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Abstract

Understanding the complex mutation patterns that give rise to drug resistant viral strains provides

a foundation for developing more effective treatment strategies for HIV/AIDS. Multiple sequence

alignments of drug-experienced HIV-1 protease sequences contain networks of many pair correla-

tions which can be used to build a (Potts) Hamiltonian model of these mutation patterns. Using

this Hamiltonian model we translate HIV protease sequence covariation data into quantitative pre-

dictions for the probability of observing specific mutation patterns which are in agreement with

the observed sequence statistics. We find that the statistical energies of the Potts model are corre-

lated with the fitness of individual proteins containing therapy-associated mutations as estimated

by in vitro measurements of protein stability and viral infectivity. We show that the penalty for

acquiring primary resistance mutations depends on the epistatic interactions with the sequence

background. Primary mutations which lead to drug resistance can become highly advantageous

(or entrenched) by the complex mutation patterns which arise in response to drug therapy despite

being destabilizing in the wildtype background. Anticipating epistatic effects is important for the

design of future protease inhibitor therapies.
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I. INTRODUCTION9

The ability of HIV to rapidly mutate leads to antiretroviral therapy (ART) failure among10

infected patients. Enzymes coded by the pol gene play critical roles in viral maturation and11

have been key targets of several families of drugs used in combination therapies. The protease12

enzyme is responsible for the cleavage of the Gag and Gag-Pol polyproteins into functional13

constituent proteins and it has been estimated that resistance develops in as many as 50%14

of patients undergoing monotherapy (Richman et al. 2004) and as many as 30% of patients15

undergoing modern combination antiretroviral therapy (c-ART) (Gupta et al. 2008).16

The combined selective pressures of the human immune response and antiretroviral ther-17

apies greatly affect the evolution of targeted portions of the HIV-1 genome and give rise18

to patterns of correlated amino acid substitutions. As an enzyme responsible for the mat-19

uration of the virion, the mutational landscape of HIV protease is further constrained due20

to function, structure, thermodynamics, and kinetics (Bloom et al. 2010, Haq et al. 2012,21

Lockless et al. 1999, Zeldovich and Shakhnovich 2008, Zeldovich et al. 2007). As a conse-22

quence of these constraints, complex mutational patterns often arise in patients who have23

failed c-ART therapies containing protease inhibitors (PI), with mutations located both at24

critical residue positions in or near the protease active site and others distal from the active25

site (Chang and Torbett 2011, Flynn et al. 2015, Fun et al. 2012, Haq et al. 2012). In26

particular, the selective pressure of PI therapy gives rise to patterns of strongly correlated27

mutations generally not observed in the absence of c-ART, and more therapy-associated mu-28

tations accumulate under PI therapy than under all other types of ART therapies (Shafer29

2006, Shafer and Schapiro 2008, Wu et al. 2003). In fact, the majority of drug-experienced30

subtype B protease sequences in the Stanford HIV Drug Resistance Database (HIVDB) have31

more than 4 PI-therapy-associated mutations (see Figure S1). Within the Stanford HIVDB32

are patterns of multiple resistance mutations, and in order to overcome the development of33

resistance, understanding these patterns is critical.34

A mutation’s impact on protein stability or fitness depends on the genetic background35

in which it is acquired. Geneticists call this phenomenon “epistasis”. It is well understood36

that major drug resistance mutations in HIV protease destabilize the protease in some way,37

reducing protein stability or enzymatic activity, which can greatly alter the replicative and38

transmissive ability, or fitness, of that viral strain (Bloom et al. 2010, Boucher et al. 2016,39

Grenfell et al. 2004, Wang et al. 2002). To compensate for this fitness loss, protease accu-40

mulates accessory mutations which have been shown to restore stability or activity (Chang41

and Torbett 2011, Fun et al. 2012, Martinez-Picado et al. 1999). But it is unclear how the42

acquisition and impact of primary and accessory mutations are modulated in the presence43

of the many different genetic backgrounds observed, especially those present in the complex44
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resistant genotypes that arise under inhibitor therapy.45

Coevolutionary information derived from large collections of related protein sequences46

can be used to build models of protein structure and fitness (Burger and van Nimwegen47

2010, Göbel et al. 1994, Hinkley et al. 2011, Liu et al. 2009, Lockless et al. 1999, Socolich48

et al. 2005). Given a multiple sequence alignment (MSA) of related protein sequences,49

a probabilistic model of the network of interacting protein residues can be inferred from50

the pair correlations encoded in the MSA. Recently, probabilistic models, called Potts51

models, have been used to assign scores to individual protein sequences which correlate with52

experimental measures of fitness (Ferguson et al. 2013, Figliuzzi et al. 2015, Haq et al. 2012,53

Hopf et al. 2015, Mann et al. 2014). These advances build upon previous and ongoing work54

in which Potts models have been used to extract information from sequence data regarding55

tertiary and quaternary structure of protein families (Barton et al. 2016a, Haldane et al.56

2016, Jacquin et al. 2016, Marks et al. 2012, Morcos et al. 2011, 2014, Sulkowska et al. 2012,57

Sutto et al. 2015, Weigt et al. 2009) and sequence-specific quantitative predictions of viral58

protein stability and fitness (Barton et al. 2016b, Butler et al. 2016, Haq et al. 2012, Shekhar59

et al. 2013).60

In this study, we show how such models can be constructed to capture the epistatic in-61

teractions involved in the evolution of drug resistance in HIV-1 protease. The acquisition62

of resistance mutations which accumulate under the selective pressure of inhibitor therapy63

leave many residual correlations observable in MSAs of drug-experienced sequences (Hoff-64

man et al. 2003, Rhee et al. 2007, Wu et al. 2003), and we use the pair correlations that can65

be extracted from MSAs to construct a Potts model of the mutational landscape of drug66

experienced HIV-1 protease. We first provide several tests which demonstrate that our in-67

ferred model faithfully reproduces several key features of our original MSA including higher68

order correlations. We then compare the Potts model statistical energies with experimental69

measurements of fitness, including structural stability and relative infectivity of individual70

HIV protease variants which contain resistance mutations. Finally, the Potts scores are used71

to describe the epistatic mutational landscape of three primary resistance mutations. We ob-72

serve strong epistatic effects. The primary mutations are destabilizing in the context of the73

wildtype background, but become stabilizing on average as other resistance mutations accu-74

mulate in the background, similar to the concept of entrenchment in systems biology (Gong75

et al. 2013, Pollock et al. 2012, Shah et al. 2015). Furthermore, we find that entrenchment is76

modulated by the collective effect of the entire sequence, including mutations at polymorphic77

residues, and the variance of the statistical energy cost of introducing a primary mutation78

increases as resistance mutations accumulate; this heterogeneity is another manifestation of79

epistasis (Barton et al. 2016b, McCandlish et al. 2015). These findings provide a framework80

for exploring mutational resistance mechanisms using probabilistic models.81
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II. RESULTS82

A. Model inference and dataset83

Given a multiple sequence alignment (MSA), we can infer a statistical model P (~σ) for84

the probability of finding a protein sequence with sequence identity ~σ which takes the form85

P (~σ) ∝ exp(−E(~σ)) from the statistical properties of the MSA. The maximum entropy86

model which reproduces the first and second order marginal distributions of the MSA, Pi(σi)87

and Pij(σi, σj) of residue positions i and position pairs i, j, is given by the Potts Hamiltonian88

E(~σ) =
∑

i hi(σi)+
∑

i<j Jij(σi, σj), where the fields hi(σi) and couplings Jij(σi, σj) represent89

the preference for residue σi at position i and residue pair σiσj at positions i, j, respectively.90

The Potts model is fit to the bivariate marginals of the MSA such that it recovers the91

correlated pair information Cij(σi, σj) = Pij(σi, σj)− Pi(σi)Pj(σj).92

The Potts model captures epistatic effects; in contrast an independent model of a multiple93

sequence alignment can be constructed by summing the logarithm of the univariate marginals94

Eind(~σ) =
∑

i logPi(σi). As described in the following section, the ability to reproduce95

higher order marginals of the MSA (beyond second order) is a true predictive test of the96

Potts model, one which the independent model fails.97

As described in the introduction, protease sequence evolution under protease inhibitor98

selective pressure produces correlations between amino acid substitutions that are larger99

in magnitude than those that occur in the absence of drug pressure (seen in Figure S2)100

(Gupta and Adami 2016, Rhee et al. 2007, Wu et al. 2003). Although correlations between101

some drug-associated sites can be identified through analysis of drug-naive sequences, or102

structural and/or evolutionary constraints (Butler et al. 2016, Hoffman et al. 2003), the most103

complete model of the epistatic landscape of drug-resistance mutations is constructed using104

the correlations found in a varied set of drug-experienced sequences. As we demonstrate105

in later sections, correlations among the primary, accessory, and polymorphic mutations106

which arise under c-ART therapy all contribute to protease fitness. Starting with an MSA107

constructed from 5610 HIV-1 subtype B drug-experienced protease sequences obtained from108

the Stanford HIVDB, we have inferred a Potts model using a Markov Chain Monte Carlo109

(MCMC) method implemented on GPUs (see Materials and Methods and the supplemental110

information of Haldane et al. (Haldane et al. 2016) for more details).111

B. Recovery of the observed sequence statistics – marginal probabilities112

We can gauge the accuracy of the model by examining how well the model reproduces113

various statistics of the MSA. The most direct test is the reproduction of higher order114
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correlations observed in the multiple sequence alignment beyond pair correlations. Shown115

in Figure 1A is the recovery of the marginal probabilities of the most common subsequences116

observed in the dataset across varying subsequence lengths. The recovery of the bivariate117

marginals (pair frequencies) is not predictive but it demonstrates the quality of fit of the118

Potts model. The results shown in Figure 1 demonstrate that the Potts model is able to119

predict the frequencies of higher order marginals with accuracy. The Pearson correlation120

coefficient for the observed probabilities compared with the Potts model prediction remains121

above R2 ≥ 0.95 for subsequence lengths as large as 14. In contrast the independent model122

correlation coefficient is significantly worse (R2 → 0.22).123

Figure 2 shows the probability distribution of sequences that differ from the consensus by124

k mutations as predicted by the Potts and independent models compared to the observed125

distribution derived from the MSA. The Potts model predicts a distribution of mutations126

per sequence which is very close to the observed distribution whereas the independent model127

incorrectly predicts a multinomial distribution centered about 8 mutations from consensus.128

The very good agreement between the higher order sequence statistics of the Potts model129

and the observed statistics from the MSA provides additional evidence that the Potts model130

is not overfit.131

The Potts model also captures the observed statistics for larger subsequences, but as132

subsequence lengths increase, observed marginal probabilities in our MSA approach the133

sampling limit of the alignment (1/N ≈ 2× 10−4), meaning comparisons with the observed134

data at this level become dominated by noise. Tests with synthetic data (not shown) con-135

firm that for longer subsequences the discrepancy between observed higher order marginals136

and the Potts model are consistent with effects caused by the finite sample size (5610 se-137

quences) of the MSA (Haldane et al. 2016). In the following section, we compare Potts138

model statistical energies with experimentally determined measurements of protease fitness.139

C. Protease mutations, protein stability, and replicative capacity140

Two experimental tests used to quantify the effects of protease mutations on viral fitness141

are thermal stability of the folded protein and replicative capacity (Chang and Torbett142

2011, Louis et al. 2011, Muzammil et al. 2003). Chang and Torbett demonstrate that143

stability is compromised by the acquisition of primary mutations and this loss of stability144

can be rescued by known compensatory mutations, sometimes in excess of the reference145

stability. Muzammil et al. and Louis et al. have shown that patterns of up to 10 or more146

resistance mutations do not necessarily suffer from reduced stability relative to the wildtype,147

and that non-active site mutations can lead to resistance in certain sequence contexts. In148

Figure 3A the change in statistical Potts energies, ∆E = E − Eref is plotted versus the149
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change in thermal stability, where E and Eref are the statistical energies of the mutated150

and reference sequences corresponding to each pair of stability measurements. We observe a151

strong correlation between Potts ∆E and the change in stability as reflected by the change in152

melting temperature (R = −0.85, p = 0.0003). In contrast, the change in stability computed153

using the independent model shows no correlation (Figure S3A).154

We have extracted results for viral replicative capacity in which 29 single Protease mu-155

tants were studied by Henderson et al. (Henderson et al. 2012) and an additional small set156

of more complex sequence variants (van Maarseveen et al. 2006) that were tested relative157

to the wildtype sequence. As with the stability measurements, we find the relative Potts158

energy correlates well with infectivity (r = −0.64, p < 10−5), shown in Figure 3B. The same159

comparison using the independent model computed fitness again shows no predictive power160

(Figure S3B). Complementary to the RC assay presented in their study, Henderson et al.161

presented a SpIn assay and an additional assay measuring drug concentrations which inhibit162

protease function (EC50). Potts fitness predictions against these data are shown in Fig-163

ure S4. While this additional comparison does not show statistically significant correlation,164

probably because the observed measurements span a much smaller range of values, they do165

exhibit the same negative trends observed in Figure 3. All data shown in Figures 3, S3, S4166

can be found in Supplementary Data 1.167

The results presented here are reinforced by other recent studies of protein evolutionary168

landscapes (Ferguson et al. 2013, Figliuzzi et al. 2015, Hopf et al. 2015, Mann et al. 2014)169

where varying measures of experimental fitness are compared to statistical energies derived170

from correlated Potts models constructed from multiple sequence alignments. The range of171

statistical energies and the correlation with fitness are qualitatively similar to those presented172

by Ferguson et al. and Mann et al. where statistical energies of engineered HIV-1 Gag variants173

generated using a similar inference technique are compared with replicative fitness assays.174

The same can be said for correlations between Potts scores and relative folding free energies of175

Beta Lactamase TEM-1 presented by Figliuzzi et al.. This collection of studies demonstrate176

that Potts model statistical energies correlate with the fitness of protein sequences in different177

contexts, including protein families evolving under weak selection pressure (Figliuzzi et al.178

2015, Hopf et al. 2015), viral proteins evolving under immune pressure (Ferguson et al. 2013,179

Mann et al. 2014), and as presented here, viral proteins evolving under drug pressure.180

D. Inference of epistasis among therapy-associated mutations181

The sequences present in the Stanford HIVDB have been deposited at many stages of182

HIV infection and treatment, showcasing a variety of resistance patterns spanning from183

wildtype to patterns of more than 15 mutations at PI-associated positions. In this section,184
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we describe how Potts statistical energies can be used to infer epistatic effects on the major185

HIV protease resistance mutations.186

Although all current PIs are competitive active site inhibitors, major resistance mutations187

can be found both inside and outside of the protease active site; the substrate envelope hy-188

pothesis suggests this arises because PIs have a larger interaction surface with protease com-189

pared to that of its natural substrates (King et al. 2004, Özen et al. 2011, Prabu-Jeyabalan190

et al. 2002). V82 and I84 are positions inside the substrate cleft and major resistance muta-191

tions V82A and I84V have been shown to directly affect binding of inhibitors (Chellappan192

et al. 2007, King et al. 2002, Lefebvre and Schiffer 2008). L90 is a residue located outside193

of the substrate cleft and flap sites. Mutations at position 90, specifically L90M, have been194

shown to allow shifting of the aspartic acids of the active site catalytic triad (D25) on both195

chains, subsequently allowing for larger conformational changes at the dimer interface and196

active site cleft that reduce inhibitor binding (Kovalevsky et al. 2006, Mahalingam et al.197

2004, Ode et al. 2006).198

Given a sequence containing one of the 3 mutants V82A, I84V, and L90M, we can deter-199

mine the context-dependence of that mutation in its background by calculating the change200

in statistical energy associated with reversion of that mutation back to wildtype. This cor-201

responds to computing ∆E = Eobs − Erev where Eobs is the Potts energy of an observed202

sequence with one of these primary mutations and Erev is the Potts energy of that sequence203

with the primary mutation reverted to its consensus amino acid type. Due to the pair-204

wise nature of the Potts Hamiltonian, this computation reveals a measure of epistasis for a205

sequence ~σ containing mutant X → Y at position k206

∆E(~σk,Y ) = hk(Y )− hk(X) +
∑
i6=k

(Jik(σi, Y )− Jik(σi, X)) (1)

where the pair terms Jik are the couplings between the mutation site and all other positions207

in the background. When this measure is positive, the background imparts a fitness penalty208

for the reversion of the primary resistance mutation to the wildtype and when negative, the209

sequence regains fitness with reversion to wildtype. Using this measure, we computed ∆E210

for every sequence in our HIVDB MSA containing V82A, I84V, L90M and have arranged the211

energies versus sequence hamming distance from the consensus including only PI-associated212

sites, shown in Figure 4. As more mutations accumulate in the background, the preference213

for each primary resistance mutation to revert to wildtype is lost and the primary muta-214

tion becomes preferred over the wildtype on average when enough background mutations215

have accumulated. These crossover points are 6, 9, and 7 mutations for V82A, I84V, and216

L90M, respectively. When a sufficient number of mutations have accumulated, the primary217

resistance mutation becomes entrenched, meaning a reversion to wildtype at that position218
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is destabilizing in most sequences; the primary mutation becomes more entrenched as more219

background mutations are acquired. The effect is largest for L90M; for sequences contain-220

ing > 7 PI-associated mutations, on average the L90M primary mutation is ≈100 times221

more likely than the wildtype leucine at position 90. In contrast, this primary mutation is222

≈80 times less likely than the wildtype residue in the subtype B consensus sequence back-223

ground. In other words, there is an ≈8, 000 fold difference in the probability of observing224

the mutation L90M depending on the background sequence. The trend shared for V82A,225

I84V, and L90M is representative of the larger class of primary mutations; mutations V32I,226

M46L, I47V, G48V, I50V, I54V, L76V, and others become less destabilizing as the number227

of background mutations increases (see Figure S5).228

Why are primary resistance mutations much more likely in some backgrounds and not229

others? Are these effects caused by a small set of epistatic interactions with the primary230

resistance mutation or the collective effect of many small epistatic interactions?231

To answer these questions, we compared the sequence backgrounds which most entrench232

primary mutations from those sequences which most prefer wildtype instead of the primary233

mutation. Using as an example a fixed hamming distance of 10 from the subtype B consensus234

sequence, we examined the differences between the sequences among the top 10% and bottom235

10% of ∆E values in the h = 10 column in each of the subplots of Figure 4. The h = 10236

column was chosen as it is the column with the most data for the primary mutations V82A,237

I84V, and L90M. These two groups of sequences, top 10% and bottom 10%, are referred to238

as “most entrenched” (ME) and “least entrenched” (LE) sequences, respectively.239

One might expect that the accumulation of accessory mutations in a sequence will lead to240

the entrenchment of a primary mutation and, under this assumption, the most entrenched241

sequences should contain more accessory mutations than the least entrenched sequences.242

We observe more accessory mutations in the most entrenched sequences on average, but243

the difference is not significant and a large number of accessory mutations accumulate in244

the least entrenching sequences for V82A, I84V, and L90M as shown in Figure 5. In other245

words, simply counting accessory mutations in a sequence is unlikely to predict whether that246

sequence will entrench a primary mutation.247

Previous research has identified significant correlations between various primary and ac-248

cessory mutations and the primary resistance mutations under study here (Flynn et al. 2015,249

Rhee et al. 2007, Wu et al. 2003). We find that the presence of these accessory mutations250

alone cannot account for the separation of the most entrenched sequences from the least251

entrenched sequences. The most striking example is the double mutant G73S-L90M. G73S252

is present in 75% of the ME sequences and never present in the LE sequences; however,253

reversion of G73S in the sequences with the double mutation only results in a shift of ∆E254

equivalent to 15% of the difference between the mean ∆Es in the ME and LE sequences.255

8

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 2, 2016. ; https://doi.org/10.1101/063750doi: bioRxiv preprint 

https://doi.org/10.1101/063750


This suggests that while G73S certainly helps to entrench L90M, it is not required for the256

entrenchment of L90M and is not solely responsible for the entrenchment of L90M when257

present. Similar effects are observed for mutation I54V in the entrenchment of V82A and258

M46I and L90M in the entrenchment of I84V.259

To uncover the clearest patterns of mutations that differentiate the LE sequences from260

the ME sequences, we performed principal component analysis (PCA) on the combined set261

of ME and LE sequences at PI-associated sites. The projections of the ME and LE sequences262

onto the first 3 principal components are shown in Figures 6 and S6. The first three principal263

components explain approximately 40% of the total variance when performed on the data264

corresponding to V82A, I84V, L90M (39.5%, 42.5%, 37.4% respectively). In the case of265

L90M, the first principal component clearly separates the most entrenched sequences from266

the least entrenched sequences while the second principal component separates variation267

within both groups. For V82A and I84V, a linear combination of the first two principal268

components separates the ME from the LE sequences, most likely due to variation between269

and within the most and least entrenching sequences being similarly large (which can be270

seen in the plots of hamming distance in Figure S6).271

Examination of the first principal component (PC) eigenvector shows that the residues272

of at least 11 PI-associated sites contribute to the differentiation of the most entrenched273

(ME) sequences from the least entrenched (LE) sequences for primary mutation L90M, with274

residues K20F/I/V, M46I, G73S, V82V, and I84V contributing most strongly. Sequences275

from the two classes for which the first PC explains the most variation, measured as the276

hamming distance captured by the first PC, can be found in Table S1. Contributions from277

11 sites is consistent with the average pairwise hamming distance of 11 between the most and278

least entrenched sequences, as seen in Figure 6 inset. Similarly, sets of 14 and 16 residues279

among the first two principal eigenvectors are responsible for the separation of ME and LE280

sequences for V82A and I84V, respectively (see Figure S6). These observations reinforce281

the point that while previously identified primary-accessory mutation pairs are important282

for acquisition and fixation of primary mutations, a model which captures epistatic effects283

collectively, like the Potts model, is needed to identify sequence backgrounds most likely to284

accommodate primary mutations.285

Non-PI-associated polymorphisms also appear to modulate the entrenchment of primary286

resistance mutations, though the effect is secondary to that of PI-associated mutations.287

There exist sets of sequences, each with the same pattern of PI-associated mutations, that288

differ in entrenchment scores by as much as ∆∆E ≈ 3, which corresponds to observable289

probabilities differing by more than an order of magnitude. This appears to be the result of290

strong positive and negative couplings that arise between non-PI-associated polymorphisms291

and certain PI-associated mutations. For example, we find that non-PI-associated muta-292
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tions V11I, K43R/N, I66V, C67F/L/Q/E, I72V/L, T74A, P79A, and C95F all appear to293

regulate the entrenchment of L90M. Some of these residues lie in the hydrophobic core of294

the protease dimer, and subtle conformational changes in the hydrophobic core by these295

residues may play an important role in inhibitor binding (Mittal et al. 2012). A demon-296

stration of this modulation is shown in Figure S7, where a common background sequence297

of 10 PI-associated mutations is shared by several observed sequences in the original MSA298

with varying number of additional polymorphisms. Two of these sequences are shown in299

Figure S7B, and contain one and six additional mutations respectively. Despite the compli-300

cated network of interactions, the presence of the additional five polymorphic mutations in301

the second sequence increases the entrenchment of L90M, with ∆∆E = 2.39 when reverting302

L90M to L, which corresponds to ∼ 10 fold increase in frequency.303

These results present testable predictions, and we have included three pairs of sequences304

that we predict will be most and least entrenching for the primary mutations discussed here,305

which can be found in Table I. Using either replicative capacity or melting temperature as306

a proxy for fitness, it should be possible to verify experimentally whether the Potts model307

correctly predicts the relative frequencies upon reverting the primary mutation to wildtype308

for the selected sequences pairs listed in Table I.309

III. DISCUSSION310

The evolution of viruses under drug selective pressure induces mutations which are cor-311

related due to constraints on structural stability and function that contribute to fitness.312

The correlations induce epistatic effects, a primary or accessory resistance mutation can be313

either stabilizing or destabilizing depending on the genetic background. Recently epistasis314

has become a focus for analysis in structural biology and genomics as researchers have begun315

to successfully link the coevolutionary information in collections of protein sequences with316

the structural and functional fitness of those proteins (Barton et al. 2016b, Butler et al.317

2016, Ferguson et al. 2013, Figliuzzi et al. 2015, Hinkley et al. 2011, Hopf et al. 2015, Mann318

et al. 2014). In the current study, we have used the correlated mutations encoded in a319

multiple sequence alignment of drug-experienced HIV-1 protease sequences to parametrize320

a Potts model of sequence statistical energies that can be used as an estimator of stability321

and relative replicative capacity of individual protease sequences containing drug resistance322

mutations.323

The most entrenching sequences are those at local fitness maxima, and accumulating324

mutations, as seen here as increasing hamming distance from the subtype B consensus325

sequence, unlocks pathways to these local fitness maxima (Gupta and Adami 2016). Up to326

100–1000 times more probable than sequences that favor reversion to the consensus genotype,327
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these highly resistant sequences observed in our MSA present a significant risk for the328

transmission of drug resistance to new hosts as they incur large fitness penalties for reversion.329

Indeed, we find that the entrenchment effect is strongest for L90M, which has been shown330

to revert very slowly in drug naive patients with transmitted drug resistance (Yang et al.331

2015).332

This work builds upon a large literature, ranging from experimental work (Chang and333

Torbett 2011, Henderson et al. 2012) and statistical analyses of covarying pairs of muta-334

tions (Rhee et al. 2007, Wu et al. 2003) to more advanced statistical models of patterns of335

mutations at many positions (such as Potts models) (Butler et al. 2016, Haq et al. 2009,336

2012), to strengthen our understanding of the emergent properties of drug resistance in337

HIV-1 protease. We demonstrate that, while very important, the information conveyed by338

pairs of primary and accessory mutations only tells a small part of the story; the context339

of the full sequence background is really necessary to understand how primary resistance340

mutations become stabilized. The results presented here advance recent work in the field of341

using Potts models to study HIV evolution (Barton et al. 2016b, Butler et al. 2016) by pro-342

viding systematic prospective predictions quantifying the influence of specific multi-residue343

patterns on the tolerance of drug resistance mutations.344

Recent publications have reported that mutations near or distal to Gag cleavage sites345

play a role in promoting cleavage by drug-resistant and enzymatically deficient proteases, by346

selecting for mutations that increase substrate contacts with the protease active site, altering347

the flexibility of the cleavage site vicinity, or by as of yet unknown mechanisms (Breuer et al.348

2011, Flynn et al. 2015, Fun et al. 2012, Kolli et al. 2009, Parry et al. 2011, Prabu-Jeyabalan349

et al. 2002). This suggests that viral coevolution of Gag with selective protease mutations350

may further stabilize multiple resistance mutations; thus, the analysis of protease mutation351

patterns can be extended to include amino acid substitutions within Gag and the Gag-Pol352

polyprotein. Furthermore, this type of analysis is not limited to protease and may be used to353

study the development of resistance in other HIV drug targets, such as reverse transcriptase354

and integrase, as well as other biological systems that develop resistance to antibiotic or355

antiviral therapies.356

The Potts model is a powerful tool for interrogating protein fitness landscapes as it cap-357

tures the correlated effects of many mutations collectively. The analysis presented here358

provides a framework to examine the structural and functional fitness of individual viral359

proteins under drug selection pressure. Elucidating how patterns of viral mutations accu-360

mulate and understanding their epistatic effects has the potential to impact design strategies361

for the next generation of c-ART inhibitors and therapies.362
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IV. MATERIALS AND METHODS363

Sequence Data364

Sequence information (as well as patient and reference information) was collected from the365

Stanford University HIV Drug Resistance Database (http://hivdb.stanford.edu) (Shafer366

2006) using the Genotype-Rx Protease Downloadable Dataset (http://hivdb.stanford.367

edu/pages/geno-rx-datasets.html) that was last updated on 29/04/2013 (there now ex-368

ists a more recent sequence alignment updated May 2015). There are 65,628 protease isolates369

from 59,982 persons in this dataset. From this dataset, 5,824 drug-experienced, subtype B,370

non-mixture, non/recombinant, and unambiguous sequences were extracted. Sequences with371

more than 1 gap and MSA columns with more than 1% gaps (positions 1–5 and 99) were372

removed, resulting in N = 5, 610 sequences of length L = 93.373

For the comparison made in Figure S2, drug-naive subtype B non/mixture, non-374

/recombinant, and unambiguous sequences were extracted from the same downloadable375

dataset. As with drug/experienced sequences, gap-containing sequences and columns were376

removed, resulting in 13,350 sequences of length 89.377

Mutations considered PI-associated were extracted from (Johnson et al. 2013) and378

https://hivdb.stanford.edu/dr-summary/resistance-notes/PI/:379

L10I/F/V/C/R, V11I, G16E, K20R/M/I/T/V, L24I, D30N, V32I, L33I/F/V,380

E34Q, M36I/L/V, K43T, M46I/L, I47V/A, G48V, I50L/V, F53L/Y, I54V/L/A/M/T/S,381

Q58E, D60E, I62V, L63P, I64L/M/V, H69K/R, A71V/I/T/L, G73S/A/C/T, T74P, L76V,382

V77I, V82A/F/T/S/L/I, N83D, I84V, I85V, N88D/S, L89I/M/V, L90M, I93L/M.383

Marginal Reweighting384

Weights (wk) reciprocal to the number of sequences contributed by each patient were385

computed and assigned to each sequence. With these weights, estimates of the bivariate386

marginal probabilities were computed from the MSA of N sequences:387

Pij(σi, σj) =
1

N

N∑
k=1

wkδ
(
σki , σi

)
δ
(
σkj , σi

)
(2)

where σki is the residue identity at position i of the kth sequence ~σk, 0 < wk ≤ 1 is the388

weight of sequence k, and delta δ(α, β) equals one if α = β and is otherwise zero.389

Otherwise, all sequences are assumed independent; no reweighting was done to account390

for shared ancestry among these sequences. Phylogenetic trees of drug-naive and drug-391

treated HIV-infected patients have been show to exhibit star-like phylogenies (Gupta and392
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Adami 2016, Keele et al. 2008), and thus phylogenetic corrections are not needed. Further,393

phylogenetic corrections based on pairwise sequence similarity cut-offs of 40% of sequence394

length or more as are common in studies utilizing direct coupling analysis (DCA) (Morcos395

et al. 2011, 2014, Weigt et al. 2009) of protein families would drastically reduce the number of396

effective sequences in our MSA and would lead to mischaracterization of the true underlying397

mutational landscape. Potts models of other HIV protein sequences under immune pressure398

have been parameterized with no phylogenetic corrections (Barton et al. 2016b, Ferguson399

et al. 2013, Mann et al. 2014).400

Alphabet Reduction401

It has been shown that “reduced alphabets” consisting of 8 or 10 groupings of amino402

acids capture most of the information contained in the full 20 letter alphabet (Murphy et al.403

2000). We expand on this notion by computing an alphabet reduction that has the least404

effect on the statistical properties of our MSA. In the context of model building, a reduced405

alphabet decreases the number of degrees of freedom to be modeled. This leads to a more406

efficient model inference (Barton et al. 2016a, Haldane et al. 2016).407

Given the empirical bivariate marginal distribution for each pair of positions in the MSA408

using 21 amino acid characters (20 + 1 gap), the procedure begins by selecting a random409

position i. All possible alphabet reductions from 21 to 20 amino acid characters at position410

i are enumerated for every pair of positions ij, where j 6= i, by summing the bivariate411

marginals corresponding to each of the 210 possible combinations of amino acid characters412

at position i. The reduction which minimizes the root square mean difference (RMSD) in413

mutual information (MI) content:414 √
1

N

∑
ij

(
MIQ=21

ij −MIQ=Q′

ij

)2

(3)

between all pairs of positions ij with the original alphabet size Q = 21 and reduced alphabet415

size Q = 20 is selected. The alphabet at each position i is reduced in this manner until all416

positions have position-specific alphabets of size Q = 20. This process is then repeated417

for each position by selecting the merger of characters which minimizes the RMSD in MI418

between all pairs of positions ij with the original alphabet size Q = 21 and reduced alphabet419

size Q = Q′, and is stopped once Q = 2.420

Due to residue conservation at many loci in the HIV protease genome, the average number421

of characters per position is 2, and several previous studies of HIV have used a binary422

alphabet to extract meaningful information from sequences (Ferguson et al. 2013, Flynn et al.423

2015, Shekhar et al. 2013, Wu et al. 2003). However, using a binary alphabet marginalizes424
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potentially informative distinctions between amino acids at certain positions, especially PI-425

associated sites, that acquire multiple mutations from the wildtype. We found that an426

alphabet of 4 letters substantially reduces the sequence space to be explored during the model427

inference while providing the necessary discrimination between different types of mutant428

residues at each position. Additionally, the information lost in this reduction is minimal;429

Pearson’s R2 between the mutual information (MI) of the bivariate marginal distributions430

in 21 letters and in 4 letters is ≈0.995 (Figures S8, S9).431

The original MSA was then re-encoded using the reduced per-position alphabet, and the432

bivariate marginals (Eq. 2) were recalculated using the reduced alphabet. Small pseudo-433

counts are added to the bivariate marginals, as described (Haldane et al. 2016). Briefly,434

instead of adding a small flat pseudocount such as 1/N , we add pseudocounts which cor-435

respond to a small per-position chance µ of mutating to a random residue such that the436

pseudocounted marginals P pc are given by437

P pc
ij (σi, σj) = (1− µ)2Pij(σi, σj) +

(1− µ)µ

Q
(Pi(σi) + Pj(σj)) +

µ2

Q2
(4)

where we take µ ≈ 1/N .438

Maximum Entropy Model439

Following (Mora and Bialek 2011), we seek to approximate the unknown empirical prob-440

ability distribution P (~σ) which describes HIV-1 protease sequences {~σ} of length L where441

each residue is encoded in an alphabet of Q states by a model probability distribution Pm(~σ).442

The model distribution we choose is the maximum entropy distribution, e.g. the distribution443

which maximizes444

S = −
QL∑
k=1

Pm
(
~σk
)

logPm
(
~σk
)

(5)

and has been derived by (Barton et al. 2016a, Ferguson et al. 2013, Mézard and Mora 2009,

Morcos et al. 2011, Weigt et al. 2009) and others satisfying the following constraints:

QL∑
k

Pm
(
~σk
)

= 1 (6)

QL∑
k

Pm
(
~σk
)
δ
(
σki , σi

)
= Pi(σi) (7)

QL∑
k

Pm
(
~σk
)
δ
(
σki , σi

)
δ
(
σkj , σj

)
= Pij(σi, σj) (8)
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i.e. such that the empirical univariate and bivariate marginal probability distributions are

preserved. Through a derivation using Lagrange multipliers not presented here (but can be

found in (Ferguson et al. 2013, Mora and Bialek 2011)), the maximum entropy model takes

the form of a Boltzmann distribution

Pm(~σ) =
1

Z
exp (−βE(~σ)) (9)

E(~σ) =
L∑
i

hi(σi) +

L(L−1)/2∑
i<j

Jij(σi, σj) (10)

where the quantity E(~σ) is the Potts Hamiltonian, which determines the statistical energy445

of a sequence ~σ, 1/Z is a normalization constant, and the inverse temperature β = 1/kBT446

is such that kbT = 1. This form of the Potts Hamiltonian consists of Lq field parameters hi447

and
(
L
2

)
Q2 coupling parameters Jij which describe the system’s preference for each amino448

acid character at site i and each amino acid character pair at sites i, j, respectively. In the449

way we present the Boltzmann distribution Pm ∝ exp (−E), negative fields and couplings450

signify favored amino acids preferences.451

Not all the model parameters are independent. Due to the relationship between bivariate452

marginals Pij, Pik, Pjk and the fact that the univariate marginals can be derived entirely453

from the bivariate marginals, only L(Q− 1) +
(
L
2

)
(Q− 1)2 of these LQ+

(
L
2

)
Q2 parameters454

are independent. Several schemes have been developed and used by others to fully constrain455

the Hamiltonian (see (Morcos et al. 2011, Weigt et al. 2009), for example). Further, the456

fully-constrained Potts Hamiltonian is “gauge invariant” such that the probablity Pm
(
~σk
)

457

is unchanged by (a) a global bias added to the fields, hi(σi)→ hi(σi) + b, (b) a per-site bias458

added to the fields hi(σi)→ hi(σi)+bi, (c) rearrangement of field and coupling contributions459

such that Jij(σi, σj) → Jij(σi, σj) + bij(σj) and hi(σi) → hi(σi) −
∑

j 6= i bij(σj), or (d) a460

combination thereof. Due to this gauge invariance, model parameters are over-specified and461

thus not unique until a fully-constrained gauge is specified, but the properties Pm and ∆E,462

among others, are gauge invariant and unique among fully-constrained gauges.463

Model Inference464

Finding a suitable set of Potts parameters {h, J} fully determines the total probability465

distribution Pm(~σ) and is achieved by obtaining the set of fields and couplings which yield bi-466

variate marginal estimates Pm(σi, σj) that best reproduce the empirical bivariate marginals467

P obs(σi, σj). Previous studies have developed a number of techniques to do this (Balakr-468

ishnan et al. 2011, Barton et al. 2016a, Cocco and Monasson 2011, Ekeberg et al. 2013,469

Ferguson et al. 2013, Haq et al. 2012, Jones et al. 2012, Mézard and Mora 2009, Morcos470
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et al. 2011, Weigt et al. 2009). Following (Ferguson et al. 2013), we estimate the bivari-471

ate marginals given a set of fields and couplings by generating sequences through Markov472

Chain Monte Carlo (MCMC) where the Metropolis criterion for a generated sequence is473

proportional to the exponentiated Potts Hamiltonian. The optimal set of parameters {h, J}474

are found through multidimensional Newton search, where bivariate marginal estimates are475

compared to the empirical distribution to determine descent steps. Unlike several inference476

methods referenced above, this method avoids making explicit approximations to the model477

probability distribution, though approximations are made in the computation of the Newton478

steps, and this method is limited by sampling error of the input emperical marginal distribu-479

tions and by the need for the simulation to equilibrate. Also, the method is computationally480

intensive. A brief description of the method follows; see the supplemental information of481

Haldane et al. (Haldane et al. 2016) for a full description of the method.482

Determining the schema for choosing the Newton step is crucial. In (Ferguson et al.483

2013), a quasi-newton parameter update approach was developed, in which updates to Jij484

and hi are determined by inverting the system’s Jacobian, to minimize the difference between485

model-estimated and empirical marginals. To simplify and speed up this computation, we486

take advantage of the gauage invariance of the Potts Hamiltonian to infer a model in which487

hi = 0 ∀ i, and we compute the expected change in the model marginals ∆ Pij (dropping488

the m superscript) due to a change in Jij to first order by489

∆Pij(σi, σj) =
∑
kl,σkσl

∂Pij(σi, σj)

∂Jkl(σk, σl)
∆Jkl(σk, σl) +

∑
k,σk

∂Pij(σi, σj)

∂hk(σk)
∆hk(σk) (11)

with a similar relation for ∆Pi(σi). The challenge is to compute the Jacobian
∂Pij(σi,σj)

∂Jkl(σk,σl)
and490

invert the linear system in Equation 11, and solve for the changes ∆Jij and ∆hi given ∆Pij491

which we choose as492

∆Pij = γ
(
P emp
ij − Pij

)
(12)

given a damping parameter γ chosen small enough for the linear (and other) approximations493

to hold.494

The computational cost of fitting
(

93
2

)
×(4− 1)2 +93×(4−1) = 38, 781 model parameters495

on 2 NVIDIA K80 or 4 NVIDIA TitanX GPUs is approximately 4 hours. For a more496

thorough description of the inference methodology, see the supplementary information of497

Haldane et al. (Haldane et al. 2016).498

Experimental Comparison499

Experimentally derived values for either melting temperature (Tm) or viral infectivity500

via replicative capacity (RC) were mined from the results presented in (Chang and Torbett501
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2011, Henderson et al. 2012, Louis et al. 2011, Muzammil et al. 2003, van Maarseveen et al.502

2006). A csv file of the resulting mined data can be found in Supplementary Data 1.503
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FIGURES AND FIGURE LEGENDS730

FIG. 1: Potts model is predictive of higher order sequence statistics. For each

subsequence length varying from 2 to 14, subsequence frequencies determined by counting

occurences in the MSA are computed for all observed subsequences at 500 randomly

chosen combinations among 36 PI-associated positions. (A) Pearson R2 of the 200 most

probable observed subsequence frequencies (marginals) with corresponding predictions by

Potts (blue) and independent (gray) models for varying subsequence lengths. (B) 2nd and

(C) 14th order observed marginals predicted by both models. Shown in (B,C) are observed

frequencies at the 500 randomly chosen combinations of 2 and 14 positions among 36

PI-associated sites, with approximately 2500 and 5600 subsequence frequencies greater

than 0.01 visible, respectively.
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FIG. 2: Potts model captures properties of full length sequence ensemble.

Probabilities of observing sequences with any k mutations relative to the consensus

sequence as observed in original MSA (black) and predicted by the Potts (blue) and

independent (gray) models.

FIG. 3: Change in Potts energy correlates with change in experimental fitness.

(A) Changes in melting temperature (Tm) for individual sequences relative to a reference

sequence extracted from literature (Chang and Torbett 2011, Louis et al. 2011, Muzammil

et al. 2003). These sequences differ from the wildtype by 1–2 mutations (Chang and

Torbett 2011) up to 10–14 mutations (Louis et al. 2011, Muzammil et al. 2003). (B)

Change in relative infectivty as measured by replicative capacity assay for individual

sequences containing only single point mutations (Henderson et al. 2012) and 1–5

mutations (van Maarseveen et al. 2006). In both panels a linear regression fit with

Pearson’s R and associated two-tailed p-value are provided in the legend.
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FIG. 4: Effect of epistasis on the fitness penalty incurred by primary resistance

mutations. For each of the 3 primary HIV protease mutations described in (Chang and

Torbett 2011), two Potts statistical energies are computed for all observed sequences

containing that mutation: Eseq, the energy of the sequence with that mutation and

Ereversion, the energy with that primary mutation reverted to wildtype. This Potts energy

difference, ∆E = Eseq − Ereversion is shown versus hamming distance from the wildtype

including only PI-assocated positions. Ordinate scales are given in both relative

probability of reversion exp(−∆E) (left) and ∆E (right). Values below (above) the dashed

line on the ordinate correspond to fitness gain (penalty) upon reversion to wildtype.

Although primary resistance mutations initially destabilize the protease, as mutations

accumulate, the primary resistance mutations become entrenched, meaning their reversion

becomes destabilizing to the protein.
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FIG. 5: Distributions of accessory mutations in most and least entrenching

sequences. The number of accessory mutations among the 10% most and least

entrenching sequences for the primary mutations V82A, I84V, and L90M with a fixed

hamming distance of 10 from consensus. In all three cases, the distributions are not

significantly different (Mann Whintey UV 82 = 92.5, UV 84 = 53.0, UL90 = 145.5, all with

p > 0.05).

28

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 2, 2016. ; https://doi.org/10.1101/063750doi: bioRxiv preprint 

https://doi.org/10.1101/063750


FIG. 6: PCA analysis of most and least entrenching sequence backgrounds for

primary resistance mutation L90M. Sequences from the 10th and 90th percentiles in

∆E of the sequences containing L90M and with a hamming distance of 10 from the

consensus were labeled as “least entrenching” and “most entrenching”, respectively, and

pooled. These sequences of length L = 93 encoded with a Q = 4 alphabet were

transformed to bit vectors of length LQ and Principal component analysis (PCA) was

performed on this set of transformed sequences. The projection of these sequences onto

their first 3 principal compenents are shown above with the least entrenching sequences

colored blue and most entrenching sequences colored red. The first principal component

clearly separates the most from the least entrenching sequence backgrounds for L90M

while the other two components explain variation within the two groups of sequences.

Shown in the inset are the distributions of hamming distances between (gray) and within

the most entrenching (red) and least entrenching (blue) sequences.
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TABLES731

TABLE I: Combinations of a most and least entrenching sequence corresponding to the

entrenchment of the primary mutations V82A, I84V, and L90M.

V82A I84V L90M

Positionab Consensus MEc LEd ME LE ME LE

10 L I I F L I L

13 I I V I V I I

20 K R K K R I K

24 L I L L L L L

30 D D D D N D D

33 L L F F L L L

35 E D E E D D E

36 M I M M I M I

37 N N N D S S D

41 R K R R R R K

46 M L M I M I M

48 G G G G G G V

54 I V V V I I V

57 R R R R K R R

58 Q Q Q Q E Q Q

62 I I I I V V V

63 L P P P P P P

67 C C F C C C C

69 H H H H H H Y

71 A V V V T I V

72 I I M I I I I

73 G G S G G S G

74 T T T P T T T

77 V V I V V V V

82 V A A V V V A

84 I I V V V V I

88 N N N N D N N

90 L L M M M M M

93 I L I L I L L

∆∆E 6.93 5.80 5.52

Relative probability ME/LE 1022 330 250

a The residue at positions not listed is the subtype B consensus residue
b PI-associated positions are shown in bold
c most entrenching
d least entrenching
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