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Abstract10

Understanding the complex mutation patterns that give rise to drug resistant vi-

ral strains provides a foundation for developing more effective treatment strategies

for HIV/AIDS. Multiple sequence alignments of drug-experienced HIV-1 protease

sequences contain networks of many pair correlations which can be used to build

a (Potts) Hamiltonian model of these mutation patterns. Using this Hamiltonian15

model we translate HIV protease sequence covariation data into quantitative predic-

tions for the stability and fitness of individual proteins containing therapy-associated
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mutations which we compare to previously performed in vitro measurements of pro-

tein stability and viral infectivity. We show that the penalty for acquiring primary

resistance mutations depends on the epistatic interactions with the sequence back-20

ground and, although often destabilizing in a wildtype background, primary muta-

tions are frequently stabilizing in the context of mutation patterns which arise in

response to drug therapy. Anticipating epistatic effects is important for the design

of future protease inhibitor therapies.

1 Introduction25

The ability of HIV to rapidly mutate leads to antiretroviral therapy (ART) failure among

infected patients. Enzymes coded by the pol gene play critical roles in viral maturation

and have been key targets of several families of drugs used in combination therapies. The

protease enzyme is responsible for the cleavage of the Gag and Gag-Pol polyproteins into

functional constituent proteins and it has been estimated that resistance develops in as30

many as 50% of patients undergoing monotherapy [1] and as many as 30% of patients

undergoing modern combination antiretroviral therapy (c-ART) [2].

The combined selective pressures of the human immune response and antiretroviral

therapies greatly affect the evolution of targeted portions of the HIV-1 genome and give

rise to patterns of correlated amino acid substitutions. As an enzyme responsible for the35

maturation of the virion, the mutational landscape of HIV protease is further constrained

due to function, structure, thermodynamics, and kinetics [3–7]. As a consequence of these

constraints, complex mutational patterns often arise in patients who have failed c-ART

therapies containing protease inhibitors (PI), with mutations located both at critical

residue positions in or near the protease active site and others distal from the active40
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site [7–10]. In particular, the selective pressure of PI therapy gives rise to patterns of

strongly correlated mutations generally not observed in the absence of c-ART, and more

therapy-associated mutations accumulate under PI therapy than under all other types

of ART therapies [11–13]. In fact, the majority of drug-experienced subtype B protease

sequences in the Stanford HIV Drug Resistance Database (HIVDB) have more than 4 PI-45

therapy-associated mutations (see Figure S1). Within the Stanford HIVDB are patterns

of multiple resistance mutations, and in order to overcome the development of resistance,

understanding these patterns is critical.

A mutation’s impact on protein stability or fitness depends on the genetic background

in which it is acquired. Geneticists call this phenomenon “epistasis”. It is well under-50

stood that major drug resistance mutations in HIV protease destabilize the protease in

some way, reducing protein stability or enzymatic activity, which can greatly alter the

replicative and transmissive ability, or fitness, of that viral strain [4, 14]. To compensate

for this fitness loss, protease accumulates accessory mutations which have been shown to

restore stability or activity [8, 9, 15]. But it is unclear how the acquisition and impact55

of primary and accessory mutations are modulated in the presence of the many different

genetic backgrounds observed, especially those present in the complex resistant genotypes

that arise under inhibitor therapy.

Coevolutionary information derived from large collections of related protein sequences

can be used to build models of protein structure and fitness [3, 16–20]. Given a multiple60

sequence alignment (MSA) of related protein sequences, a probabilistic model of the

network of interacting protein residues can be inferred from the pair correlations encoded

in the MSA. Recently, probabilistic models, called Potts models, have been used to

assign scores to individual protein sequences which correlate with experimental measures
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of fitness [21–24]. These advances build upon previous and ongoing work in which Potts65

models have been used to extract information from sequence data regarding tertiary

and quaternary structure of protein families [25–33] and sequence-specific quantitative

predictions of viral protein stability and fitness [34, 35].

In this study, we show how such models can be constructed to capture the epistatic in-

teractions involved in the evolution of drug resistance in HIV-1 protease. The acquisition70

of resistance mutations which accumulate under the selective pressure of inhibitor therapy

leave many residual correlations observable in MSAs of drug-experienced sequences [12,

36, 37], and we use the pair correlations that can be extracted from MSAs to construct

a Potts model of the mutational landscape of drug experienced HIV-1 protease. Due to

the large number of model parameters and complex fitting procedure, we first provide75

several tests which demonstrate that our inferred model faithfully reproduces several

key features of our original MSA including higher order correlations. We then compare

the Potts model statistical energies with experimental measurements of fitness, including

structural stability and relative infectivity of individual HIV protease variant sequences

which contain resistance mutations. Finally, the Potts scores are used to describe the80

epistatic mutational landscape of three primary resistance mutations. We observe strong

epistatic effects. The primary mutations are destabilizing in the context of the consensus

(wildtype) background, but become stabilizing on average as the resistance mutations

accumulate. Furthermore, the variance in the statistical energy cost of introducing a pri-

mary mutation also increases as resistance mutations accumulate; this heterogeneity is85

another manifestation of epistasis [38]. These findings provide a framework for exploring

mutational resistance mechanisms using probabilistic models.
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2 Results

2.1 Model inference and dataset

Given a multiple sequence alignment (MSA), we can infer a statistical model P (~σ) for90

the probability of finding a protein sequence with sequence identity ~σ which takes the

form P (~σ) ∝ exp(−E(~σ)) from the statistical properties of the MSA. The maximum

entropy model which reproduces the first and second order marginal distributions of the

MSA, Pi(σi) and Pij(σi, σj) of residue positions i and position pairs i, j, is given by

the Potts Hamiltonian E(~σ) =
∑

i hi(σi) +
∑

i<j Jij(σi, σj), where the fields hi(σi) and95

couplings Jij(σi, σj) represent the preference for residue σi at position i and residue pair

σiσj at positions i, j, respectively. The Potts model is fit to the bivariate marginals of

the MSA such that it recovers the correlated pair information Cij(σi, σj) = Pij(σi, σj)−

Pi(σi)Pj(σj).

The Potts model captures epistatic effects; in contrast an independent model of a mul-100

tiple sequence alignment can be constructed by summing the logarithm of the univariate

marginals Eind(~σ) =
∑

i logPi(σi). As described in the following section, the ability to

reproduce higher order marginals of the MSA (beyond second order) is a true predictive

test of the Potts model, one which the independent model fails.

As described in the introduction, protease sequence evolution under protease inhibitor105

selective pressure produces correlations between amino acid substitutions that are larger

in magnitude than those that occur in the absence of drug pressure (seen in Figure S2)

[12, 37, 39]. Although correlations between drug-associated sites can be identified through

analysis of drug-naive sequences [35, 36], the best model of the epistatic landscape of drug-

resistance mutations comes from the correlations found in drug-experienced sequences.110
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Therefore, using a Stanford HIVDB MSA of 5610 HIV-1 subtype B drug-experienced

protease sequences, we have inferred a Potts model using a Markov Chain Monte Carlo

(MCMC) method implemented on GPUs (see Matierals and Methods and the supple-

mental information of Haldane et al. [32] for more details).

2.2 Recovery of the observed sequence statistics115

We can gauge the accuracy of the model by examining how well the model reproduces

various statistics of the MSA. The most direct test is the reproduction of higher order cor-

relations observed in the multiple sequence alignment beyond pair correlations. Shown

in Figure 1A is the recovery of the marginal probabilities of the most common subse-

quences observed in the dataset across varying subsequence lengths. The recovery of the120

bivariate marginals (pair frequencies) is not predictive but it demonstrates the quality of

fit of the Potts model. The results shown in Figure 1 demonstrate that the Potts model

is able to predict the frequencies of higher order marginals with accuracy. The Pearson

correlation coefficient for the observed probabilities compared with the Potts model pre-

diction remains above R2 ≥ 0.95 for subsequence lengths as large as 14. In contrast the125

independent model correlation coefficient is significantly worse (R2 → 0.22).

Figure 2 shows the probability distribution of sequences that differ from the con-

sensus by k mutations as predicted by the Potts and independent models compared to

the empirical distribution derived from the MSA. The Potts model predicts a distribu-

tion of mutations per sequence which is very close to the observed distribution whereas130

the independent model incorrectly predicts a multinomial distribution centered about 8

mutations from consensus. These predictions of various higher order sequence statistics

provide strong evidence that the Potts model is not overfit.
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The Potts model also captures the observed statistics for larger subsequences, but

as subsequence lengths increase, observed marginal probabilities in our MSA approach135

the sampling limit of the alignment (1/N ≈ 2 × 10−4), meaning comparisons with the

observed data at this level become dominated by noise. Tests with synthetic data (not

shown) confirm that the discrepancy between observed higher order marginals and the

Potts model are consistent with effects caused by the finite sample size (5610 sequences)

of the MSA, and that the Potts model Hamiltonian is optimal given the data [32]. In140

the following section, we compare Potts model statistical energies with experimentally

determined measurements of protease fitness.

2.3 Protease mutations, protein stability, and replicative capac-

ity

Two experimental tests used to quantify the effects of protease mutations on viral fitness145

are thermal stability of the folded protein and replicative capacity [9, 40, 41]. Chang

and Torbett [9] demonstrate that stability is compromised by the acquisition of primary

mutations and this loss of stability can be rescued by known compensatory mutations,

sometimes in excess of the reference stability. Muzammil et al. [40] and Louis et al. [41]

have shown that patterns of up to 10 or more resistance mutations do not necessarily150

suffer from reduced fitness relative to the wildtype, and that non-active site mutations

can lead to resistance in certain sequence contexts. In Figure 3A the change in statistical

Potts energies, ∆E = E − Eref corresponding to the sequences in these data sets is

plotted versus the change in thermal stability and shows a strong correlation with the

change in fitness as reflected by the change in melting temperature (R = −0.85, p =155

0.0003). In contrast, the change in fitness computed using the independent model shows
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no correlation (Figure S3A).

We have extracted results for viral replicative capacity in which 29 single mutants

were studied by Henderson et al. [42] and an additional small set of more complex se-

quence variants [43] that were tested relative to the wildtype sequence. As with the160

stability measurements, we find the relative Potts energy correlates well with infectivity

(r = −0.64, p < 10−5), shown in Figure 3B. The same comparison using the independent

model computed fitness again shows no predictive power (Figure S3B). Complementary

to the RC assay presented in [42], Henderson et al. presented a SpIn assay and an ad-

ditional assay measuring drug concentrations which inhibit protease function (EC50).165

Potts fitness predictions against these data are shown in Figure S4. While this addi-

tional comparison does not show statistically significant correlations, probably because

the observed measurements span a much smaller range of values, they do exhibit the

same negative trends observed in Figure 3. All data show in Figures 3, S3, S4 can be

found in Supplementary Data 1.170

The results presented here are reinforced by other recent studies of protein evolution-

ary landscapes [21–24] where varying measures of experimental fitness are compared to

statistical energies derived from correlated Potts models constructed from multiple se-

quence alignments. The range of statistical energies and the correlation with fitness are

qualitatively similar to those presented by Ferguson et al. [21] and Mann et al. [22] where175

statistical energies of engineered HIV-1 Gag variants generated using a similar inference

technique are compared with replicative fitness assays. The same can be said for corre-

lations between Potts scores and relative folding free energies of Beta Lactemase TEM-1

presented by Figliuzzi et al. [23]. While there are qualitative similarities between our

results and related studies, differences exist in model inference procedures and, more im-180
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portantly, the evolutionary pressures that shaped these different mutational landscapes.

Nonetheless, this collection of studies demonstrate that Potts model statistical energies

correlate with the fitness of protein sequences in different contexts, including protein fam-

ilies evolving under weak selection pressure [23, 24], viral proteins evolving under immune

pressure [21, 22], and now as presented here, viral proteins evolving under drug pressure.185

2.4 Inference of Epistasis among therapy-associated mutations

The sequences present in the Stanford HIVDB have been deposited at many stages of

HIV infection and treatment, showcasing a variety of resistance patterns spanning from

wildtype to patterns of more than 15 mutations at PI-associated positions. In this section,

we describe how Potts statistical energies can be used to infer epistatic effects on the major190

HIV protease resistance mutations.

Although all current PIs are competitive active site inhibitors, major resistance mu-

tations can be found both inside and outside of the protease active site. V82 and I84

are positions inside the substrate cleft and major resistance mutations V82A and I84V

have been shown to directly affect binding of inhibitors. L90 is a residue located outside195

of the substrate cleft and flap sites. Mutations at position 90, specifically L90M, have

been shown to allow shifting of the aspartic acids of the active site catalytic triad (D25)

on both chains, subsequently allowing for larger conformational changes at the dimer

interface and active site cleft that reduce inhibitor binding [44–46].

Given a sequence containing one of the 3 mutants V82A, I84V, and L90M, we can200

determine the context-dependence of that mutation in its background by calculating the

change in statistical energy associated with reversion of that mutation back to wildtype.

This corresponds to computing ∆E = Eobs − Erev where Eobs is the Potts energy of an
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observed sequence with one of these primary mutations and Erev is the Potts energy of

that sequence with the primary mutation reverted to its consensus amino acid type. Due205

to the pairwise nature of the Potts Hamiltonian, this computation reveals a measure of

epistasis for a sequence containing mutant X → Y at position k

∆E(~σk,Y ) = hk(Y )− hk(X) +
1

2

∑
i6=k

(Ji,k(σi, Y )− Ji,k(σi, X)) (1)

where the pair terms Ji,k are the couplings between the mutation site and all other

positions in the background. When this measure is positive, the background imparts

a fitness penalty for the reversion of the primary resistance mutation to the wildtype210

and when negative, the sequence regains fitness with reversion to wildtype. Using this

measure, we compute ∆E for every sequence in our HIVDB MSA containing V82A,

I84V, L90M and have arranged the energies versus sequence hamming distance from the

consensus including only PI-associated sites, shown in Figure 4A,B,C respectively. We

observe that as more mutations accumulate in the background, the fitness gain to revert215

the primary resistance mutation is lost and the primary mutation becomes stabilizing

on average when enough mutations have accumulated. These crossover points are 6, 9,

and 7 mutations for V82A, I84V, and L90M, respectively. Once a sufficient number of

mutations have accumulated, the majority of sequence backgrounds are interconnected

in such a way that the primary resistance mutation is entrenched, meaning a mutation220

to wildtype at that position is destabilizing, and the primary mutation becomes more

entrenched as more background mutations are acquired. The effect is largest for L90M;

for sequences containing a large number of PI-associated mutations, on average the L90M

primary mutation is ≈ 100 times more likely than the wildtype leucine at position 90. In

contrast, this primary mutation is ≈ 80 times less likely than the wildtype residue in the225
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subtype B consensus sequence background. The trend shared for V82A, I84V, and L90M

is representative of the larger class of primary mutations; mutations such as V32I, M46L,

I47V, G48V, I50V, I54V, L76V, and others become less destabilizing as the number of

background mutations increases (see Figure S5).

As shown in Figure 4 the variance in ∆E, σE, grows as the hamming distance from230

the consensus initially increases. This is consistent with recent results suggesting that

increasing or decreasing variance in fitness over time serves as a general indicator of an

underlying epistatic mutational landscape [38]. That we observe this change in vari-

ance across hamming distance signals that the change of fitness when reverting primary

resistance mutations to wildtype is due to the collective interaction of multiple residues.235

Primary mutations are likely to revert to wildtype in the absence of inhibitors, We

observed that reversion of a primary resistance mutation to wildtype is 10–100 times more

probable when the total number of background mutations is small. Sequences near the

crossover points are equally likely to revert the primary mutation as retain it. However for

sequences with many mutations, retaining the primary resistance mutation can be 100–240

1000 times more favorable than reverting to wildtype. Increasing epistasis, as seen here

as hamming distance from the wildtype grows, is associated with increased ruggedness

of the fitness landscape [39, 47, 48]. Our results imply that this ruggedness may create

local maxima on the fitness landscape which may become accessible as more resistance

mutations accumulate in a sequence. These entrenched, highly resistant sequences with245

many mutations present a significant risk for the transmission of drug resistance to new

hosts.

All together, this suggests that the acquisition of primary mutations relies on a com-

plex network of interactions and that, while primary mutations are often deleterious to
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protein fitness when acquired in a wildtype background, they become stabilizing geno-250

types in the presence of many PI-associated mutations. This also implies that primary

mutations take on a context dependent accessory role, allowing for the acquisition of

additional primary and accessory mutations.

3 Discussion

The evolution of viruses under drug selective pressure induces mutations which are corre-255

lated due to constraints on structural stability that contribute to fitness. The correlations

induce epistatic effects, that is, the consequences of a particular mutation depends on the

genetic background. Recently epistasis has become a focus for analysis in structural

biology and genomics as researchers have begun to successfully link the coevolutionary

information in collections of protein sequences with the structural and functional fitness260

of those proteins [19, 21–24]. In the studies presented herein, we used the correlated

mutations encoded in a multiple sequence alignment of drug-experienced HIV-1 protease

sequences to parametrize a Potts model of sequence statistical energies that can be used as

an estimator of stability and relative replicative capacity of individual protease sequences

containing drug resistance mutations. Using the statistical energy E(~σ) as a proxy for265

the fitness of sequence ~σ, we find that the effects of primary resistance mutations vary

significantly, depending on the background sequence in which they occur.

Understanding the epistatic relationships among drug resistance mutations in HIV

has important implications for therapies. Viruses with many background mutations incur

large penalties to revert primary resistance mutations to the starting genotype. Therefore,270

the reversion cost can entrench primary resistance mutations even in the absence of

inhibitors. Our findings imply that highly mutated sequences could serve as reservoirs of
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drug-resistance mutations after HIV transmission, which in turn would promote therapy

failure in new hosts.

Recent publications have reported that mutations near or distal to Gag cleavage sites275

play a role in promoting cleavage by drug-resistant and enzymatically deficient proteases,

by selecting for mutations that increase substrate contacts with the protease active site,

altering the flexibility of the cleavage site vicinity, or by as of yet unknown mechanisms [8,

10, 49–52]. This suggests that viral coevolution of Gag with selective protease mutations

may further stabilize multiple resistance mutations; thus, the analysis of protease muta-280

tion patterns can be extended to include amino acid substitutions within Gag and the

Gag-Pol polyprotein. Furthermore, this type of analysis is not limited to protease and

may be used to study the development of resistance in other HIV drug targets, such

as reverse transcriptase and integrase, as well as other biological systems that develop

resistance to antibiotic or antiviral therapies.285

The Potts model is a powerful tool for interrogating protein fitness landscapes. The

analysis presented here provides a tractable framework to examine the structural and

functional fitness of individual viral proteins under drug selection pressure. Elucidating

how patterns of viral mutations accumulate and understanding their epistatic effects has

the potential to have an impact on the design and evaluation of the next generation of290

c-ART inhibitors and therapies.
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4 Materials and Methods

Sequence Data

Sequence information (as well as patient and reference information) was collected from the

Stanford University HIV Drug Resistance Database (http://hivdb.stanford.edu) [11]295

using the Genotype-Rx Protease Downloadable Dataset (http://hivdb.stanford.edu/

pages/geno-rx-datasets.html) that was last updated on 29/04/2013 (there now exists

a more recent sequence alignment updated May 2015). There are 65,628 protease isolates

from 59,982 persons in this dataset. From this dataset, 5,824 drug-experienced, subtype

B, non-mixture, non-recombinant, and unambiguous sequences were extracted. Sequences300

with more than 1 gap and MSA columns with more than 1% gaps (positions 1–5 and 99)

were removed, resulting in N = 5, 610 sequences of length L = 93.

For the comparison made in Figure S2, drug-naive subtype B non-mixture, non-re-

combinant, and unambiguous sequences were extracted from the same downloadable

dataset. As with drug-experienced sequences, gap-containing sequences and columns305

were removed, resulting in 13,350 sequences of length 89.

Mutations considered PI-associated were extracted from [53]: L10I/F/V/C/R, V11I,

G16E, K20R/M/I/T/V, L24I, D30N, V32I, L33I/F/V, E34Q, M36I/L/V, K43T, M46I/L,

I47V/A, G48V, I50L/V, F53L/Y, I54V/L/A/M/T/S, Q58E, D60E, I62V, L63P,

I64L/M/V, H69K/R, A71V/I/T/L, G73S/A/C/T, T74P, L76V, V77I,310

V82A/F/T/S/L/I, N83D, I84V, I85V, N88D/S, L89I/M/V, L90M, I93L/M.
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Marginal Reweighting

Weights (wk) reciprocal to the number of sequences contributed by each patient were

computed and assigned to each sequence. With these weights, estimates of the bivariate

marginal probabilities were computed from the MSA of N sequences:315

Pij(σi, σj) =
1

N

N∑
k=1

wkδ
(
σki , σi

)
δ
(
σkj , σi

)
(2)

where σki is the residue identity at position i of the kth sequence ~σk, 0 < wk ≤ 1 is the

weight of sequence k, and delta δ(α, β) equals one if α = β and is otherwise zero.

Otherwise, all sequences are assumed independent; no reweighting was done to ac-

count for shared ancestry among these sequences. Phylogenetic trees of drug-naive and

drug-treated HIV-infected patients have been show to exhibit star-like phylogenies [39,320

54], and thus phylogenetic corrections are not needed. Further, phylogenetic corrections

based on pairwise sequence similarity cut-offs of 40% of sequence length or more as are

common in studies utilizing direct coupling analysis (DCA) [25–27] of protein families

would drastically reduce the number of effective sequences in our MSA and would lead

to mischaracterization of the true underlying mutation landscape. Potts models of other325

HIV protein sequences under immune pressure have been parameterized with no phylo-

genetic corrections [21, 22].

Alphabet Reduction

It has been shown that “reduced alphabets” consisting of 8 or 10 groupings of amino

acids capture most of the information contained in the full 20 letter alphabet [55]. We330

expand on this notion by computing an alphabet reduction that has the least effect on the
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statistical properties of our MSA. In the context of model building, a reduced alphabet

decreases the number of degrees of freedom to be modeled. This leads to a more efficient

model inference [30, 32].

Given the empirical bivariate marginal distribution for each pair of positions in the335

MSA using 21 amino acid characters (20 + 1 gap), the procedure begins by selecting a

random position i. All possible alphabet reductions from 21 to 20 amino acid characters

at position i are enumerated for every pair of positions ij, where j 6= i, by summing the

bivariate marginals corresponding to each of the 210 possible combinations of amino acid

characters at position i. The reduction which minimizes the root square mean difference340

(RMSD) in mutual information (MI) content:

√
1

N

∑
ij

(
MIQ=21

ij −MIQ=Q′

ij

)2
(3)

between all pairs of positions ij with the original alphabet size Q = 21 and reduced

alphabet size Q = 20 is selected. The alphabet at each position i is reduced in this

manner until all positions have position-specific alphabets of size Q = 20. This process

is then repeated for each position by selecting the merger of characters which minimizes345

the RMSD in MI between all pairs of positions ij with the original alphabet size Q = 21

and reduced alphabet size Q = Q′, and is stopped once Q = 2.

Due to residue conservation at many loci in the HIV protease genome, the average

number of characters per position is 2, and several previous studies of HIV have used a bi-

nary alphabet to extract meaningful information from sequences [10, 12, 21, 34]. However,350

using a binary alphabet marginalizes potentially informative distinctions between amino

acids at certain positions, especially PI-associated sites, that acquire multiple mutations

from the wildtype. We found that an alphabet of 4 letters substantially reduces the
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sequence space to be explored during the model inference while providing the necessary

discrimination between different types of mutant residues at each position. Additionally,355

the information lost in this reduction is minimal; Pearson’s R2 between the mutual in-

formation (MI) of the bivariate marginal distributions in 21 letters and in 4 letters is

≈ 0.995 (Figures S6, S7).

The original MSA was then re-encoded using the reduced per-position alphabet, and

the bivariate marginals (Eq. 2) were recalculated using the reduced alphabet. Small360

pseudocounts are added to the bivariate marginals, as described [32]. Briefly, instead of

adding a small flat pseudocount such as 1/N , we add pseudocounts which correspond to a

small per-position chance µ of mutating to a random residue such that the pseudocounted

marginals P pc are given by

P pc
ij (σi, σj) = (1− µ)2Pij(σi, σj) +

(1− µ)µ

Q
(Pi(σi) + Pj(σj)) +

µ2

Q2
(4)

where we take µ ≈ 1/N .365

Maximum Entropy Model

Following [56], we seek to approximate the unknown empirical probability distribution

P (~σ) which describes HIV-1 protease sequences {~σ} of length L where each residue is

encoded in an alphabet of Q states by a model probability distribution Pm(~σ). The

model distribution we choose is the maximum entropy distribution, e.g. the distribution370

which maximizes

S = −
QL∑
k=1

Pm
(
~σk
)

logPm
(
~σk
)

(5)
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and has been derived by [21, 25, 26, 30, 57] and others satisfying the following constraints:

QL∑
k

Pm
(
~σk
)

= 1 (6)

QL∑
k

Pm
(
~σk
)
δ
(
σki , σi

)
= Pi(σi) (7)

QL∑
k

Pm
(
~σk
)
δ
(
σki , σi

)
δ
(
σkj , σj

)
= Pij(σi, σj) (8)

i.e. such that the empirical univariate and bivariate marginal probability distributions

are preserved. Through a derivation using Lagrange multipliers not presented here (but

can be found in [21, 56]), the maximum entropy model takes the form of a Boltzmann

distribution

Pm(~σ) =
1

Z
exp (−βE(~σ)) (9)

E(~σ) =
L∑
i

hi(σi) +

L(L−1)/2∑
i<j

Jij(σi, σj) (10)

where the quantity E(~σ) is the Potts Hamiltonian, which determines the statistical energy

of a sequence ~σ, 1/Z is a normalization constant, and the inverse temperature β = 1/kBT

is such that kbT = 1. This form of the Potts Hamiltonian consists of Lq field parameters hi

and
(
L
2

)
Q2 coupling parameters Jij which describe the system’s preference for each amino375

acid character at site i and each amino acid character pair at sites i, j, respectively. In the

way we present the Boltzmann distribution Pm ∝ exp (−E), negative fields and couplings

signify favored amino acids preferences.

Not all the model parameters are independent. Due to the relationship between

bivariate marginals Pij, Pik, Pjk and the fact that the univariate marginals can be derived380

entirely from the bivariate marginals, only L(Q− 1) +
(
L
2

)
(Q− 1)2 of these LQ+

(
L
2

)
Q2
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parameters are independent. Several schemes have been developed and used by others to

fully constrain the Hamiltonian (see [25, 26], for example). Further, the fully-constrained

Potts Hamiltonian is “gauge invariant” such that the probablity Pm
(
~σk
)
is unchanged

by (a) a global bias added to the fields, hi(σi) → hi(σi) + b, (b) a per-site bias added385

to the fields hi(σi) → hi(σi) + bi, (c) rearrangement of field and coupling contributions

such that Jij(σi, σj) → Jij(σi, σj) + bij(σj) and hi(σi) → hi(σi) −
∑

j 6= i bij(σj), or (d) a

combination thereof. Due to this gauge invariance, model parameters are over-specified

and thus not unique until a fully-constrained gauge is specified, but the properties Pm

and ∆E, among others, are gauge invariant and unique among fully-constrained gauges.390

Model Inference

Finding a suitable set of Potts parameters {h, J} fully determines the total probability

distribution Pm(~σ) and is achieved by obtaining the set of fields and couplings which

yield bivariate marginal estimates Pm(σi, σj) that best reproduce the empirical bivari-

ate marginals P obs(σi, σj). Previous studies have developed a number of techniques to395

do this [7, 21, 25, 26, 30, 57–61]. Following [21], we estimate the bivariate marginals

given a set of fields and couplings by generating sequences through Markov Chain Monte

Carlo (MCMC) where the Metropolis criterion for a generated sequence is proportional

to the exponentiated Potts Hamiltonian. The optimal set of parameters {h, J} are found

through multidimensional Newton search, where bivariate marginal estimates are com-400

pared to the empirical distribution to determine descent steps. Unlike several inference

methods referenced above, this method avoids making explicit approximations to the

model probability distribution, though approximations are made in the computation of

the Newton steps, and this method is limited by sampling error of the input emperi-

19

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 13, 2016. ; https://doi.org/10.1101/063750doi: bioRxiv preprint 

https://doi.org/10.1101/063750


cal marginal distributions and by the need for the simulation to equilibrate. Also, the405

method is computationally intensive. A brief description of the method follows; see the

supplemental information of Haldane et al. [32] for a full description of the method.

Determining the schema for choosing the Newton step is crucial. In [21], a quasi-

newton parameter update approach was developed, in which updates to Jij and hi are

determined by inverting the system’s Jacobian, to minimize the difference between model-410

estimated and empirical marginals. To simplify and speed up this computation, we take

advantage of the gauage invariance of the Potts Hamiltonian to infer a model in which

hi = 0 ∀ i, and we compute the expected change in the model marginals ∆ Pij (dropping

the m superscript) due to a change in Jij to first order by

∆Pij(σi, σj) =
∑
kl,σkσl

∂Pij(σi, σj)

∂Jkl(σk, σl)
∆Jkl(σk, σl) +

∑
k,σk

∂Pij(σi, σj)

∂hk(σk)
∆hk(σk) (11)

with a similar relation for ∆Pi(σi). The challenge is to compute the Jacobian ∂Pij(σi,σj)

∂Jkl(σk,σl)
415

and invert the linear system in Equation 11, and solve for the changes ∆Jij and ∆hi

given ∆Pij which we choose as

∆Pij = γ
(
P emp
ij − Pij

)
(12)

given a damping parameter γ chosen small enough for the linear (and other) approxima-

tions to hold.

The computational cost of fitting
(
93
2

)
× (4− 1)2 + 93 × (4 − 1) = 38, 781 model420

parameters on 2 NVIDIA K80 or 4 NVIDIA TitanX GPUs is approximately 4 hours.

For a more thorough description of the inference methodology, see the supplementary

information of Haldane et al. [32].
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Experimental Comparison

Experimentally derived values for either melting temperature (Tm) or viral infectivity via425

replicative capacity (RC) were mined from the results presented in [9, 40–42]. A csv file

of the resulting mined data can be found in Supplementary Data 1.
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Figures and Figure Legends

Figure 1: Potts model is predictive of higher order sequence statistics. For
each subsequence length varying from 2 to 14, subsequence frequencies are computed for
all observed subsequences at 500 randomly chosen combinations among 36 PI-associated
positions. (A) Pearson R2 of the 200 most probable observed subsequence frequencies
(marginals) with corresponding predictions by Potts (blue) and independent (gray) mod-
els for varying subsequence lengths. (B) 2nd and (C) 14th order observed marginals
predicted by both models. Shown in (B,C) are observed frequencies at the 500 randomly
chosen combinations of 2 and 14 positions among 36 PI-associated sites, with approxi-
mately 2500 and 5600 subsequence frequencies greater than 0.01 visible, respectively.
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Figure 2: Potts model captures properties of full length sequence ensemble.
Probabilities of observing sequences with any k mutations relative to the consensus se-
quence as observed in original MSA (black) and predicted by the Potts (blue) and inde-
pendent (gray) models.
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Figure 3: Change in Potts energy correlates with change in experimental fit-
ness. (A) Changes in melting temperature (Tm) for individual sequences relative to a
reference sequence extracted from literature [9, 40, 41]. These sequences differ from the
wildtype by 1–2 mutations [9] up to 10–14 mutations [40, 41]. (B) Change in relative
infectivty as measured by replicative capacity assay for individual sequences containing
only single point mutations [42] and 1–5 mutations [43]. In both panels a linear regression
fit with Pearson’s R and associated two-tailed p-value are provided in the legend.
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Figure 4: Effect of epistasis on the fitness penalty incurred by primary resis-
tance mutations. For each of the 3 primary HIV protease mutations described in [9],
two Potts statistical energies are computed for all observed sequences containing that
mutation: Eseq, the energy of the sequence with that mutation and Ereversion, the en-
ergy with that primary mutation reverted to wildtype. This Potts energy difference,
∆E = Eseq − Ereversion is shown versus hamming distance from the wildtype including
only PI-assocated positions. Ordinate scales are given in both relative probability of
reversion exp(−∆E) (left) and ∆E (right). Values below (above) the dashed line on
the ordinate correspond to fitness gain (penalty) upon reversion to wildtype. Although
primary resistance mutations initially destabilize the protease, as mutations accumulate,
the primary resistance mutations become entrenched, meaning their reversion becomes
destabilizing to the protein.
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Supplementary Figures

Figure S1: Probabilities of observing sequences with k PI-associated mu-
tations in our PI-experienced dataset from the Stanford HIVDB. Muta-
tions considered PI-associated were extracted from [53] and include: L10I/F/V/C/R,
V11I, G16E, K20R/M/I/T/V, L24I, D30N, V32I, L33I/F/V, E34Q, M36I/L/V,
K43T, M46I/L, I47V/A, G48V, I50L/V, F53L/Y, I54V/L/A/M/T/S, Q58E, D60E,
I62V, L63P, I64L/M/V, H69K/R, A71V/I/T/L, G73S/A/C/T, T74P, L76V, V77I,
V82A/F/T/S/L/I, N83D, I84V, I85V, N88D/S, L89I/M/V, L90M, I93L/M.
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Figure S2: Mutual information and normalized mutual information for drug-
experienced and drug-naive sequences. Correlated information for each pair of
positions in drug-experienced and drug-naive HIV protease sequences determined using
mutual information (MI) and a normalized variant of MI assuming mutual information a
special case of the total correlation (TC). TC is a multivariate generalization of mutual
information, and for the relevant case of pair marginals its maximum takes the form
TCmax

ij = min(H(Pi), H(Pj)), where H(P ) = −
∑

k P (k) logP (k) is the Shannon entropy.
(left) MIij and (right) MIij/TC

max
ij measured in bits for all observed pair marginals in

drug-experienced and drug-naive sequences. Drug-experienced sequences exhibit corre-
lations several times larger in magnitude than those in drug-naive sequences, even when
normalized by the information content constrained on the univariate marginals.
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Figure S3: Change in independent model energy does not correlates with
change in experimental fitness. (A) Changes in melting temperature (Tm) and (B)
relative infectivity by replicative capacity assay for individual sequences relative to a ref-
erence sequence extracted from literature as shown in Figure 3[9, 40–43]. In both panels
a linear regression fit with Pearson’s R and associated two-tailed p-value are provided in
the legend.

Figure S4: Additional experimental comparision of Potts model statistical en-
ergies. Relative infectivity by SpIn assay for individual single mutant sequences relative
to a reference sequence extracted from [42]. Linear regression fits with Pearson’s R and
associated two-tailed p-value are provided.
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(a) 32I (b) 46L (c) 47V

(d) 48V (e) 54L (f) 54V

(g) 58E (h) 76V (i) 82F

Figure S5: Entrenchment for a selection of primary and primary/accessory resistance mu-
tations. Each shows a similar trend of increasing mean ∆Ereversion shown in Figure 4 for
primary mutations V82A, I84V, and L90M, meaning the mutations become less destabi-
lizing on average as background mutations accumulate, although not all mutations shown
here cross from destabilizing to stabilizing. Note that for some mutations the number of
observed sequences with that mutation may be small (≤ 10) for some values of hamming
distance from wildtype.
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Figure S6: Pearson R2 of the mutual information (MI) of bivariate marginals of each
position pair in the 21 letter alphabet and Q letter alphabet as Q is varied.

Figure S7: The distribution of sequence similarities in the 21 letter alphabet (blue) and
4 letter alphabet (dashed red).
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RefID,PMID,Author,Year,Nmut,Mut,Base,Method,NiceName,Res,Err
1,21762813,Chang,2011,1,I84V,Wild,DSC,Tm,−2.803,
1,21762813,Chang,2011,1,V82A,Wild,DSC,Tm,−3.41,
1,21762813,Chang,2011,1,L90M,Wild,DSC,Tm,−4.885,
1,21762813,Chang,2011,2,I84V/L90M,Wild,DSC,Tm,−7,
1,21762813,Chang,2011,2,L10I/I84V,Wild,DSC,Tm,−0.393,
1,21762813,Chang,2011,2,L63P/I84V,Wild,DSC,Tm,1.41,
1,21762813,Chang,2011,2,A71V/I84V,Wild,DSC,Tm,−0.59,
1,21762813,Chang,2011,2,V77I/I84V,Wild,DSC,Tm,−2.59,
2,12534275,Muzammil,2003,1,I84V,Wild,DSC,Tm,−3.9,
2,12534275,Muzammil,2003,11,L10I/M36I/S37D/M46I/R57K/L63P/A71V/G73S/I84V/L90M/I93L,Wil
d,DSC,Tm,0.4,
2,12534275,Muzammil,2003,10,L10I/M36I/S37D/M46I/R57K/L63P/A71V/G73S/L90M/I93L,Wild,DSC
,Tm,1.1,
3,10452615,Xie,1999,3,Q7K/L33I/L63I,D25N,Kd_dimer,K_d,5.8,2.1
3,10452615,Xie,1999,1,V82F,D25N,Kd_dimer,K_d,134,12
3,10452615,Xie,1999,2,V82F/I84V,D25N,Kd_dimer,K_d,35.9,7.4
3,10452615,Xie,1999,2,V82T/I84V,D25N,Kd_dimer,K_d,82,11
3,10452615,Xie,1999,1,L90M,D25N,Kd_dimer,K_d,29.2,4
4,8621402,Szeltner,1996,3,Q7K/L33I/L63I,Wild,dG,,1.38,0.71
6,22083488,Henderson,2012,1,I15V,Wild,ELISA,SpIn,1,
6,22083488,Henderson,2012,1,E35D,Wild,ELISA,SpIn,1.057,
6,22083488,Henderson,2012,1,N37D,Wild,ELISA,SpIn,0.862,
6,22083488,Henderson,2012,1,I64V,Wild,ELISA,SpIn,0.882,
6,22083488,Henderson,2012,1,L10I,Wild,ELISA,SpIn,0.724,
6,22083488,Henderson,2012,1,M36I,Wild,ELISA,SpIn,0.593,
6,22083488,Henderson,2012,1,I62V,Wild,ELISA,SpIn,0.687,
6,22083488,Henderson,2012,1,L63P,Wild,ELISA,SpIn,0.805,
6,22083488,Henderson,2012,1,A71V,Wild,ELISA,SpIn,0.768,
6,22083488,Henderson,2012,1,A71T,Wild,ELISA,SpIn,0.72,
6,22083488,Henderson,2012,1,V77I,Wild,ELISA,SpIn,0.854,
6,22083488,Henderson,2012,1,I93L,Wild,ELISA,SpIn,1.069,
6,22083488,Henderson,2012,1,K20R,Wild,ELISA,SpIn,0.703,
6,22083488,Henderson,2012,1,K20I,Wild,ELISA,SpIn,0.756,
6,22083488,Henderson,2012,1,L24I,Wild,ELISA,SpIn,0.626,
6,22083488,Henderson,2012,1,D30N,Wild,ELISA,SpIn,0.516,
6,22083488,Henderson,2012,1,V32I,Wild,ELISA,SpIn,0.492,
6,22083488,Henderson,2012,1,M46I,Wild,ELISA,SpIn,0.906,
6,22083488,Henderson,2012,1,M46L,Wild,ELISA,SpIn,0.732,
6,22083488,Henderson,2012,1,I47V,Wild,ELISA,SpIn,0.606,
6,22083488,Henderson,2012,1,G48V,Wild,ELISA,SpIn,0.44,
6,22083488,Henderson,2012,1,I50V,Wild,ELISA,SpIn,0.14,
6,22083488,Henderson,2012,1,F53L,Wild,ELISA,SpIn,0.512,
6,22083488,Henderson,2012,1,I54V,Wild,ELISA,SpIn,0.516,
6,22083488,Henderson,2012,1,G73S,Wild,ELISA,SpIn,1.053,
6,22083488,Henderson,2012,1,V82A,Wild,ELISA,SpIn,0.72,
6,22083488,Henderson,2012,1,V82T,Wild,ELISA,SpIn,1.065,
6,22083488,Henderson,2012,1,I84V,Wild,ELISA,SpIn,0.813,
6,22083488,Henderson,2012,1,N88D,Wild,ELISA,SpIn,0.87,
6,22083488,Henderson,2012,1,N88S,Wild,ELISA,SpIn,1.114,
6,22083488,Henderson,2012,1,L90M,Wild,ELISA,SpIn,1.053,
6,22083488,Henderson,2012,1,I15V,Wild,RTPCR,SpIn,0.776,
6,22083488,Henderson,2012,1,E35D,Wild,RTPCR,SpIn,0.744,
6,22083488,Henderson,2012,1,N37D,Wild,RTPCR,SpIn,0.545,
6,22083488,Henderson,2012,1,I64V,Wild,RTPCR,SpIn,0.89,
6,22083488,Henderson,2012,1,L10I,Wild,RTPCR,SpIn,0.821,
6,22083488,Henderson,2012,1,M36I,Wild,RTPCR,SpIn,0.467,
6,22083488,Henderson,2012,1,I62V,Wild,RTPCR,SpIn,0.7,
6,22083488,Henderson,2012,1,L63P,Wild,RTPCR,SpIn,0.87,
6,22083488,Henderson,2012,1,A71V,Wild,RTPCR,SpIn,0.654,
6,22083488,Henderson,2012,1,A71T,Wild,RTPCR,SpIn,0.972,
6,22083488,Henderson,2012,1,V77I,Wild,RTPCR,SpIn,0.732,
6,22083488,Henderson,2012,1,I93L,Wild,RTPCR,SpIn,0.927,
6,22083488,Henderson,2012,1,K20R,Wild,RTPCR,SpIn,0.728,
6,22083488,Henderson,2012,1,K20I,Wild,RTPCR,SpIn,0.72,
6,22083488,Henderson,2012,1,L24I,Wild,RTPCR,SpIn,0.83,
6,22083488,Henderson,2012,1,D30N,Wild,RTPCR,SpIn,0.411,
6,22083488,Henderson,2012,1,V32I,Wild,RTPCR,SpIn,0.821,
6,22083488,Henderson,2012,1,M46I,Wild,RTPCR,SpIn,0.679,
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6,22083488,Henderson,2012,1,M46L,Wild,RTPCR,SpIn,0.573,
6,22083488,Henderson,2012,1,I47V,Wild,RTPCR,SpIn,0.663,
6,22083488,Henderson,2012,1,G48V,Wild,RTPCR,SpIn,0.42,
6,22083488,Henderson,2012,1,I50V,Wild,RTPCR,SpIn,0.118,
6,22083488,Henderson,2012,1,F53L,Wild,RTPCR,SpIn,0.374,
6,22083488,Henderson,2012,1,I54V,Wild,RTPCR,SpIn,0.463,
6,22083488,Henderson,2012,1,G73S,Wild,RTPCR,SpIn,0.768,
6,22083488,Henderson,2012,1,V82A,Wild,RTPCR,SpIn,0.626,
6,22083488,Henderson,2012,1,V82T,Wild,RTPCR,SpIn,0.862,
6,22083488,Henderson,2012,1,I84V,Wild,RTPCR,SpIn,0.683,
6,22083488,Henderson,2012,1,N88D,Wild,RTPCR,SpIn,1.028,
6,22083488,Henderson,2012,1,N88S,Wild,RTPCR,SpIn,1,
6,22083488,Henderson,2012,1,L90M,Wild,RTPCR,SpIn,1.053,
6,22083488,Henderson,2012,1,I15V,Wild,RC,RC,0.781,
6,22083488,Henderson,2012,1,E35D,Wild,RC,RC,0.5,
6,22083488,Henderson,2012,1,N37D,Wild,RC,RC,0.84,
6,22083488,Henderson,2012,1,I64V,Wild,RC,RC,1.152,
6,22083488,Henderson,2012,1,L10I,Wild,RC,RC,1.152,
6,22083488,Henderson,2012,1,M36I,Wild,RC,RC,1.024,
6,22083488,Henderson,2012,1,I62V,Wild,RC,RC,1.286,
6,22083488,Henderson,2012,1,L63P,Wild,RC,RC,1.4,
6,22083488,Henderson,2012,1,A71V,Wild,RC,RC,0.829,
6,22083488,Henderson,2012,1,A71T,Wild,RC,RC,0.967,
6,22083488,Henderson,2012,1,V77I,Wild,RC,RC,1.157,
6,22083488,Henderson,2012,1,I93L,Wild,RC,RC,0.738,
6,22083488,Henderson,2012,1,K20R,Wild,RC,RC,0.52,
6,22083488,Henderson,2012,1,K20I,Wild,RC,RC,0.124,
6,22083488,Henderson,2012,1,L24I,Wild,RC,RC,0.052,
6,22083488,Henderson,2012,1,D30N,Wild,RC,RC,0.124,
6,22083488,Henderson,2012,1,V32I,Wild,RC,RC,0.033,
6,22083488,Henderson,2012,1,M46I,Wild,RC,RC,0.91,
6,22083488,Henderson,2012,1,M46L,Wild,RC,RC,0.471,
6,22083488,Henderson,2012,1,I47V,Wild,RC,RC,1.024,
6,22083488,Henderson,2012,1,G48V,Wild,RC,RC,0.033,
6,22083488,Henderson,2012,1,I50V,Wild,RC,RC,,
6,22083488,Henderson,2012,1,F53L,Wild,RC,RC,0.529,
6,22083488,Henderson,2012,1,I54V,Wild,RC,RC,0.438,
6,22083488,Henderson,2012,1,G73S,Wild,RC,RC,0.11,
6,22083488,Henderson,2012,1,V82A,Wild,RC,RC,0.21,
6,22083488,Henderson,2012,1,V82T,Wild,RC,RC,0.076,
6,22083488,Henderson,2012,1,I84V,Wild,RC,RC,0.376,
6,22083488,Henderson,2012,1,N88D,Wild,RC,RC,,
6,22083488,Henderson,2012,1,N88S,Wild,RC,RC,0.019,
6,22083488,Henderson,2012,1,L90M,Wild,RC,RC,0.581,
6,22083488,Henderson,2012,1,I15V,Wild,EC50,EC50,1.16,0.15
6,22083488,Henderson,2012,1,E35D,Wild,EC50,EC50,0.59,0.08
6,22083488,Henderson,2012,1,N37D,Wild,EC50,EC50,0.71,0.1
6,22083488,Henderson,2012,1,I64V,Wild,EC50,EC50,1.04,0.13
6,22083488,Henderson,2012,1,L10I,Wild,EC50,EC50,1.16,0.13
6,22083488,Henderson,2012,1,M36I,Wild,EC50,EC50,0.84,0.12
6,22083488,Henderson,2012,1,I62V,Wild,EC50,EC50,0.84,0.15
6,22083488,Henderson,2012,1,L63P,Wild,EC50,EC50,1.26,0.16
6,22083488,Henderson,2012,1,A71V,Wild,EC50,EC50,1.83,0.39
6,22083488,Henderson,2012,1,A71T,Wild,EC50,EC50,1.16,0.23
6,22083488,Henderson,2012,1,V77I,Wild,EC50,EC50,0.92,0.12
6,22083488,Henderson,2012,1,I93L,Wild,EC50,EC50,0.62,0.16
6,22083488,Henderson,2012,1,K20R,Wild,EC50,EC50,0.62,0.07
6,22083488,Henderson,2012,1,K20I,Wild,EC50,EC50,0.47,0.09
6,22083488,Henderson,2012,1,L24I,Wild,EC50,EC50,0.64,0.15
6,22083488,Henderson,2012,1,D30N,Wild,EC50,EC50,0.44,0.15
6,22083488,Henderson,2012,1,V32I,Wild,EC50,EC50,1.04,0.6
6,22083488,Henderson,2012,1,M46I,Wild,EC50,EC50,1.17,0.17
6,22083488,Henderson,2012,1,M46L,Wild,EC50,EC50,0.75,0.11
6,22083488,Henderson,2012,1,I47V,Wild,EC50,EC50,1.43,0.54
6,22083488,Henderson,2012,1,G48V,Wild,EC50,EC50,2.51,0.6
6,22083488,Henderson,2012,1,I50V,Wild,EC50,EC50,1.08,1.04
6,22083488,Henderson,2012,1,F53L,Wild,EC50,EC50,0.68,0.23
6,22083488,Henderson,2012,1,I54V,Wild,EC50,EC50,0.51,0.14
6,22083488,Henderson,2012,1,G73S,Wild,EC50,EC50,0.52,0.12
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6,22083488,Henderson,2012,1,V82A,Wild,EC50,EC50,0.46,0.12
6,22083488,Henderson,2012,1,V82T,Wild,EC50,EC50,0.63,0.27
6,22083488,Henderson,2012,1,I84V,Wild,EC50,EC50,0.8,0.26
6,22083488,Henderson,2012,1,N88D,Wild,EC50,EC50,0.54,0.26
6,22083488,Henderson,2012,1,N88S,Wild,EC50,EC50,0.78,0.5
6,22083488,Henderson,2012,1,L90M,Wild,EC50,EC50,0.72,0.14
7,14622012,Ohtaka,2003,6,L10I/M46I/I54V/V82A/I84V/L90M,Wild,Kcat,,0.081,
7,14622012,Ohtaka,2003,4,M46I/I54V/V82A/I84V,Wild,Kcat,,0.0844,
7,14622012,Ohtaka,2003,2,V82A/I84V,Wild,Kcat,,0.3966,
7,14622012,Ohtaka,2003,2,M46I/I54V,Wild,Kcat,,0.345,
7,14622012,Ohtaka,2003,2,L10I/L90M,Wild,Kcat,,0.147,
8,10196268,Martinez−Picado,1999,1,D30N,Wild,TCID/p24,TCID/p24,0.29,
8,10196268,Martinez−Picado,1999,2,D30N/L63P,Wild,TCID/p24,TCID/p24,1.15,
8,10196268,Martinez−Picado,1999,1,L90M,Wild,TCID/p24,TCID/p24,0.72,
8,10196268,Martinez−Picado,1999,2,L63P/L90M,Wild,TCID/p24,TCID/p24,0.79,
8,10196268,Martinez−Picado,1999,5,L10R/M46I/L63P/V82T/I84V,Wild,TCID/p24,TCID/p24,1.3,
10,21576495,Louis,2011,11,L10I/M36I/S37D/M46I/R57K/L63P/A71V/G73S/I84V/L90M/I93L,Wild,
DSC,Tm,4.8,
10,21576495,Louis,2011,14,L10I/I15V/K20R/L24I/V32I/L33F/M36I/M46L/I54M/L63P/K70Q/V82I/
I84V/L89M,Wild,DSC,Tm,−7.5,
11,16645546,van Maarseveen,2006,1,I84V,Wild,RC,RC,0.6,
11,16645546,van Maarseveen,2006,2,M36I/I54V,Wild,RC,RC,0.6,
11,16645546,van Maarseveen,2006,1,V82T,Wild,RC,RC,0.9,
11,16645546,van Maarseveen,2006,3,M36I/I54V/V82T,Wild,RC,RC,0.1,
11,16645546,van Maarseveen,2006,4,M36I/I54V/A71V/V82T,Wild,RC,RC,1.2,
11,16645546,van Maarseveen,2006,5,K20R/M36I/I54V/A71V/V82T,Wild,RC,RC,1.1,
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