
of the remaining one-tenth. To evaluate the performance of different numbers of dimensions,
the parameter D was varied in the range [1, . . . , 6]. The dimensionality D̂ that resulted in the
best generalizability (i.e. highest likelihood on the withheld data) was considered the optimal

dimensionality. The model was then trained using D̂ and all available data.

2.4. Prediction error and uncertainty. The performance of the predicted connectivity is eval-
uated using the cross-validation results. Per fold, we first compute for the tth collected sample

A(t) = {a(t)ij } the absolute difference between the predicted connection weights a
(t)
ij and the actual

connection weight aij , which is subsequently averaged over all connections, i.e.

eabs =
1

|F|
∑

(i,j)∈F

|a(t)ij − aij | , (3)

in which F is the set of edges (i, j) in that particular cross-validation fold. This error measure is
in the range [0,K − 1]. Note that eabs is a conservative measure of the performance, as Bayesian
averaging would typically reduce the error. However, to be consistent with the error measures
described next, we evaluate eabs per sample.

Depending on the intended application of the predictions, it may be more relevant to consider
only the presence or absence of a connection instead of the difference in connection weight. In
other words, predicting a weak connection that should have been absent may be a more severe
error than predicting a strong connection that is in fact only moderate. We therefore also compute
the false positive rate efpr and false negative rate efnr, as

efpr =
FP

FP + TN
efnr =

FN

FN + TP
, (4)

with the terms given by FP =
∑

(i,j)∈F 1[a
(t)
ij > 0 ∧ aij = 0], TN =

∑
(i,j)∈F 1[aij = 0], FN =∑

(i,j)∈F 1[a
(t)
ij = 0∧aij > 0] and TP =

∑
(i,j)∈F 1[aij > 0]. For each error measure, the presented

results are subsequently averaged over all samples and over the cross-validation folds.
In addition to the prediction error, the probabilistic approach to latent space models allows

us to compute the uncertainty that is associated with the predictions. To do so, we consider the
posterior distributions over the parameters of interest. The width of these distributions provides
a measure of uncertainty. If the model is certain about a prediction, the posterior will be peaked
around the mode of the distribution, but if there is a lot of uncertainty the distribution will be
more dispersed. To analyze how certain the predictions are, we quantify for each of the estimated
parameters fijk the associated uncertainty as the 95% credible interval, i.e. the width of the range
in which 95% of the posterior probability density lies. For each connection between node pairs
(i, j), the largest uncertainty of the K possible connection strength classes is reported as the final
measure of uncertainty.
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2.5. Baseline predictions. Two baselines were constructed in order to interpret the results from
the latent space model. In the first, connection probabilities for a particular connection strength
class k are determined by the fraction of connections in the training data having connection
weight k. In this baseline, the probability vector fij is the same for all pairs (i, j). This approach
corresponds to a naive data imputation method, and its performance demonstrates how much of
the connectivity prediction can be done by the connection weight distributions alone. To compute
false positive and false negative rates (see previous section) in a similar fashion to the LSM, a
posterior distribution is constructed for the baseline by drawing samples. In each sample, each

connection â
(t)
ij is drawn from a Bernoulli distribution with the probability as just described. The

sampled connections are then treated the same as for the LSM approach.
In the second baseline, a zero-dimensional latent space is used. In other words, the only

flexibility the model has, is in the directional effects δ and ε. This baseline serves to evaluate
the additional effect of the latent space, compared to the predictive performance of the degree
distribution of the training data.

2.6. Relative degree and clustering. The predicted connectivity can be analyzed in a number
of ways. First, we present the expected posterior connectome, which serves as a summary of the
predictions. It is given by Â = {âij}, with

âij =
1

T

T∑
t=1

K−1∑
k=0

kf
(t)
ijk . (5)

Using the posterior expectation, we then compute for each node i its normalized observed de-
gree, i.e. dnodi = 1

mi

∑p
j=1,j 6=i aij in which mi indicates the number of observed connections for

node i and its normalized predicted degree dnpdi = 1
p−1

∑p
j=1,j 6=i âij , which considers all possible

connections.
In addition, we consider clustering of the predicted connectome. Here, the weighted and di-

rected network Â serves as input for a network clustering procedure from the Brain Connectivity
Toolbox (Rubinov & Sporns 2010). The quality of the clustering is expressed using the modularity
measure (Leicht & Newman 2008), given as

Q(A) =
1

m

∑
ij

[
aij −

kikj
m

]
1[ci = cj ] , (6)

in which m is the sum of all connection weights, ki and kj are the sum of weights connected to
nodes i and j and finally ci and cj represent the cluster labels of nodes i and j, respectively.
Modularity reflects the number of connections found within clusters, compared to chance level, so
that higher values indicate that there are many within-cluster connections and few between-cluster.
For comparison, we also determine the clustering for the predictions using the baselines described
in the previous section. However, the second baseline did not result in sensible clusterings (as
concluded from a low modularity scores and a large number of very small clusters), which is why
these have been omitted from discussion in the remainder.

3. Results

The latent space model is applied to each of the data sets described in Section 2.1. For the
first two data sets, the macaque visual system tracer data and the macaque cerebral cortex tracer
data, the goal is to predict the unobserved connections, i.e. to complete the partially observed
connectome. For the third data set, the mouse neocortex, all connections have been observed, but
here the latent space model serves to unite the anterograde and retrograde tracer data, i.e. to
identify the connectome from which both data modalities originate. In either setting, the optimal
dimensionality of the latent space must first be determined, using the cross-validation approach
as described in Section 2.3. The resulting optimal number of dimensions D̂ are shown in Table 2.
In C, the generalization performance is shown for each of the considered dimensionalities, together
with the corresponding posterior expectations.
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Table 2. For each of the different data sets, the table shows the optimal latent dimensionality D̂,
the prediction errors using the baseline models and the LSM, and finally the prediction uncertainty
of the LSM. Standard deviations are indicated within parentheses, where applicable. The error
for the mouse neocortex using both data modalities is the average error of the predictions with
either data source. The different error measures are absolute error eabs (top row per connectome),
false positive rate efpr (middle row per connectome) and false negative rate efnr (bottom row per
connectome). Per combination of connectome and error measure, the best performance is indicated
in boldface.

Connectome D̂ Error Uncertainty
Baseline 1 Baseline 2 LSM

Macaque visual system 2 0.47 (0.03) 0.40 (0.01) 0.12 (0.03) 0.36 (0.29)
0.22 (0.00) 0.26 (0.01) 0.10 (0.02)
0.42 (0.00) 0.31 (0.02) 0.12 (0.04)

Macaque cerebral cortex 1 1.22 (0.05) 1.04 (0.01) 0.76 (0.02) 0.37 (0.01)
0.38 (0.00) 0.34 (0.01) 0.27 (0.01)
0.28 (0.00) 0.24 (0.00) 0.18 (0.01)

Mouse neocortex, anterograde 2 1.41 (0.04) 1.02 (0.04) 0.61 (0.04) 0.36 (0.20)
0.29 (0.00) 0.25 (0.01) 0.16 (0.02)
0.37 (0.00) 0.33 (0.01) 0.22 (0.02)

Mouse neocortex, retrograde 2 1.38 (0.05) 0.99 (0.04) 0.64 (0.04) 0.34 (0.21)
0.25 (0.00) 0.26 (0.01) 0.19 (0.01)
0.40 (0.00) 0.33 (0.01) 0.20 (0.01)

Mouse neocortex, both modalities 4 1.40 (0.04) 0.96 (0.04) 0.55 (0.04) 0.31 (0.20)
0.27 (0.00) 0.24 (0.01) 0.14 (0.01)
0.39 (0.00) 0.35 (0.00) 0.22 (0.01)

In addition, the cross-validation data is used to quantify the prediction performance. For
each data set, all three error measures as well as the prediction uncertainty are computed (see
Section 2.4). First, the relationship between prediction error and uncertainty is visualized in
Fig. 2. This demonstrates that the smallest errors go hand in hand with the lowest uncertainty
and, conversely, that a high certainty implies a small error. Furthermore, despite substantial
uncertainty in the predictions for the macaque cerebral cortex in particular (middle panel of Fig. 2),
most of the errors have a magnitude below one. This indicates that even when the predictions
are uncertain, they are at most one category away from the true connection weight. Second,
Table 2 shows the error measures for each of the different connectomes. These results indicate
that the latent space model with dimensionality optimized through cross-validation consistently
outperforms both baselines.

In the remainder of this section, each of the predicted connectomes is considered in detail.

3.1. Predicting the macaque visual system. In Fig. 3A, the tracer data for the macaque
visual system is shown, together with the expected posterior predicted connectome (i.e. the mean
of the posterior samples). The predictions are based on a 2D latent space. Figure 3B shows
the posterior distributions of the elements of fij , i.e. the probability of an absent or present
connection. The results are separated into those for the observed connections and those for
unknown connections. For the observed connections, we see that the posterior distributions closely
match the observed value (as indicated by the dotted line). This shows that the model is able to
capture the observed structure well. For the unobserved connections, the results demonstrate that
these are not simply copies of the distributions that correspond to the observations. For absent
connections, the mean of the distribution is lower (i.e. an absent connection is less likely), and
there is more uncertainty in the distribution as shown by its larger width. It follows that for present
connections the mean is larger (i.e. a present connection is more likely). Indeed, we observe that
the predicted connectome is slightly denser than the observed connections on their own, with a
mean density of 48.4% (SD = 0.02), compared to an empirical density of 0.44. Figure 3C shows for
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Figure 2. Prediction error and uncertainty. The relationship between prediction error (the
absolute difference between the posterior expectation and the true value of the connection) and
uncertainty (the width of the associated credible interval of the prediction). Colors are determined
by the number of connections that lie within each cell; warmer colors indicate more connections.
Note that for the mouse neocortex data, the prediction error is averaged over errors with the
anterograde and retrograde data.

Table 3. Regions with a high (relative) increase in degree, based on the predicted connections for
the macaque visual system. Shown are the top ten regions with the largest difference in fraction of

observed connections (dnodi ) and fraction of predicted connections (dnpdi ). Scores are normalized
according to the number of observed or total number of connections, respectively (see text).

Outgoing Incoming

Region dnodi dnpdi Region dnodi dnpdi Region dnodi dnpdi Region dnodi dnpdi

AITd 0.24 0.45 DP 0.40 0.55 CITd 0.06 0.32 LIP 0.47 0.65
PITv 0.21 0.42 PITd 0.25 0.39 PITd 0.13 0.39 VP 0.35 0.52
PO 0.39 0.58 7a 0.45 0.58 VOT 0.50 0.71 MIP 0.00 0.16
CITd 0.24 0.39 MSTl 0.42 0.55 PIP 0.37 0.55 MDP 0.00 0.16
CITv 0.24 0.39 STPp 0.36 0.48 V2 0.38 0.55 V3a 0.44 0.55

each of the possible connections the width of the largest credible interval. The credible intervals
range from 0 to 1, indicating that for some connections the model is entirely certain about its
prediction, while for other connections the model cannot decide whether a connection should be
absent or present. The structure of the upper panel of Fig. 3C shows that the largest uncertainty
is, unsurprisingly, for the unobserved connections, but at the same time the model is confident
about the prediction for other unknown connections, as can be seen in the lower panel of Fig. 3C.
A list of the predicted connections in descending order of certainty is provided in D. Note that a
higher latent dimensionality could decrease the prediction uncertainty, but this comes at the cost
of losing generalizability; less uncertainty would lead to more prediction error.

The predicted additional connections are not distributed homogeneously across the network.
Instead, some nodes with only a few observed connections are predicted to become highly inter-

connecting hubs. Table 3 lists the ten regions with the most salient difference |dnodi − dnpdi |, when
comparing the observed connections and the predicted connectome, distinguishing outgoing and
incoming connectivity. For example, the outgoing connectivity of the dorsal anterior inferotempo-
ral cortex (AITd) increases substantially, as out of the ten unknown outgoing connections, 6.96
(SD=0.83) are predicted to be present.

Clustering the visual system connectome resulted in a division into occipitoparietal and pari-
etotemporal areas, as shown in Fig. 4. Both the latent space prediction as well as the baseline
model result in a division into two clusters. However, the latent space connectome results in a
more modular division, as shown by the modularity score
citepLeicht2008 of 0.25 compared to 0.20 in the baseline. However, the actual cluster assignments
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Figure 3. Macaque visual system connectivity. A. The observed tracing data for the
macaque visual system (left) (Felleman & Van Essen 1991), the corresponding predicted connec-
tome (right), based on the 2D latent space model. B. The predicted fraction of absent edges (left
panel) and present (right panel), for observed and unobserved connections. For comparison, the
dotted line shows the fraction of present edges in the observed connections. C. The uncertainty
associated with each of the predicted connections.

have changed slightly as well. As can be seen from Fig. 4, the medial intraparietal area, the medial
dorsal parietal area and area 7a have been assigned differently between the two approaches.

3.2. Predicting the macaque cerebral cortex. While the visual system data contains sporadic
missing data, for the macaque cerebral cortex (Markov et al. 2014) the majority of the connections
are actually unobserved. The data is not missing at random, but systematically; retrograde tracers
have been injected into 29 areas, which implies that bidirectional connectivity is only known for
the subset of nodes within these 29 areas, and that retrograde connections are only known from
any of the 91 areas to one of the areas of the subset (see the left panel of Fig. 5A). Despite this
large amount of missing data, the latent space model may be used to predict the edge weights
of the missing connections. As shown in Table 2, the macaque cerebral cortex network was best
embedded into a 1D space. A consequence of this low-dimensional latent space is that the model
prevents overfitting on the few observed connections. The predicted connectome is shown in the
right panel of Fig. 5A. Figure 5B shows the proportions of each connection class (i.e. ‘absent’,
‘sparse’, ‘moderate’ and ‘strong’) for the predicted connectome, for either observed or unobserved
connections, as well as the empirically observed frequency of each class. The figure demonstrates
that, similar to the visual system data, the connections as predicted by the latent space model
closely resemble the empirical edge class distribution, with slightly fewer absent connections and
slightly more moderate and strong connections.

Figure 5C shows the uncertainty associated with the predictions. As to be expected, the
uncertainty is highest for the unobserved connections, and lowest for those connections for which
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Figure 4. Clustering of the predicted macaque visual connectome. The figures on the
left show the clustered visual system using the baseline model (see main text), while the figures
on the right display the resulting clusters when connections have been predicted by the 2D latent
space model. Both approaches result in a clustering of two clusters.

Table 4. Regions with the largest change in (relative) degree based on the predicted connections
for the macaque cerebral cortex. Shown are the top twenty regions with the largest difference

in fraction of observed connections (dnodi ) and fraction of predicted connections (dnpdi ). Scores
are normalized according to the number of observed or total number of connections, respectively
(see text). Note that the degree scores represent the average connection weight and range from 0
(absent) to 3 (strong).

Incoming

Region dnodi dnpdi Region dnodi dnpdi Region dnodi dnpdi Region dnodi dnpdi

PIR 0.28 0.56 25 0.48 0.70 Pi 0.86 1.03 STPc 1.76 1.92
V6 0.45 0.72 V6A 0.90 1.11 8m 1.59 1.75 46d 1.52 1.68
SUB 0.34 0.61 PBr 1.07 1.28 TEO 0.90 1.06 ENTO 1.10 1.26
Core 0.76 0.99 10 1.00 1.20 STPr 1.59 1.75 9/46d 1.52 1.67
Pro.St. 0.55 0.77 LB 1.14 1.33 TEpd 1.10 1.27 8B 1.55 1.71

both anterograde and retrograde data was provided (i.e. the subnetwork of 29 regions). The widths
of the credible intervals range from 0 to 0.93. A list of the predicted connections in descending
order of certainty is provided in D.

In contrast to the macaque visual system, the predicted connections for the macaque cerebral
cortex data follow the distribution of connectivity found in the data more closely. Table 4 lists
for the regions with the largest difference in (weighted) incoming degree, when comparing the
predicted connectome with the observed data. The differences in mean degree are comparatively
small when considering that individual connections range on a scale from 1 (absent connection)
to 4 (strong connection).

The resulting predictions were clustered and compared to the baseline model. This time the
predicted connectome could be clustered into two clusters with a corresponding modularity score

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 14, 2016. ; https://doi.org/10.1101/063867doi: bioRxiv preprint 

https://doi.org/10.1101/063867
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

Observations
V1 V2 V4

TE
O

9/
46

d F5 8m 7A D
P 2 5 7B

ST
Pr

ST
Pi

ST
Pc PB

r
TE

pd 24
c F1 F2 F7

Pr
oM 8l

9/
46

v
46

d 8B 10 M
T

7m

V1
V2
V4

TEO
9/46d

F5
8m
7A
DP

2
5

7B
STPr
STPi
STPc

PBr
TEpd

24c
F1
F2
F7

ProM
8l

9/46v
46d
8B
10

MT
7m
V3

V3A
V4t
LIP
PIP

PGa
IPa

FST
MST

TEOm
PERI
TEad
TEav
TEpv

TEa/ma
TEa/mp

TH/TF
MB
LB

PBc
8r

Core
7op
TPt
VIP

V6A
V6

ENTO
INS
45B
MIP

POLE
Pi
1
3

23
24a
24b
24d
46v
45A

44
11
12

Pro.St.
Gu
SII

29/30
31
32
F3
F6
F4

9
OPRO
OPAI

14
13

AIP
SUB

25
PIR

Predicted connectome

V1 V2 V4
TE

O
9/

46
d F5 8m 7A D
P 2 5 7B

ST
Pr

ST
Pi

ST
Pc PB

r
TE

pd 24
c F1 F2 F7

Pr
oM 8l

9/
46

v
46

d 8B 10 M
T

7m V3 V3
A

V4
t

LI
P

PI
P

PG
a

IP
a

FS
T

M
ST

TE
O

m
PE

R
I

TE
ad

TE
av

TE
pv

TE
a/

m
a

TE
a/

m
p

TH
/T

F
M

B LB PB
c 8r

C
or

e
7o

p
TP

t
VI

P
V6

A V6
EN

TO IN
S

45
B

M
IP

PO
LE Pi 1 3 23 24

a
24

b
24

d
46

v
45

A 44 11 12
Pr

o.
St

.
G

u SI
I

29
/3

0 31 32 F3 F6 F4 9
O

PR
O

O
PA

I
14 13 AI
P

SU
B 25 PI
R

Ab
se

nt
Sp

ar
se

M
od

er
at

e
St

ro
ng

Ab
se

nt
Sp

ar
se

M
od

er
at

e
St

ro
ng

So
ur

ce

Target Target

A

Absent Sparse Moderate Strong

Observed connections Unobserved connections Observed probability

0 0.5 1

Prediction uncertainty
R

el
at

iv
e 

oc
cu

rre
nc

e

Prediction uncertainty

Probability ProbabilityProbabilityProbability Credible interval width

B

C

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.3 0.4 0.20.160.12 0.3 0.4 0.1 0.2
0

0.01

0.02

0.03

0.04

0.05

Figure 5. Macaque cerebral cortex connectivity. A. The observed retrograde tracing re-
sults for the macaque cerebral cortex (Markov et al. 2014) (left) and the mean predicted connec-
tome for all 91 regions using a 2D latent space (right). B. The distribution of connection weights
for all connections on the prediction, only those that were previously unobserved and the observed
relative frequencies of each class. C. The uncertainty associated with the predictions, for each
possible connection (top) and as a histogram (bottom).

of 0.15. The baseline model instead resulted in four clusters, with a modularity score of 0.11,
indicating that the predicted connectome resulted in a more modular network. Figure 6 shows
the clusterings projected onto the cortical surface, which indicate that the difference in clustering
is mostly due to the merger of frontal and parietal cortex, as well as a merger between temporal
and occipital cortex.

3.3. Integrating anterograde and retrograde data. Instead of predicting unobserved con-
nections, the latent space model may also be used to integrate different modalities. Here, we
combine both anterograde and retrograde tracing data collected for the mouse neocortex (Zingg
et al. 2014) into a unifying estimate of the underlying connectome. Despite the aforementioned
experimental variability, we expect most of the connections to be reciprocal. The model captures
the remaining asymmetry using the directional effects parameters. As shown in Table 2, the best
generalization performance is obtained using a 2D latent space when using either retrograde or
anterograde tracers on their own. However, once the data are combined, a 4D space is optimal
instead.

The first row of panels in Fig. 7A shows the predicted connectome for the mouse neocortex
using either a single data source with a latent space dimensionality of two, or the combined data
sources with a latent space dimensionality of four. The overall structure of the matrices appears
to be the same in either setting. The histograms in Fig. 7B indicate that the latent space for the
4D data fusion model attempts to find consensus between the two modalities; the distributions
of connection classes lie between the two observed values. This explains the need for a higher
number of dimensions than previously encountered: the higher dimensionality allows the model
to conform to both (contradicting) sources of data by forming a sort of ‘average’ connectome.
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Figure 6. Clustering of the predicted macaque cerebral connectome. The figures on the
left show the clustered cortex using the baseline model (see text), while the figures on the right
display the resulting clusters when connections have been predicted by the 1D latent space model.

This intuition is confirmed by the edge-wise correlation between the mean of the anterograde and
retrograde predictions and the predictions using data fusion: ρ = 0.97, p < 0.001, compared to a
correlation between the anterograde and retrograde predictions of ρ = 0.93, p < 0.001. In other
words, the top-rightmost adjacency matrix in Fig. 7A is approximately the mean of the other
two. However, the prediction certainty increases by using both sources of data, as can be seen in
Fig. 7B. When using just the anterograde data, the average uncertainty over all the connections is
0.35 (SD = 0.19), for just the retrograde data this is 0.32 (SD = 0.20) and when both tracer results
are combined the average uncertainty is 0.29 (SD = 0.18). This demonstrates that although the
predicted connectome using data fusion is approximately the mean of the predicted connectomes
for either data set, data fusion provides the benefit of decreasing the uncertainty in the spatial
embedding and consequently the connection prediction.

4. Discussion

We have demonstrated that connectivity can be predicted between regions for which no data
has been observed directly. We accomplished this by estimating a latent space in which the nodes
of the connectome are embedded. In this latent space, the distances between nodes determine the
probability or strength of the corresponding connections: nodes that are close together are more
likely to be connected (or have a higher connection strength) than nodes that are far apart. The
latent space model (LSM) was applied to predict connectivity for two connectomes of the macaque,
as well as to integrate anterograde and retrograde tracer data for the mouse neocortex. The
predictions were accompanied by low average errors, outperforming the two baseline approaches for
link prediction in which either the connection class distributions were used, or a zero-dimensional
latent space that is only able to predict on the basis of the directional effects (i.e. node degrees).
These findings demonstrate that the spatial embedding approach captures important features of
connectivity.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 14, 2016. ; https://doi.org/10.1101/063867doi: bioRxiv preprint 

https://doi.org/10.1101/063867
http://creativecommons.org/licenses/by-nc-nd/4.0/


13

S
ou

rc
e

Target Target

A

C

Anterograde data, D=2
 ACAd

ACAv
Aid
AIp
AIv

AUDd
AUDp
AUDv

CLA
ECT
ENTl

ENTm
GU
ILA

MOp−ll&tr
MOp−orf
MOp−ul
MOp−w
MOs−c

MOs−fef
MOs−rd
MOs−rdl

MOs−rdm
ORBl

ORBm
ORBvl
PERI

PIR
PL

PTLp
RSPagl

RSPd
RSPv
SUBd

SSp−ll&tr
SSp−m&n

SSp−ul
SSs−cd

SSs−r&cv
Tea
TTd

VISal
VISam

VISC
VISl

VISp
VISpm

Retrograde data, D=2
 

Data fusion, D=4
 
A

C
A

d
A

C
A

v
A

id
A

Ip A
Iv

A
U

D
d

A
U

D
p

A
U

D
v

C
LA

E
C

T
E

N
Tl

E
N

Tm G
U

IL
A

M
O

p−
ll&

tr
M

O
p−

or
f

M
O

p−
ul

M
O

p−
w

M
O

s−
c

M
O

s−
fe

f
M

O
s−

rd
M

O
s−

rd
l

M
O

s−
rd

m
O

R
B

l
O

R
B

m
O

R
B

vl
P

E
R

I
P

IR P
L

P
TL

p
R

S
P

ag
l

R
S

P
d

R
S

P
v

S
U

B
d

S
S

p−
ll&

tr
S

S
p−

m
&

n
S

S
p−

ul
S

S
s−

cd
S

S
s−

r&
cv

Te
a

TT
d

V
IS

al
V

IS
am

V
IS

C
V

IS
l

V
IS

p
V

IS
pm

A
C

A
d

A
C

A
v

A
id

A
Ip A
Iv

A
U

D
d

A
U

D
p

A
U

D
v

C
LA

E
C

T
E

N
Tl

E
N

Tm G
U

IL
A

M
O

p−
ll&

tr
M

O
p−

or
f

M
O

p−
ul

M
O

p−
w

M
O

s−
c

M
O

s−
fe

f
M

O
s−

rd
M

O
s−

rd
l

M
O

s−
rd

m
O

R
B

l
O

R
B

m
O

R
B

vl
P

E
R

I
P

IR P
L

P
TL

p
R

S
P

ag
l

R
S

P
d

R
S

P
v

S
U

B
d

S
S

p−
ll&

tr
S

S
p−

m
&

n
S

S
p−

ul
S

S
s−

cd
S

S
s−

r&
cv

Te
a

TT
d

V
IS

al
V

IS
am

V
IS

C
V

IS
l

V
IS

p
V

IS
pm

A
C

A
d

A
C

A
v

A
id

A
Ip A
Iv

A
U

D
d

A
U

D
p

A
U

D
v

C
LA

E
C

T
E

N
Tl

E
N

Tm G
U

IL
A

M
O

p−
ll&

tr
M

O
p−

or
f

M
O

p−
ul

M
O

p−
w

M
O

s−
c

M
O

s−
fe

f
M

O
s−

rd
M

O
s−

rd
l

M
O

s−
rd

m
O

R
B

l
O

R
B

m
O

R
B

vl
P

E
R

I
P

IR P
L

P
TL

p
R

S
P

ag
l

R
S

P
d

R
S

P
v

S
U

B
d

S
S

p−
ll&

tr
S

S
p−

m
&

n
S

S
p−

ul
S

S
s−

cd
S

S
s−

r&
cv

Te
a

TT
d

V
IS

al
V

IS
am

V
IS

C
V

IS
l

V
IS

p
V

IS
pm

A
bs

en
t

S
pa

rs
e

M
od

er
at

e
S

tro
ng

Target

Predictions anterograde data Predictions retrograde data Data fusion predictions Anterograde data

0.6 0.7
0

0.2

0.4

0.6

0.8

1
Absent

0.05 0.1 0.15

Sparse

0.1 0.15 0.2

Moderate

0.1 0.2

Strong

0 0.5 1
0

0.01

0.02

0.03

0.04

0.05
Prediction uncertainty

Retrograde data

0

0.2

0.4

0.6

0.8

S
ou

rc
e

ACAd
ACAv

Aid
AIp
AIv

AUDd
AUDp
AUDv

CLA
ECT
ENTl

ENTm
GU
ILA

MOp−ll&tr
MOp−orf
MOp−ul
MOp−w
MOs−c

MOs−fef
MOs−rd
MOs−rdl

MOs−rdm
ORBl

ORBm
ORBvl
PERI

PIR
PL

PTLp
RSPagl

RSPd
RSPv
SUBd

SSp−ll&tr
SSp−m&n

SSp−ul
SSs−cd

SSs−r&cv
Tea
TTd

VISal
VISam

VISC
VISl

VISp
VISpm

B    1.0

Figure 7. Combined mouse neocortex connectivity. A. Predicted connectivity for the
mouse neocortex (Zingg et al. 2014), using either anterograde data only (using two latent dimen-
sions), retrograde data only (using two latent dimensions), or the combination of both (using
four latent dimensions, see main text). B. The distribution of the edge classes in the predicted
connectome, compared to the values in the observed data.

When many of the connections are actually not observed (as for the macaque cerebral cortex
connectome), the model may be uncertain about its predictions. As the described LSM is prob-
abilistic, this prediction uncertainty can be made explicit. This revealed that even though on
average the model performs well, depending on the data a substantial number of (potential) con-
nections could not be predicted with confidence. This is due to too few data points being available
for the involved regions, so that the LSM cannot fixate their positions in the latent space. The
representation of uncertainty provides target areas for additional experiments with novel tracers.
Those connections with maximal uncertainty should be probed first in future work, so that these
connections become known, and the latent space parameters with the most degrees of freedom
become anchored, which will propagate to making other predictions more certain as well. Our
approach is therefore applicable both for prediction of unseen connections, as well as for guidance
of optimal experimental design (Priebe et al. 2013, Pukelsheim 1993).
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The choice for a latent space model for link prediction in brain connectivity is motivated by
findings that show the probability of two regions being connected (and the strength of this con-
nection) is inversely correlated with the Euclidean distance between them (Bullmore & Sporns
2012, Ercsey-Ravasz et al. 2013, Raj & Chen 2011, Chen & Hall 2006). This indicates that indeed
the wiring of the brain is constrained by its geometry. Remarkably, a small number of latent
dimensions appeared to suffice in order to model each of the considered connectomes. Only in the
mouse neocortex data, a 4D latent space resulted in optimal generalizability instead. We speculate
that this is due variability between individual mice and layer-specific connectivity, which creates
differences between the anterograde and retrograde observations.

There are a number of ways in which the model may be extended in future work. First,
following (Durante & Dunson 2014, Miller et al. 2009), a nonparametric variant of the model may
be constructed that learns the dimensionality D of the latent space on-the-fly. This avoids the need
to split the available data into train and test sets, as all the data can be used to train the model
and learn D simultaneously. Another extension could describe the FLNe weights in the macaque
cerebral cortex data (Markov et al. 2014) as a continuous variable rather than the currently used
thresholded categorization. We have refrained from this approach in order to present one model
that was applicable to all three data sets, but it is to be expected that continuous weights better
inform the latent distances than the ad-hoc ordinal representation of connection strengths, and
subsequently increase prediction performance.

A few studies are related to the presented work and have analyzed the spatial embeddedness
of structural connectivity. For example, Ercsey-Ravasz et al. (2013) use the 29 × 29 submatrix
of fully observed connectivity in the macaque cerebral cortex to predict global graph-theoretical
properties of the full 91 × 91 connectome. Here, it is assumed that the fully observed submatrix
is representative of the entire connectome. This relates to our observation about the (relative)
degree of regions in the data and in the predicted connectome, which have been found to be quite
similar in the macaque cerebral cortex data. Bassett et al. (2010) consider a more abstract notion
of topological dimensionality. Here, different nervous systems as well as computer circuits are
studied and found to have a higher topological complexity than the physical embedding of the
networks would suggest. As Bassett et al. (2010) argue, this implies that connectomes optimize
for a trade-off between minimal wiring length and maximum topological complexity. Finally, Song
et al. (2014) demonstrate that many large-scale features of connectivity in mouse, macaque and
human can be explained by simple generative mechanisms based on spatial embedding.

We have demonstrated the usage of the latent space model for prediction of connectivity on
animal tracer data. The advantage of tracer data over other modalities is their reliability (as,
for example, dMRI-based structural connectivity estimates are often accompanied by uncertain
estimates (Hinne et al. 2013, Janssen et al. 2014)), which allowed us to evaluate the performance of
link prediction using the latent space model. In terms of application however, other modalities may
benefit more from our approach. For example, dMRI in combination with tractography is often
used to estimate structural connectivity in vivo, making it applicable to human subjects. This
approach has a number of well-known shortcomings that affect the resulting connectomes (Jones
et al. 2013, Schultz et al. 2014, Reveley et al. 2015). By using the LSM approach, connections that
are difficult to estimate in living human subjects may be predicted from the connections that were
more easily obtained. Furthermore, recent advancements in electron microscopy imaging have
enabled connectivity analysis at the single-cell resolution (Helmstaedter 2013, Lichtman et al.
2014). Here, link prediction may be used to complete the connectivity that has not yet been
probed and at the same time to obtain insight in the possible spatial embedding of connectivity
at this scale.
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Appendix A. Generative model for ordinal latent space

The formal description of the generative model for the latent space embedding with asymmetric
effects is as follows:

ρδ ∼ U(0, 1)

ρε ∼ U(0, 1)

δi | ρδ ∼ N (0, ρδ)

εj | ρδ ∼ N (0, ρε)

ρd ∼ U(0, 1)

zid | ρd ∼ N (0, ρd) −1 ≤ zid ≤ 1

lij = −‖zi − zj‖2 + δi + εj

b0 = −∞
bK =∞
bk ∼ U(b1, bK−1) k ∈ {1, . . . ,K − 1}, bk−1 < bk

σ ∼ U(1, 1)

h(i, j, k) =
bk − lij
σ

Φ(i, j, k) =

∫ h(i,j,k)

−∞
N (x | 0, 1) dx

fijk = Φ(i, j, k)− Φ(i, j, k − 1)

aij | fij ∼ Categorical(fij) .

Here, aij represents the categorical class of the connection between nodes i and j. Note that
the symbol ∼ should be read as ‘follows the distribution’. As the latent space model considers
only the relative distances between nodes, the positions z may be arbitrarily scaled and translated
throughout the latent space. In order to have the posterior distribution be consistent across
different samples, we constrain the scale by setting 0 < σ ≤ 1 and we constrain the positions to
lie within the D-dimensional unit hypercube by requiring −1 ≤ zid ≤ 1. Extending the model to
integrate both anterograde and retrograde tracing data is straightforward by adding the likelihood
term

rij | fij ∼ Categorical(fij)

to the model. Here, rij represents the retrograde connection while the original aij parameter
represents the anterograde connection. Notably, both types of observations depend on the same
latent distances.

Appendix B. Approximate inference and scalability

The model is implemented in MatlabStan (Lau 2015), which provides an interface between
Matlab and the Stan probabilistic programming language. This software implements the no-U-
turn Hamiltonian Monte Carlo sampler (Hoffman & Gelman 2014). For each different model, four
parallel sampling chains are executed. Convergence to the posterior distribution is determined by
computing the potential scale reduction factor (PSRF) (Gelman & Rubin 1992) for parameters
lij , fij and σ. Once all PSRF scores are below 1.1 (typically after 6 000 – 10 000 iterations), the
chains are considered to be converged. Subsequently, the chains are merged and downsampled to
1 000 samples for efficient further analysis.

Per iteration of the Hamiltonian Monte Carlo algorithm, a total of (D+2)p+K+2 parameters
need to be estimated. However, making general claims about the computational cost of the
HMC approach is difficult as convergence depends the ease of which the latent positions can be
determined, which in turn depends on the dimensionality D and the latent structure in the data.
For example, we noticed that during the cross-validation procedure, the D = 1 case was easy to
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Figure 8. Running time of 100 iterations of the Hamiltonian Monte Carlo algorithm on each of
the different data sets that are considered in the main text. The figures confirm the (approxi-
mately) linear dependence on the most important parameters of the model; the dimensionality D
(left panel) and the number of nodes in the connectome p (right panel).

compute, but difficult to obtain convergence for (taking as much as 10 000 iterations), while higher
dimensional latent spaces had more computational cost per iteration, yet converged much faster
(in as few as 4 000 iterations). To provide a guideline for the efficiency of the approach, Fig. 8
shows the computation time per 100 iterations for the data used in this paper, using a single Intel
Xeon CPU E5-2670 @ 2.60GHz per sampling chain. The approximately linear trends that are
shown in these results may be used to extrapolate running times for connectomes with a larger
number of nodes than used here. For example, prediction of connectivity for a connectome of
1 000 nodes, using a 2-dimensional latent space, should take roughly four days to compute, using
the same hardware.

Appendix C. Predictions for the different dimensionalities

The predictions using different dimensionalities (in the range [0, . . . , 6]) are shown in Fig. 9 for
the macaque visual system, in Fig. 10 for the macaque cerebral cortex and in Fig. 11 for the mouse
neocortex.

Appendix D. Predicted connections

The top forty predicted connections, ordered by their prediction certainty (i.e. smallest associ-
ated credible interval) for both the macaque visual cortex and macaque cerebral cortex are shown
in Table 5 and Table 6, respectively. The full listings can be found in Supplementary Information 1
and 2. For the full region labels we refer the reader to Supplementary Information 3.
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Table 5. The top forty predicted unknown connections for the macaque visual cortex, sorted by
decreasing uncertainty. The predicted connection strength is shown as âij , while cij indicates the
width of the associated credible interval.

# source target âij cij # source target âij cij

1 CITd MDP 0.00 0.00 21 MDP TF 0.01 0.06
2 CITv MDP 0.00 0.00 22 TH TF 0.99 0.06
3 PITd MDP 0.00 0.00 23 TF FEF 0.99 0.07
4 CITd MIP 0.00 0.00 24 LIP V4t 0.99 0.08
5 CITv MIP 0.00 0.00 25 AITv DP 0.01 0.09
6 PITv MDP 0.00 0.00 26 V4t VIP 0.99 0.09
7 PITd MIP 0.00 0.00 27 STPp 7a 0.99 0.09
8 PITv MIP 0.00 0.00 28 FEF TF 0.99 0.09
9 PO PITd 0.00 0.00 29 MIP TF 0.01 0.09

10 PIP V3A 1.00 0.01 30 VIP V4t 0.99 0.10
11 MSTl DP 1.00 0.02 31 PITd PITv 0.99 0.10
12 MSTd MSTl 1.00 0.02 32 V3 VP 0.99 0.10
13 V3A PIP 1.00 0.03 33 CITd CITv 0.99 0.11
14 AITd TH 1.00 0.03 34 VIP DP 0.99 0.11
15 PIP V2 1.00 0.03 35 V4t DP 0.99 0.12
16 V4t MSTd 1.00 0.03 36 46 PIP 0.02 0.12
17 MSTl MSTd 1.00 0.03 37 7a STPp 0.99 0.13
18 MDP TH 0.00 0.03 38 V4t LIP 0.99 0.13
19 TF TH 1.00 0.05 39 CITd DP 0.02 0.14
20 MIP TH 0.01 0.06 40 CITv CITd 0.99 0.15

Table 6. The top forty predicted unknown connections for the macaque cerebral cortex, sorted
by decreasing uncertainty. The predicted connection strength is shown as âij , while cij indicates
the width of the associated credible interval.

# source target âij cij # source target âij cij

1 V1 Gu 0.00 0.00 21 V1 3 0.00 0.04
2 V6 Piriform 0.00 0.01 22 Piriform MIP 0.00 0.04
3 Subiculum 1 0.00 0.01 23 V4t S2 0.01 0.04
4 V4t Gu 0.00 0.01 24 Gu TEOm 0.01 0.04
5 Gu V4t 0.00 0.01 25 V3 Gu 0.01 0.04
6 Gu V3A 0.00 0.02 26 V1 F4 0.01 0.05
7 1 Subiculum 0.00 0.02 27 Prostriate AIP 0.00 0.05
8 Prostriate 1 0.00 0.02 28 MIP Piriform 0.01 0.05
9 Gu V3 0.00 0.02 29 Gu PIP 0.01 0.05

10 V3A Gu 0.00 0.02 30 PIP Gu 0.01 0.05
11 Subiculum AIP 0.00 0.02 31 1 TEad 0.01 0.05
12 V6 25 0.00 0.03 32 1 Piriform 0.01 0.05
13 Piriform V6 0.00 0.03 33 V3A OPAI 0.01 0.05
14 V1 S2 0.00 0.03 34 V4t 3 0.01 0.05
15 V1 OPAI 0.00 0.03 35 V1 1 0.01 0.05
16 TEad 1 0.00 0.04 36 Piriform 1 0.01 0.06
17 1 Prostriate 0.00 0.04 37 Subiculum MIP 0.01 0.06
18 V6 OPAI 0.00 0.04 38 ProM V4t 0.01 0.06
19 Piriform VIP 0.00 0.04 39 Subiculum VIP 0.01 0.06
20 AIP Subiculum 0.00 0.04 40 TEad AIP 0.01 0.06
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Figure 9. Predictions for the macaque visual system. Posterior expectations of the con-
nectivity matrix A for different numbers of latent dimensions.
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Figure 10. Predictions for the macaque cerebral cortex. Posterior expectations of the
connectivity matrix A for different numbers of latent dimensions.
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Figure 11. Predictions for the mouse neocortex. Posterior expectations of the connectivity
matrix A for different numbers of latent dimensions.
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et du cerveau en particulier: avec des observations sur la possibilité de reconnâıtre plusieurs
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sanne.

Helmstaedter, M. (2013), ‘Cellular-resolution connectomics: challenges of dense neural circuit
reconstruction’, Nature Methods 10(6), 501–507.

Herlau, T., Schmidt, M. N. & Mørup, M. (2014), ‘Infinite-degree-corrected stochastic block model’,
Physical review E 90(3-1), 032819.

Hinne, M., Ekman, M., Janssen, R. J., Heskes, T. & van Gerven, M. A. J. (2015), ‘Prob-
abilistic clustering of the human connectome identifies communities and hubs’, PloS ONE
10(1), e0117179.

Hinne, M., Heskes, T., Beckmann, C. F. & van Gerven, M. A. J. (2013), ‘Bayesian inference of
structural brain networks.’, NeuroImage 66C, 543–552.

Hoff, P. D. (2008), Modeling homophily and stochastic equivalence in symmetric relational data,
in J. C. Platt, D. Koller, Y. Singer & S. T. Roweis, eds, ‘Advances in Neural Information
Processing Systems 20’, Curran Associates, Inc., pp. 657–664.

Hoff, P. D., Raftery, A. E. & Handcock, M. S. (2002), ‘Latent space approaches to social network
analysis’, Journal of the American Statistical Association 97(460), 1090–1098.

Hoffman, M. D. & Gelman, A. (2014), ‘The No-U-Turn sampler: Adaptively Setting Path Lengths
in Hamiltonian Monte Carlo’, Journal of Machine Learning Research 15, 30.

Janssen, R. J., Hinne, M., Heskes, T. & van Gerven, M. A. J. (2014), ‘Quantifying uncertainty in
brain network measures using Bayesian connectomics’, Frontiers in Computational Neuroscience
8(October), 1–10.

Jbabdi, S. & Johansen-Berg, H. (2011), ‘Tractography: where do we go from here?’, Brain Con-
nectivity 1(3), 169–183.

Jbabdi, S., Sotiropoulos, S. N., Haber, S. N., Van Essen, D. C. & Behrens, T. E. (2015), ‘Measuring
macroscopic brain connections in vivo’, Nature Neuroscience 18(11), 1546–1555.
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Lü, L. & Zhou, T. (2011), ‘Link prediction in complex networks: A survey’, Physica A: statistical
mechanics and its applications 390(6), 1150–1170.

Markov, N. T., Ercsey-Ravasz, M. M., Ribeiro Gomes, A. R., Lamy, C., Magrou, L., Vezoli,
J., Misery, P., Falchier, A., Quilodran, R., Gariel, M. A., Sallet, J., Gamanut, R., Huissoud,
C., Clavagnier, S., Giroud, P., Sappey-Marinier, D., Barone, P., Dehay, C., Toroczkai, Z.,
Knoblauch, K., van Essen, D. C. & Kennedy, H. (2014), ‘A weighted and directed interareal
connectivity matrix for macaque cerebral cortex’, Cerebral Cortex 24(1), 17–36.

Miller, K., Jordan, M. I. & Griffiths, T. L. (2009), Nonparametric latent feature models for link
prediction, in Y. Bengio, D. Schuurmans, J. D. Lafferty, C. K. I. Williams & A. Culotta, eds,
‘Advances in Neural Information Processing Systems 22’, Curran Associates, Inc., pp. 1276–
1284.

Mørup, M., Madsen, K. H., Dogonowski, A.-M., Siebner, H. & Hansen, L. K. (2010), Infinite
relational modeling of functional connectivity in resting state fmri, in J. D. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R. S. Zemel & A. Culotta, eds, ‘Advances in Neural Information
Processing Systems 23’, Curran Associates, Inc., pp. 1750–1758.

Newman, M. E. J. (2010), Networks: An Introduction, Oxford University Press, Inc., New York,
NY, USA.

Nowicki, K. & Snijders, T. A. B. (2001), ‘Estimation and prediction for stochastic block structures’,
Journal of the American Statistical Association 96(455), 1077–1087.

O’Donnell, L. J. & Pasternak, O. (2015), ‘Does diffusion MRI tell us anything about the white
matter? An overview of methods and pitfalls’, Schizophrenia Research 161(1), 133–141.

Oztas, E. (2003), ‘Neuronal tracing’, Neuroanatomy 2, 2–5.
Priebe, C. E., Vogelstein, J. & Bock, D. (2013), ‘Optimizing the quantity/quality trade-off in

connectome inference’, Communications in Statistics - Theory and Methods 42(19), 3455–3462.
Pukelsheim, F. (1993), Optimal design of experiments, Vol. 50, Society for Industrial and Applied

Mathematics.
Raj, A. & Chen, Y.-H. (2011), ‘The wiring economy principle: connectivity determines anatomy

in the human brain.’, PloS one 6(9), e14832.
Reveley, C., Seth, A. K., Pierpaoli, C., Silva, A. C., Yu, D., Saunders, R. C., Leopold, D. A. &

Ye, F. Q. (2015), ‘Superficial white matter fiber systems impede detection of long-range cortical
connections in diffusion MR tractography’, Proceedings of the National Academy of Sciences .

Rubinov, M. & Sporns, O. (2010), ‘Complex network measures of brain connectivity: Uses and
interpretations’, NeuroImage 52(3), 1059 – 1069.

Sarkar, P. & Moore, A. W. (2005), ‘Dynamic social network analysis using latent space models’,
ACM SIGKDD Explorations Newsletter 7(2), 31–40.

Schmidt, M. & Mørup, M. (2013), ‘Nonparametric bayesian modeling of complex networks: an
introduction’, IEEE Signal Processing Magazine 30(3), 110–128.

Schultz, T., Vilanova, A., Brecheisen, R. & Kindlmann, G. (2014), Fuzzy fibers: Uncertainty
in dMRI tractography, in ‘Scientific Visualization: Uncertainty, Multifield, Biomedical, and
Scalable Visualization’, Mathematics + Visualization, Springer, pp. 79–92.

Seehaus, A., Roebroeck, A., Bastiani, M., Fonseca, L., Bratzke, H., Lori, N., Vilanova, A., Goebel,
R. & Galuske, R. (2015), ‘Histological validation of high-resolution DTI in human post mortem
tissue’, Frontiers in Neuroanatomy 9, 1–12.

Sewell, D. K. & Chen, Y. (2015), ‘Latent space models for dynamic networks’, Journal of the
American Statistical Association .

Song, H. F., Kennedy, H. & Wang, X.-J. (2014), ‘Spatial embedding of structural similarity in the
cerebral cortex.’, Proceedings of the National Academy of Sciences 111(46), 16580–16585.

Sporns, O. (2010), Networks of the Brain, 1st edn, The MIT Press.
Sporns, O., Tononi, G. & Kötter, R. (2005), ‘The human connectome: A structural description of

the human brain.’, PLoS Computational Biology 1(4), e42.
Wang, Y. J. & Wong, G. Y. (1987), ‘Stochastic blockmodels for directed graphs’, Journal of the

American Statistical Association 82(397), 8–19.
Zingg, B., Hintiryan, H., Gou, L., Song, M. Y., Bay, M., Bienkowski, M. S., Foster, N. N.,

Yamashita, S., Bowman, I., Toga, A. W. & Dong, H.-W. (2014), ‘Neural networks of the mouse

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 14, 2016. ; https://doi.org/10.1101/063867doi: bioRxiv preprint 

https://doi.org/10.1101/063867
http://creativecommons.org/licenses/by-nc-nd/4.0/


22

neocortex’, Cell 156(5), 1096–1111.
Zitin, A., Gorowara, A., Squires, S., Herrera, M., A, T. M., Girvan, M. & Ott, E. (2014), ‘Spatially

embedded growing small-world networks’, Scientific reports 4(7047), 1–5.

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 14, 2016. ; https://doi.org/10.1101/063867doi: bioRxiv preprint 

https://doi.org/10.1101/063867
http://creativecommons.org/licenses/by-nc-nd/4.0/

	1. Introduction
	2. Materials and Methods
	2.1. Data
	2.2. The latent space model
	2.3. Optimal number of dimensions
	2.4. Prediction error and uncertainty
	2.5. Baseline predictions
	2.6. Relative degree and clustering

	3. Results
	3.1. Predicting the macaque visual system
	3.2. Predicting the macaque cerebral cortex
	3.3. Integrating anterograde and retrograde data

	4. Discussion
	Appendix A. Generative model for ordinal latent space
	Appendix B. Approximate inference and scalability
	Appendix C. Predictions for the different dimensionalities
	Appendix D. Predicted connections
	References

