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ABSTRACT 38 

 39 

Rationale: Atopic asthma is a persistent disease characterized by intermittent wheeze and 40 

progressive loss of lung function. The disease is thought to be driven primarily by chronic 41 

aeroallergen-induced Th2-associated airways inflammation. However, the vast majority of 42 

atopics do not develop asthma-related wheeze, despite ongoing exposure to aeroallergens 43 

to which they are strongly sensitized, indicating that additional pathogenic mechanism(s) 44 

operate in conjunction with Th2 immunity to drive asthma pathogenesis. 45 

Objectives: Employ systems level analyses to identify inflammation-associated gene 46 

networks operative at baseline in sputum-derived RNA from house dust mite-sensitized  47 

(HDMS) subjects with/without wheezing history; identify networks characteristic of the 48 

ongoing asthmatic state. All subjects resided in the “constitutively-HDMhigh” Perth 49 

environment. 50 

Methods: Genome wide expression profiling by RNASeq followed by gene coexpression 51 

network analysis.  52 

Measurements/Results: HDMS-nonwheezers displayed baseline gene expression in sputum 53 

including IL-5, IL-13 and CCL17. HDMS-wheezers showed equivalent expression of these 54 

classical Th2-effector genes but their overall baseline sputum signatures were more 55 

complex, comprising hundreds of Th2-associated and epithelial-associated genes, 56 

networked into two separate coexpression modules. The first module was connected by the 57 

hubs EGFR, ERBB2, CDH1 and IL-13. The second module was associated with CDHR3, and 58 

contained genes that control mucociliary clearance.  59 

Conclusions: Our findings provide new insight into the inflammatory mechanisms operative 60 

at baseline in the airway mucosal microenvironment in atopic asthmatics undergoing natural 61 

perennial aeroallergen exposure. The molecular mechanism(s) that determine susceptibility 62 

to asthma amongst these subjects involve interactions between Th2- and epithelial function-63 

associated genes within a complex co-expression network, which is not operative in 64 

equivalently sensitized/exposed atopic non-asthmatics. 65 

  66 
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INTRODUCTION  67 

Asthma is a chronic disease of the conducting airways that is characterized by airways 68 

inflammation, airways remodeling, and progressive loss of lung function. It is increasingly 69 

recognized as a highly heterogeneous disorder comprising multiple sub-phenotypes (1). The 70 

atopic form of the disease develops in early childhood, and is initiated by sensitization to 71 

inhalant allergens exemplified by house dust mite (HDM). Progression of atopic asthma 72 

towards chronicity is driven by repeated cycles of airways inflammation, in particular severe 73 

exacerbations triggered by respiratory infections which involve interactions between host 74 

anti-viral and atopy-associated effector mechanisms (2, 3), and the rate of the ensuing 75 

decline in lung function is related to the frequency and intensity of these exacerbations (4-76 

6).   77 

 78 

Recent clinical intervention studies, including those demonstrating that treatment with anti-79 

IgE reduces exacerbation frequency, confirms the causal role of Th2 responses in these 80 

intermittent events (7-9). However the degree to which chronic exposure to Th2-stimulatory 81 

perennial aeroallergens contributes to the inflammatory milieu in the airway mucosa of 82 

sensitized atopics during the periods between overt exacerbation events, thus potentially 83 

influencing long-term persistence of the asthma-associated wheezy phenotype, remains 84 

unclear. This is an important issue in relation to design of future therapeutic strategies for 85 

prevention of asthma progression i.e. is it sufficient to target severe exacerbation events 86 

alone, or is it potentially necessary to also dampen ongoing aeroallergen-driven Th2 87 

reactivity at baseline in sensitized/perennially exposed subjects? 88 

 89 
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We have addressed this issue in a study population consisting of 22yr olds from an 90 

unselected birth cohort resident in Perth Western Australia (10). We have previously shown 91 

that the dominant asthma-associated aeroallergen in this region is HDM (11) which is 92 

present in local households at high levels throughout the year (12), and accordingly the 93 

study focused primarily on atopics who were sensitized and chronically exposed to HDM. 94 

Our approach was based on the recent demonstration that induced sputum, which contains 95 

a sample of cell populations present on the airway surface, can potentially be used for gene 96 

expression profiling of wheeze-associated inflammatory responses in asthmatics (13, 14).  97 

 98 

 In the present investigation we have employed RNA-Seq in conjunction with coexpression 99 

network analysis to profile asthma-associated gene networks in sputum samples collected at 100 

(symptom-free) baseline from study groups matched for age, HDM sensitization status and 101 

environmental exposure, but dichotomous with respect to wheezing symptom expression.   102 

Our findings suggest that upregulation of Th2 signature genes exemplified by the effector 103 

cytokines IL-5 and IL-13 is a common feature across the whole HDMS/exposed population at 104 

baseline, but in the subgroup with history of current wheeze the Th2 signature is more 105 

complex and intense, and is uniquely networked with a series of concomitantly upregulated 106 

epithelial cell associated pathways.  107 

                          108 

 109 

METHODS 110 

Study population 111 

This study was conducted within the 22-year follow-up of an unselected longitudinal birth 112 

cohort recruited in Perth, Western Australia, namely the Western Australia Pregnancy 113 
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Cohort (Raine study, (10, 11)). The 22-year follow-up included 1234 active participants. 114 

Subjects were selected for case/control studies based on their clinical characteristics and the 115 

availability of high quality sputum samples (see below). Four clinical groups were defined; (i) 116 

HDM sensitized atopics (SPT ≥ 3.0mm) with current wheeze during previous 12mths, with or 117 

without a physician diagnosis of “asthma ever” (HDMS wheezers, n=16); (ii) HDM sensitized 118 

atopics without current asthma or wheeze (HDMS nonwheezers, n=24); (iii) nonatopics with 119 

current asthma and/or wheeze (nonatopic wheezers, n=7); (iv) nonatopics without current 120 

asthma or wheeze (nonatopic controls, n=21). 121 

 122 

Sputum induction and processing 123 

Induced sputum was obtained after mannitol inhalation challenge (15). The samples were 124 

stored at 4 C for up to 2 hours prior to processing. Sputum was processed (see the online 125 

data supplement) by selection and subsequent disruption of mucus plugs with forceps to 126 

minimize contamination with saliva (16).  127 

 128 

Transcriptome profiling by RNA-Seq 129 

Total RNA was extracted from good quality sputum (cell viability > 48%, squamous < 32%) 130 

employing TRIzol (Ambion) followed by RNeasy MinElute (QIAgen). The meansd RNA 131 

integrity number was 7.6 1.0 as assessed on the bioanalzyer (Agilent). RNA samples were 132 

shipped on dry ice to the Australian Genome Research Facility for library preparation 133 

(TruSeq Stranded mRNA Library Prep Kit, Illumina) and sequencing (Illumina HiSeq2500, 50-134 

bp single-end reads, v4 chemistry). The raw data are available at the NCBI Short Read 135 

Archive (accession; SRP057350).  136 

 137 
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RNA-Seq data analysis 138 

The quality of the RNA-Seq data was assessed with the Bioconductor package Rqc (see Fig. 139 

E1 in the online data supplement). Reads were aligned to the reference genome (hg19) 140 

using Subread, and summarized at the gene-level using featureCounts (17). Genes with less 141 

than 300 total counts were removed from the analysis. Differentially expressed genes were 142 

identified employing Empirical analysis of digital gene expression data in R (EdgeR) with 143 

False Discovery Rate (FDR) control for multiple testing (18). The analysis was adjusted for 144 

latent variation using the Remove Unwanted Variation (RUV) algorithm (Fig. E2 (19)). A 145 

coexpression network was constructed employing the weighted gene coexpression network 146 

analysis (WGCNA) algorithm (20). Prior to network analysis, the count data was transformed 147 

using the variance stabilizing transformation algorithm (18). Modules associated with clinical 148 

traits were identified by plotting the –log10 p-values from the edgeR analysis on a module-149 

by-module basis. The wiring diagram of selected gene networks was reconstructed 150 

employing two different methods. The first method utilized “prior knowledge” comprising 151 

experimentally supported molecular relationships based on data from the Ingenuity Systems 152 

KnowledgeBase (www.ingenuity.com) (20). The second method utilized unbiased 153 

connectivity patterns derived from WGCNA, and the network was visualized using VisANT 154 

(21). Biological pathways and functions enriched in the data were identified with Enrichr 155 

(22). 156 

 157 

Immunostaining  158 

Primary bronchial epithelial cells were obtained from 8 healthy nonatopic children and 8 159 

atopic asthmatic children with HDM allergy who were undergoing elective surgery for non-160 
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respiratory related conditions. Cytospins were prepared and stained for CDHR3 and DAPI 161 

using methods previously described (see online supplementary methods).  162 

 163 

 164 

RESULTS 165 

The characteristics of the 4 study groups are illustrated in Table 1.  166 

 167 

Table 1. Characteristics of the study population 168 

 169 

  
Nonatopic 

controls 
Nonatopic 
wheezers 

HDMS 

nonwheezers 

HDMS 

wheezers 
P 

Number of participants 21 7 24 16  

Male (%) 42.9 42.9 54.2 56.3 0.804 

Wheeze in past 12 months [A] 
(%) 0.0 100.0 0.0 100.0  

Doctor diagnosis of asthma ever 
[B] (%) 0.0* a 57.1 a,b 43.5* a 93.8 b <0.001 

Asthma medication use in past 
12 months [C] (%) 4.8 a 14.3 a 8.3 a 75.0 b <0.001 

Current medicated asthma 
[Positive for A,B&C] (%) 0.0 14.3 0.0 75.0 0.007^ 

Current asthma  [Positive for 
A&B] (%) 0.0 57.1 0.0 93.8 0.033^ 

Airways hyperresponsiveness 
(%) 0.0 0.0 0.0 43.7 <0.001 

 
Any positive skin prick test 

(wheal ≥3mm; %) 0.0 0.0 100.0 100.0  

Positive HDM skin prick test 
(wheal ≥3mm; %) 0.0 0.0 100.0 100.0  

HDM SPT wheal diameter (mm): 

Dermatophagoides 
pteronyssinus 0.0 [0] 0.0 [0] 6.0 [5.3] 9.0 [3.5] 0.039^^ 

Dermatophagoides farinae 0.0 [0] 0.0 [0] 4.3 [5.5] 6.7 [5.7] 0.090^^ 

Sum of D. pteronyssinus and D. 
farinae 0.0 [0] 0.0 [0] 10.3 [11.3] 15.9 [10.1] 0.062^^ 

 
Parental history of asthma at 

recruitment (%) 10.0* 28.6 21.7* 37.5 0.263 

Baseline FEV  
(z score) 0.0 [1.3] 0.4 [0.6] -0.3 [1.5] -0.6 [1.5] 0.438 

Baseline FVC1(  
(z score)  -0.3 [1.0] 0.3 [1.3] 0.0 [1.2] 0.1 [1.4] 0.609 

Baseline FEV/FVC1  
(z score) -0.2 [1.1] 0.1 [1.5] -0.3 [1.3] -1.0 [1.2] 0.137 
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Current rhinoconjunctivitis (%) 0.0 a 42.9 b 0.0 a 75.0 b <0.001 

Current smokers (%) 23.8 14.3 33.3 25.0 0.740 

Height  
(cm) 176 [14.0] 170.0 [19.0] 175.5 [16.0] 173.0 [24.0] 0.422 

Weight  
(kg) 67.6 [21.4] 76.9 [27.0] 75.0 [23.3] 70.3 [41.5] 0.561 

Hip to waist ratio 0.84 [0.1] 0.83 [0.1] 0.85 [0.1] 0.87 [0.1] 0.754 

 
Age at assessment and sputum 

collection (years) 22.0 [0.4] 22.0 [0.3] 22.1 [1.0] 22.0 [0.9] 0.754 

Median [interquartile range] is displayed for all continuous measures. P value is derived from analyses 
comparing the four groups: prevalence values were compared by Chi square analysis; continuous measures 
were compared by Kruskal Wallis analysis. Where significant differences were observed between the four 
group groups (P<0.5 in table), each letter denotes sputum groups that do not differ significantly at the 0.05 
level after adjusting for multiple comparisons (a vs a = not different; a vs b = significantly different). *Data 
was missing for 1 participant in each group; percentage represents proportion of available cases positive for 
outcome. ^Wheezing groups only were compared by Mann Whitney U test. ^^Atopic groups only were 
compared by Mann Whitney U test.   

 170 

The cellular composition of sputum from these subjects was dominated by macrophages 171 

and neutrophils, which constituted 88-94% of the overall population, and the proportion of 172 

these cell types (and overall total yields) did not differ between the groups (see 173 

supplementary Table E1). Squamous cells and lymphocytes comprised on average 4.5% and 174 

1.8% respectively and also did not differ between groups. Small numbers of eosinophils 175 

were detectable only in the atopic groups and were highest in the wheezers (Table E1). 176 

 177 

Gene expression patterns in sputum were firstly compared between HDMS nonwheezers 178 

and nonatopic controls. The data showed that 80 genes were upregulated (including the Th2 179 

signature genes IL-5 [4.15 logfold] and IL-13 [2.92 logfold]) and 11 genes were 180 

downregulated (FDR < 0.05, Table E2). To obtain detailed information on the regulatory 181 

interactions between these genes, we utilized experimentally supported findings from 182 

published studies (prior knowledge) to reconstruct the underlying network (20). This 183 

analysis showed that the genes were mainly involved in IL-1B and IL-5/IL-13 signaling (Fig 1).  184 

 185 
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Secondly, comparing gene expression patterns between HDMS wheezers and nonatopic 186 

controls showed that 842 genes were upregulated (again including IL-5 [5.29 logfold], IL-13 187 

[3.03 logfold] and IL-33 [2.59 logfold]) and 11 genes were downregulated in the wheezers 188 

(FDR < 0.05, Table E3). As illustrated in Fig. 2, the prior knowledge network revealed that 189 

these genes revolved around a few hubs - erb-b2 receptor tyrosine kinase 2 (ERBB2/HER2), 190 

which was involved in 59 interactions (also known as ‘edges’ in graph theory (23)), IL-13 (44 191 

edges), and E-Cadherin/CDH1 (37 edges). 192 

 193 

Thirdly, we compared gene expression patterns between HDMS wheezers versus HDMS 194 

nonwheezers. The data showed that 859 genes were upregulated and 8 genes were 195 

downregulated (FDR < 0.05, Table E4). The prior knowledge network constructed from these 196 

genes (Fig. 3) identified epidermal growth factor receptor (EGFR, 60 edges), ERBB2 (56 197 

edges) and CDH1 (38 edges) as hub genes. It is noteworthy that IL-13 did not feature here 198 

since it was not differentially expressed after adjustment for multiple testing (p-value = 199 

0.028, FDR = 0.27). In contrast, IL-33 was upregulated in this comparison (2.74 logfold; Table 200 

E4). 201 

 202 

Finally, we compared gene expression in nonatopic wheezers with nonatopic controls, and a 203 

single gene - LIM domain binding 3 (LDB3), was upregulated in the subjects with wheeze 204 

(FDR = 2.6 x 10-5). As expected, there was no evidence of a Th2 signature. 205 

 206 

It has been reported that hub genes in biological interaction networks often exhibit limited 207 

expression changes in experimental asthma models (24), thus a potential caveat of the 208 

above analyses, which focused on differentially expressed genes, is that some hubs may 209 
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have escaped detection. To address this issue, we constructed a genome-wide coexpression 210 

network, utilizing the data from both atopic groups (n=40). The resulting network comprised 211 

14,833 genes organized into 23 coexpression modules. To identify disease-associated 212 

modules, we plotted the –Log10 p-values derived from the above differential expression 213 

analyses on a module-by-module basis. The data showed that the modules were not 214 

different between HDMS nonwheezers and nonatopic controls (Fig E5A). In contrast, three 215 

modules (designated A, P, and Q) were upregulated in HDMS wheezers versus the other two 216 

groups (nonatopic controls, HDMS nonwheezers, Fig E5B, E5C).  217 

 218 

Module “P” contained 319 genes, and the prior knowledge network constructed from these 219 

genes contained the hub genes EGFR (35 edges) and CDH1 (31 edges, Fig E6). Module “Q” 220 

contained 440 genes, and the hubs in the resultant prior knowledge network were ERBB2 221 

(35 edges) and IL-13 (27 edges, Fig E7). Principal component analysis showed that these two 222 

modules (P, Q) were highly correlated (Pearson correlation: 0.897, P-value = 4.441 x 10-15) 223 

(Fig E8), suggesting they are subunits of a larger parent module. Therefore, we merged them 224 

into a single network. In the merged network the dominant hubs were EGFR (73 edges), 225 

ERBB2 (65 edges), CDH1 (56 edges) and IL-13 (48 edges, Fig E9). Notably, these hubs connect 226 

to both common and unique pathways (Fig 4). The biological function of the genes that 227 

interact with the hubs was interrogated using Gene Ontology terms (Table E5) and Pubmed 228 

searches (Table E6).  Module “A” contained 506 genes. It was not possible to reconstruct 229 

this module using prior knowledge, because no interactions were found for the vast majority 230 

of genes. Therefore we used unbiased correlation patterns to reconstruct the network (21). 231 

This analysis showed that the highest-ranking coexpression hubs were TEKT1, FOXJ1, 232 

ARMC3, PIFO, DNAH5, RSPH1, FAM81B, SNTN, CDHR3, ERICH3, DNAH9, and CAPSL (Fig 5). 233 
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This module was strongly enriched with genes involved in the function of ciliated epithelial 234 

cells (Table E7). 235 

 236 

We selected CDHR3 for further study because our data suggests it is a hub that functions in 237 

ciliated epithelial cells, and a previous study reported it was a susceptibility gene for severe 238 

asthma exacerbations (25). CDHR3 expression was examined in bronchial epithelial cells 239 

from HDM sensitized children with asthma (n=8) and from nonatopic controls (n=8) using 240 

immunostaining (see Table E7 for subject characteristics). The data showed there was 241 

positive staining localized to the apical surface of columnar epithelial cells in both cohorts 242 

(Fig. 6A, Fig E10). Of particular interest was the observation that expression of CDHR3 243 

(green) appeared more intense and defined in airway epithelial cells derived from the 244 

asthmatic children, and this was confirmed by image quantification (Fig. 6B).  245 

 246 

 247 

DISCUSSION 248 

An increasing body of epidemiological and experimental evidence (reviewed (2, 3, 26)), now 249 

supported by a range of intervention studies (4-6), argues for a causal role for Th2-250 

associated inflammatory mechanisms in the aetiology and pathogenesis of atopic asthma.  251 

However the precise details of the underlying causal pathways still remain incompletely 252 

understood.  In particular, the relative contributions of airways inflammation resulting from 253 

acute severe exacerbation events versus chronic exposure to relevant aeroallergens to time-254 

related lung function decline in asthmatics, remains unknown. Moreover, while it is 255 

undisputed that sensitization to perennial aeroallergens is an important asthma risk factor, 256 

community wide studies clearly demonstrate that only a minority of sensitized subjects 257 
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(including of those highly sensitized to HDM (11)) ever develop persistent wheeze. This 258 

suggests that additional cofactor(s) may be required to unmask the full pathogenic potential 259 

of aeroallergen-specific sensitization. A likely candidate in this regard is the airway 260 

epithelium which may function as both a target for Th2-associated inflammation and/or as 261 

an active participant via production of a range of immunomodulatory molecules that can 262 

regulate the local functioning of Th2 cells and also Th2 cytokine-secreting group 2 innate 263 

lymphoid cells (7-9). 264 

 265 

Our current study design represents an unbiased approach towards testing this possibility.  266 

In the core experiments we have sampled induced sputum cell populations from 267 

equivalently sensitized adult atopics undergoing natural aeroallergen exposure, and 268 

subsequent gene expression profiling and ensuing bioinformatics analyses after stratification 269 

on the basis of wheezing phenotypes provides novel insight into the nature of the 270 

inflammatory processes ongoing on the airway mucosal surface at the time of sampling. 271 

 272 

Our initial analyses showed that a Th2 gene expression program was upregulated in baseline 273 

sputum samples from the HDM sensitized atopics, regardless of whether these subjects 274 

have current history of wheeze. The key Th2 genes IL-5 and IL-13 were upregulated to 275 

comparable degrees in both groups, however in HDMS nonwheezers the overall Th2 276 

program was restricted to only a small number of IL-5/IL-13-associated genes. In contrast, 277 

hundreds of genes were upregulated in HDMS wheezers and network analysis suggested 278 

that these genes function in the context of two discrete coexpression modules. 279 

Reconstruction of the first module using prior knowledge revealed that the hub genes EGFR, 280 

ERBB2, CDH1, and IL-13 dominated the network structure. The second coexpression module 281 
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comprised genes that control mucociliary clearance, and reconstruction of this module 282 

employing unbiased gene coexpression patterns identified CDHR3 as a hub. Overall, our 283 

findings suggest that the molecular mechanisms that determine susceptibility to asthma-284 

associated wheeze amongst HDM sensitized atopics involve complex interactions between 285 

Th2 and epithelial gene networks.  286 

 287 

EGFR was the dominant hub in the first module. Downstream of this gene is a complex 288 

signaling pathway that can be activated by multiple ligands (e.g. amphiregulin, EGF, 289 

epiregulin, HB-EGF, TGF-a) (27). Puddicombe et al. reported that EGFR was upregulated in 290 

the bronchial epithelium of patients with asthma and in particular severe asthma in 291 

comparison to healthy controls, and expression levels were correlated with sub-epithelial 292 

reticular membrane thickening (28). Le Cras et al. reported that inhibition of EGFR signaling 293 

with a tyrosine kinase inhibitor reduced goblet cell hyperplasia, airway hyperreactivity and 294 

airway smooth muscle thickening in a chronic mouse model of HDM exposure (29). The 295 

latter two phenotypes were also reduced by conditional transgenic expression of a 296 

dominant negative EGFR mutant in the lung epithelium. Together, these data suggest that 297 

upregulation of EGFR signaling networks in the context of HDM exposure plays a causal role 298 

in the development of asthma-related traits.  299 

 300 

The second hub ERBB2 is an orphan receptor from the EGFR family. It lacks a ligand-binding 301 

domain and transduces signals by forming heterodimers with other ligand bound members 302 

of the EGF receptor family, including EGFR. Polosa et al. reported that ERBB2 expression was 303 

not different in bronchial epithelial cells from asthmatic subjects compared to healthy 304 

controls (30). Song and Lee identified ERBB2 as an asthma susceptibility gene based on a 305 
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pathways analysis of genome-wide single nucleotide polymorphism data (31). The function 306 

of ERBB2 in asthma has not been previously investigated in animal models. Vermeer et al. 307 

reported that blockade of ERBB2 signaling in differentiated airway epithelial cells cultured at 308 

air-liquid interface reduced the number of ciliated epithelial cells (32). Kettle et al. reported 309 

that blocking ERBB2 signaling in vitro attenuated neuregulin-induced upregulation of 310 

MUC5AC and MUC5B (33). Notably, our network analysis showed that ERBB2 connects to 311 

anterior gradient 2 (AGR2). Previous studies have shown that ERBB2 upregulates the 312 

transcription and secretion of AGR2 (34, 35). AGR2 binds to immature MUC5AC in the 313 

endoplasmic reticulum, where it is thought to play a role in mucin folding. AGR2 deficient 314 

mice have profound defects in intestinal mucus production and reduced mucus production 315 

in the airways of allergen challenged mice (36, 37). Upregulation of ERRB2 networks may 316 

therefore influence asthma by modulating epithelial differentiation and mucus production.  317 

 318 

The third hub E-cadherin (CDH1) is a cell adhesion molecule that forms adherence junctions 319 

between adjacent airway epithelial cells and maintains epithelial barrier integrity (38). HDM 320 

disrupts epithelial barrier function by delocalizing E-cadherin and other junction molecules, 321 

and this is thought to enhance allergic sensitization and inflammation (39). Polymorphisms 322 

in CDH1 are associated with airways remodeling and lung function decline, but only in those 323 

asthma patients using corticosteroids (40). Dysregulation of CDH1 signaling networks may 324 

impact on barrier function, inflammation, and airways remodeling.   325 

 326 

The fourth hub IL-13 plays a central role in the pathogenesis of asthma by driving mucus 327 

production, airways hyper-responsiveness, and airways remodeling (26). It is produced by 328 

Th2 and group 2 innate lymphoid cells (ILC2), and it can also be produced by macrophages 329 
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(41, 42). IL-13 itself was not differentially expressed in HDMS wheezers versus nonwheezers, 330 

however network analysis demonstrated that in the wheezers it was connected to an 331 

extensive set of genes that have established roles in mouse models of allergic asthma. For 332 

instance, IL-33 stimulates the production of IL-5 and IL-13 by type 2 innate lymphoid cells 333 

and Th2 cells (43, 44), and in the presence of GM-CSF it can drive allergic inflammation at 334 

sub-threshold allergen doses (45). In animal models, deficiency of multiple genes from the 335 

IL-13 network can impact on asthma-related traits, including allergic sensitization and/or 336 

inflammation (ALOX15 (46), CYBB (47)), and airways hyperresponsiveness and mucus 337 

production/goblet cell hyperplasia (POSTN (48), SERPINB3/4 (49)). Moreover, transgenic 338 

expression of SPDEF or FOXA3 leads to upregulation of pulmonary Th2 cytokines and 339 

increased goblet cell differentiation, eosinophilic inflammation, and airway 340 

hyperresponsiveness (50). It is noteworthy, that whilst both IL-13 and EGFR ligands can 341 

induce the transcription of mucin genes, microarray profiling studies have shown that these 342 

pathways have largely independent effects on gene regulation in bronchial epithelial cells, 343 

and they play distinct roles in goblet cell metaplasia (36, 51, 52). Many other pathways were 344 

also identified that are regulated by IL-13 and relevant to asthma pathogenesis (e.g. CCL17, 345 

CCL26, CTGF, FCER1A, KITLG, MUC2, NOS2, TLR3, see Table E5). 346 

 347 

The second coexpression module we identified comprised genes expressed in ciliated 348 

epithelial cells that control mucociliary clearance. The primary function of cilia is to beat in a 349 

synchronous manner to clear mucus from the airways and into the pharynx. Thomas et al. 350 

reported that cilia beat frequency was decreased in patients with asthma, and severe 351 

asthmatics had abnormal ciliary orientation and microtubule defects (53). Notably, 352 

employing network analysis we showed that CDHR3 was a highly ranked coexpression hub 353 
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within this module. This prompted us to examine CDHR3 protein expression in bronchial 354 

epithelial cells, and we demonstrated that expression was localized to the apical surface of 355 

columnar epithelial cells and was increased in HDM sensitized atopics with asthma 356 

compared to nonatopic controls. Ross et al. reported that CDHR3 was highly upregulated 357 

during mucociliary differentiation of human airway epithelial cells (54). Bisgaard and 358 

coworkers reported that polymorphisms in CDHR3 were associated with recurrent, severe 359 

childhood asthma exacerbations (25). More research will be required to investigate the role 360 

of CDHR3 in ciliated epithelial cells.   361 

 362 

This exploratory study has limitations including small sample size that should be 363 

acknowledged. The molecular profiling studies were based on a heterogeneous cell 364 

population, and the pathways we identified were mainly associated with airway epithelial 365 

cells, which represent a minority population in sputum. We cannot exclude the possibility 366 

that epithelial shedding may have varied across the study groups and impacted on the 367 

analysis, although the RUV adjustment we employed should minimize any potential 368 

confounding by biological and/or technical variations. It is additionally noteworthy that 369 

using prior knowledge to reconstruct gene networks relies on data derived from 370 

experimental settings that may be far removed from the current study, which means that 371 

conclusions drawn from these analyses may be oversimplified given that genes can function 372 

in a context specific manner. Detailed follow-up mechanistic will therefore be required to 373 

elucidate the specific cellular mechanisms involved, and dissect the role of the molecular 374 

pathways we have identified.  375 

 376 
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Notwithstanding these caveats, our findings collectively are consistent with the general 377 

hypothesis that progression from subclinical responsiveness to aeroallergen exposure in 378 

atopic asthmatics to expression of the persistent wheezing phenotype involves the 379 

establishment of coexpression networks linking Th2 effector cytokine genes in immune cells 380 

recruited to the airway surface with genes expressed in adjacent epithelial cells that have 381 

been implicated in myriad asthma-relevant functions including mucosal barrier integrity, 382 

mucus production, tissue remodeling, responsiveness to irritants, and (exemplified by IL-33) 383 

intensification of aeroallergen-specific Th2 immunity. Targeting drug development programs 384 

specifically at these chronic mechanisms, as opposed to simply those that are triggered 385 

during acute exacerbation events, may provide improved therapeutics for prevention of 386 

asthma progression in atopics who represent the segment of the population at greatest risk 387 

of this disease. 388 

  389 
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Figures 554 

 555 

 556 

Figure 1: Gene expression patterns in sputum were compared between HDMS nonwheezers 557 

and nonatopic controls. The network was reconstructed employing prior knowledge from 558 

the literature. Genes highlighted in red denote upregulation, whilst green indicates 559 

downregulation in HDMS nonwheezers. 560 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 13, 2016. ; https://doi.org/10.1101/063602doi: bioRxiv preprint 

https://doi.org/10.1101/063602


 26 
 

 561 

Figure 2: Gene expression patterns in sputum were compared between HDMS wheezers and 562 

nonatopic controls. The gene network was reconstructed using prior knowledge. Genes 563 

highlighted in red denote upregulation, whilst molecules in green indicate downregulation in 564 

HDMS wheezers. 565 
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 566 

Figure 3: Gene expression patterns in sputum were compared between HDMS wheezers 567 

versus HDMS nonwheezers. The network was reconstructed employing prior knowledge 568 

from the literature. Genes highlighted in red denote upregulation, whilst molecules in green 569 

indicate downregulation in HDMS wheezers. 570 
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 571 

Figure 4: The Venn diagram illustrates the overlap between the genes that are networked 572 

with each hub.  573 
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 574 

Figure 5: Reconstruction of the mucociliary clearance module identifies CDHR3 as a hub. 575 

This module was reconstructed with weighted correlation network analysis (WGCNA). The 576 

dominant hubs are highlighted in red. 577 
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 604 

 605 

 606 

Figure 6: Expression of CDHR3 in bronchial epithelial cells from HDM sensitized atopics with 607 

asthma and nonatopic controls. A) Bronchial epithelial cells were immunofluorescently 608 

stained for CDHR3 expression (green) and nuclei with DAPI (blue). Staining images were then 609 

overlaid over bright field images taken of the same field of view. Note: mag 200x; inset 400x. 610 

B) Quantification of the images demonstrated that the expression was more intense in the 611 

atopics with asthma. *** P-value < 0.001 612 

A 
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