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Abstract
Mutations occur at vastly different rates across the genome, and populations, leading to differences in the
spectrum of segregating polymorphisms. Here, we investigate variation in the rare variant spectrum in a sample of

human genomes representing all major world populations. We find at least two distinct signatures of variation.
One, consistent with a previously reported signature is characterized by an increased rate of TCC>TTC mutations
in people from Western Eurasia and South Asia, likely related to differences in the rate, or efficiency of repair, of
damage due to deamination of methylated guanine. We describe the geographic extent of this signature and show
that it is detectable in the genomes of ancient, but not archaic humans. The second signature is private to certain
Native American populations, and is concentrated at CpG sites. We show that this signature is not driven by
differences in the CpG mutation rate, but is a result of the fact that highly mutable CpG sites are more likely to
undergo multiple independent mutations across human populations, and the spectrum of such mutations is highly
sensitive to recent demography. Both of these effects dramatically affect the spectrum of rare variants across
human populations, and should be taken into account when using mutational clocks to make inference about

demography.

Introduction

For a process that provides such a fundamental contribution to genetic diversity, the human germline
mutation rate is surprisingly poorly understood. Different estimates of the absolute mutation rate—the mean
number of mutations per-generation, or per-year—are largely inconsistent with each other [1, 2], and similar
uncertainty surrounds parameters such as the paternal age effect [3-5], the effect of life-history traits [6, 7], and

the sequence-context determinants of mutations [5, 8]. Here, we investigate a related question. Rather than trying
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to determine the absolute values of parameters of the mutation rate, we ask how much the mutation spectrum—
specifically, the relative rate of different classes of mutations—varies between different human populations.
Because we are limited in our ability to observe the mutation rate directly (for example through studies of de novo
mutations), we use the spectrum of segregating variation as a proxy. However, the relationship between mutation
spectrum and variation spectrum can be affected by many factors, including selection, demography,

recombination and gene conversion.

At least one class of polymorphism, most clearly represented by the trinucleotide mutation TCC>TTC but
apparently including other classes as well, is known to be enriched in Europeans relative to East Asians and
Africans [8, 9]. However the geographical extent, history, and biological basis for this signal are unclear. Analysis
of tumor genomes has demonstrated a number of different mutational signatures operating at different rates in
somatic cells and cancers, many of which can be linked to specific biological processes or environmental
exposures [10-12]. It seems plausible that population-specific genetic factors of environmental exposures might
similarly lead to variation in germline mutation spectra. Therefore, we used a dataset of high coverage genomes,
representing much of the genetic diversity in present-day humans, to investigate the following three questions.
First, is there evidence of any other differences in the spectrum of segregating variation across the world? Second,
are these differences in variation driven by differences in mutation rates? Finally, if so, can we infer anything

about the biological processes driving these differences?

Results

We first analyzed data from 300 individuals sequenced to high coverage (mean coverage depth 43X) as
part of the Simons Genome Diversity project [13] (SGDP). We classified single nucleotide polymorphisms
(SNPs) into one of 96 mutational classes according to the SNP, and the two flanking bases. We represent these by
the ancestral sequence and the derived base so for example “ACG>T” represents the ancestral sequence 3°~ACG—
5’ mutating to 3’~ATG-5". We first focused on variants where there were exactly two copies of the derived allele
in the entire sample of 300 individuals (we call these f; variants or doubletons). This increases power to detect
population-specific variation because rare variants tend to be recent mutations and are therefore highly
differentiated between populations [14]. For each individual, we counted the number of f; mutations in each
mutational class that they carried, and normalized by the number of ATA>C mutations (the most common class
and one that did not seem to vary across populations in a preliminary analysis). The normalized mutation
intensities form a 96x300 matrix, and we used non-negative matrix factorization [11, 15] (NMF, implemented in

the NMF package [16] in R) to identify specific mutational features. NMF decomposes a matrix into a set of
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sparse factors, here putatively representing different mutational processes, and individual-specific loadings for
each factor, measuring the intensity of each process in each individual. It has been used extensively in the analysis
of somatic mutations in cancer genomes [10, 11, 17, 18]. An advantage over PCA is that NMF tends to provide

components that are sparser and more interpretable.

NMF requires us to specify the number of signatures (the factorization rank) in advance. For f; variants
we chose a factorization rank of 4, based on standard diagnostic criteria (Supplementary Fig. 1). This identified
four mutational signatures; of which two were uncorrelated with each other, were robust across frequencies,
replicated in non-cell-line samples, were consistent across samples from the same populations, and had clear
geographic distributions (Figure 1, Supplementary Fig. 2). Signature 1 corresponds to the previously described
European signal [8] characterized by TCC>T, ACC>T, CCC>T and TCT>T (possibly also including CCG>T,
which overlaps with signature 2). Loadings of this component almost perfectly separate West Eurasians from
other populations, with South-West Asians intermediate. It is seen most strongly in Western and Mediterranean
Europe, with decreasing intensity in Northern and Eastern Europe, the Near East and South-west Asia. The
COSMIC catalog of somatic mutation in cancer [19] is a database of mutational signatures extracted from
samples of tumor genomes, also using NMF. Comparing with all the COSMIC signatures, we found that our
signature 1 is most similar to COSMIC signature 11 (Pearson correlation p=0.81) which is most commonly found
in melanoma and glioblastoma and is associated with use of chemotherapy drugs which act as alkylating agents,

damaging DNA through guanine methylation.

Signature 2 is restricted to some South and Central American populations and, possibly, Aboriginal
Australians. It is characterized by NCG>T mutations similar to the signature caused by deamination of methylated
cytosine at CpG sites, corresponding to COSMIC signature 1 (p=0.96). Interestingly, this signal is found in South
America in Andean populations like Quechua and Piapoco, and in Central American populations such as Mayan

and Nahua, but not in the closely related Amazonian Surui and Karitiana, nor in North American populations.

The remaining two signatures are more difficult to characterize (Supplementary Fig. 2). Signature 3 is
characterized by GT>GG mutations, particularly GTG>GGG. It is found in some East Asian and some South
American populations but is not consistent within populations. For example, it is strongest in one Han sample
(B_Han-3), but not at all increased in the two other samples from the same population. All affected samples are
derived from cell lines. It does not match any mutational signature seen in COSMIC (maximum p=0.16).
Plausibly this represents some as-yet uncharacterized cell-line artifact, or a very localized difference in mutation
process. Signature 4 affects almost all mutation types, possibly representing a background mutation spectrum, and

is most correlated with COSMIC signature 5 (p=0.60) which is found in all cancers and has unknown aetiology. It
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is significantly reduced in only a single cell-line derived sample (S_Quechua-2), so probably represents some

unidentified cell-line or data processing artifact.

We checked whether these effects could be detected in singletons. At f; the variation is apparently
dominated by cell line artifacts because principal component analysis (PCA) separates cell line from non cell line
derived samples (Supplementary Fig. 3A). However, NMF on f; variants excluding cell line derived samples
recovers signatures consistent with signatures 1 and 2 (Supplementary Fig. 3B-C), although it does not
substantially separate out Native Americans based on signature 2. PCA on f; variants does not distinguish cell line
samples, but does separate samples by geographic region, and recovers factor loadings consistent with NMF-
derived signatures 1-3 (Supplementary Fig. 4). To check that our results were not an artifact of the normalization
we used, we repeated the analysis normalizing by the total number of mutations in each sample, rather than the

number of ATA>C mutations, and obtained equivalent results (Supplementary Figure 5).

We replicated these results using data from phase 3 of the 1000 Genomes project [20] (Methods). To do
this, we counted f> and f; variants in each trinucleotide class and then, for each individual, computed the
proportion of the total mutations carried by that individual that were in each of signatures 1 and 2 (Figure 2). This
confirmed that that mutations consistent with signature 1 are enriched in populations of European and South
Asian ancestry (Figure 2A; mean proportions 0.085, 0.077; Z-score for difference Z=42; for European/South
Asian compared to all other populations) and that mutations consistent with signature 2 are enriched in Peruvians
in Lima (PEL) and people of Mexican ancestry in Los Angeles (MXL) — the two 1000 Genomes populations with
the most Native American ancestry (Figure 2B; mean proportions 0.216, 0.172; Z=34 for PEL+MXL compared to
all other populations). Thus, the observed differences in the spectrum of variation are consistent across datasets.

We then asked whether these differences could be interpreted as differences in the mutational spectrum.

To investigate whether non-mutational processes could be driving these differences, we first investigated
the dependence of the two signatures on four genomic features. First we investigated dependence on
transcriptional strand by classifying each mutation (not collapsed with its reverse complement, and defined on the
+ strand) according to whether it was on the coding or noncoding strand obtained from the UCSC genome
browser (Methods). Signature 1 shows a skew whereby the C>T mutation is more likely to occur on the
transcribed (i.e. noncoding) strand in West Eurasians, relative to populations from other regions (Figure 3 A&B).
Because transcription coupled repair is more likely to repair mutations on the transcribed strand [21] this result,
consistent with Harris (2015) [8], suggests that the excess signature 1 mutations in West Eurasians are driven
more by G>A than by C>T mutations. Signature 2 shows a global skew where the C>T mutation is more likely to

occur on the untranscribed strand, consistent with these mutations resulting from deamination of methylated
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cytosine, and we do not see a significant difference between individuals with high versus low levels of signature 2
mutations (Figure 3 C,D). Second, we obtained methylation data for a testis cell line, produced by the
Encyclopedia of DNA Elements (ENCODE) project [22]. Signature 2 mutations are ~8.5 times as likely to occur
in regions of high (>=50%) versus low (<50%) methylation. We do not detect any difference in this ratio between
regions, or between individuals with high versus low signature 2 rates, although the number of mutations involved
is probably too low to provide much power (Methods; Fisher’s exact test P=0.14). Third, we tested dependence on
B statistic [23], a measure of conservation. We found that the relative magnitudes of both signatures 1 and 2
depend on B statistic, but that both these dependencies were independent of the per-population intensities of the
signatures (Figure 4 A,B). This, along with a similar result for recombination rate, (Figure 4 C,D) confirm that
these differences are not strongly associated with differences between population in patterns of selection,

recombination, or recombination-related processes such as gene conversion.

Most of the variation in signature 2, however, can be explained by differences in demography between
populations (Figure 5). In particular, a relatively high proportion of signature 2 mutations are repeat mutations
(i.e. mutations that have occurred more than once in different individuals), and the frequency spectrum of such
mutations is more sensitive to demography—particularly recent expansions—than non-repeat mutations. To show
this, we first looked at the proportion of variants at different frequencies that were in signature 2 (i.e. C->T
mutations at CpG sites; Figure 5A). There is a strong enrichment of these variants in Native Americans at
frequency 2, but not for singletons, nor for frequencies greater than 3. It is hard to imagine a purely mutational
process that would affect variants of frequency 2, but not 1. Next, instead of restricting to variants of a particular
frequency, we counted the proportion of derived alleles per genome that are in signature 2 (Figure 5B, Methods).
While there is an increase in this proportion in Native Americans, it is extremely small — an increase in proportion
of 1.6x107 relative to East Asians. Further, this increase is not restricted to Native Americans with high rates of
signature 2 f; mutations. This suggests that while there may be subtle variation in the rate of signature 2
mutations, the effects we observed are not driven by this, but rather by the fact that signature 2 mutations have
been shifted into different frequency classes in different populations, relative to other mutations. One important
property of signature 2 mutations is that CpG sites have a much higher mutation rate than nonCpG sites [24], and
therefore a much higher rate of repeat mutations. For example, ~12% of de novo CpG mutations are expected to
occur at sites that are already polymorphic in 1000 Genomes phase 1 (n=1,092) [25], and 87% of exonic de novo
CpG mutations are polymorphic in EXAC (n=60,706) [26] — rates that are about ten times higher than those for
non-CpG mutations. In the SGDP (n=300), 17.7% of signature 2 f; muations are shared between Africans and
non-Africans, compared to 8.3% of all > mutations, suggesting that around 9% of signature 2 f> mutations are
repeat mutations. This shifts the relative frequency spectra because the spectrum of repeat mutations is more

sensitive to recent population growth than that of non-repeat mutations (a similar argument applies for triallelic
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sites [27]). In particular, under recent population growth genealogies become more star-like and the numbers of
singleton non-repeat mutations increases, but the number of doubleton repeat mutations increases even more
(Figure 5C). This means that the ratio of CpG to non-CpG variants at any given frequency is extremely sensitive
to recent demography, and the patterns that we observe could be explained by recent exponential growth on the
order of between 10- and 100- fold in most populations (Figure 5D). Thus, it seems likely that differences in the
proportion of rare, or private, variants in this class is driven by differences in the rate of recent population growth
rather than differences in mutation rate and implies that Native American populations with high rates of rare

signature 2 mutations experienced rapid population growth after the initial founding bottleneck of the Americas.

In contrast, differences in signature 1 are consistent with a difference in mutation rate. In particular,
individuals with a high rate of signature 1 f; variants also have a high total proportion of signature 1 mutations
(Figure 6A), and we see enrichment in Europeans relative to other groups in singletons, and for variants with
allele counts up to around 30, corresponding to a frequency of around 5% (Figure 6B). The enrichment changes as
a function of frequency, which suggests that the increase in mutation rate might have changed over time.
Therefore, to study the time depth of these signals, we investigated whether signature 1 could be detected in
ancient samples by constructing a corrected statistic, that measures the intensity of the mutations enriched in
signature 1, normalized to reduce spurious signals that arise from ancient DNA damage (methods). This statistic
is enriched to present-day European levels in both an eight thousand year old European hunter-gatherer and a
seven thousand year old Early European Farmer [28] but not in a 45,000 year old Siberian [29], nor in the
Neanderthal [30] or Denisovan [31] genomes (Figure 6C) — consistent with a recent estimate that this increase in
mutation rate lasted between 2,000 and 15,000 years before present [9]. The statistic is predicted by neither
estimated hunter-gatherer ancestry, nor early farmer ancestry, in 31 samples from 13 populations for which
ancestry estimates were available [28] (linear regression p-values 0.22 and 0.15, respectively). Thus the effect is
not strongly driven by this division of ancestry. If it has an environmental basis, it is not predicted by latitude
(linear regression of signature 1 loadings against latitude for West Eurasian samples; p=0.68), but is predicted by

longitude (p=6x10""; increasing east to west).

Discussion

We characterized two independent differences among human populations in their spectrum of rare
variants, however this may not be comprehensive. Our power to detect differences in variation spectra depends on
a number of factors, including sample size, and the level of background variation. While modest differences in

variant spectra might be much more widespread than we describe here [9], it is clear that the West Eurasian
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signature 1 enrichment is by far the most dramatic. Two questions naturally follow from this result. First, does
this result imply a difference in absolute mutation rate? And second, what is the biological basis behind this

signature?

In our previous analysis of the SGDP data [13] we showed that the rate of mutation accumulation differed
between populations. In particular, mutation accumulation, relative to chimpanzee, was consistently around 0.1%
higher in non-Khoesan groups than Khoesan groups, and around 0.5% higher in non-Africans than Africans.
Since the mean divergence time between two humans is much less than the mean divergence between humans and
chimp, these results imply a much greater difference in mutation rate — for example we estimated that the rate of
mutation accumulation would be around 5% higher on the non-African relative to the non-African branch. The
proportion of f2 mutations attributable to signature 1 (i.e TCT>T, TCC>T, CCC>T and ACC>T) increases from a
mean of 7.8% in Africans to 10.0% (range 8.8-11.1%) in West Eurasians. If we make the assumptions that the
only differences in mutation rate are the ones we detected, the absolute rates of all other mutation types are the
same between populations, and the difference in mutation rate has been present for the entire period since the
divergence of Africans and non-Africans, then this change implies a maximum increase in genome-wide mutation
rate of 2.3% (range 1.1-3.6%). This is in insufficient to explain the approximately 5% excess of mutations in West
Eurasian in the SGDP data, and is also likely to be a large overestimate of the possible effect since Harris and
Pritchard suggest that the elevated rate of mutation accumulation in this class was largely restricted to 15,000 to
2,000 years ago instead of persisting over the whole period since the divergence of Africans and non-Africans [9].
In any case, as we previously observed [13], this cannot explain the difference in total mutation accumulation

rate, because that effect is not restricted to West Eurasians.

We cannot be definitive about the biological cause of variation in signature 1, but our analyses provide a
clue. In terms of the immediate mutagenic cause, signature 1 is most similar to COSMIC [19] signature 11
(Pearson correlation p=0.81), which is associated with alkylating agents used as chemotherapy drugs, damaging
DNA through guanine methylation. The reversal of transcriptional strand bias for this signature in West Eurasians
supports the idea that the increased rate of these mutations in West Eurasians is driven by damage to guanine
bases, consistent with deamination of methyl-guanine to adenine, leading to the G>A (equivalently C>T)
mutations that we observe. An increase in this rate might be driven by an increase in guanine methylation, either
through environmental exposure, or through inherited variation that affected demethylation pathways. Signature 1
is also highly correlated with COSMIC signature 7 (p=0.75), caused by ultraviolet (UV) radiation exposure but it
is difficult to imagine how this could affect the germline, would not explain our observed increase in ACC>T
mutations, would not be expected to reverse the strand bias, and should produce an enrichment of CC>TT

dinucleotide mutations in West Eurasians that we do not observe (p=0.41). Harris (2015) [8] suggested that UV
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might cause germline mutations indirectly through folate deficiency in populations with light skin pigmentation
(since folate can be degraded in skin by UV radiation). It is unknown what mutational signature would be caused
by this effect, but the fact that we do not observe enrichment of signature 1 in other lightly pigmented populations

like Siberians and northeast Asians suggests that it is not driving the signal.

Our analysis of signature 2 underscores the importance of modeling repeat mutations, at least for CpG
sites, in rare variant analysis. One consequence is that any analysis that restricts to part of the frequency spectrum
is potentially confounded by this effect — this includes subtle effects that might arise from studies that have
differential power to call rare variants among samples — implying that it might be difficult to reliably detect
differences in CpG mutation rate from polymorphism data. Nonetheless it seems that the relative rate of CpG
mutation accumulation does vary across populations, but only very slightly. Our results also suggest that the
CpG:non-CpG ratio as a function of frequency could be a useful statistic for estimating the rate of recent
population growth and that some Native American populations have experienced extremely rapid growth in recent

history.

It is important to understand changes in the mutation rate on the timescale of hominin evolution in order
to calibrate demographic models of human evolution [32] and the observation of variation in mutation spectra
between populations [8] made this calibration even more complicated. Further work in this area will involve more
detailed measurement of mutation rates in diverse populations — to date, most work on somatic, cancer, or de novo
germline mutations has been conducted in populations of West Eurasian origin — and the extension of these
approaches to other populations will be required to fully understand variation in mutation rates and its

consequences for demographic modeling.


https://doi.org/10.1101/063578
http://creativecommons.org/licenses/by/4.0/

256

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

276

277
278
279
280
281
282
283
284
285
286
287

bioRxiv preprint doi: https://doi.org/10.1101/063578; this version posted December 6, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

Methods

Identifying mutational signatures

We used SNPs called in 300 individuals from the Simons Genome Diversity Project [13] (SGDP). The
SGDP provides position- and sample-specific masks, with strictness ranging from 0-9 (0=least strict). We first
called variants at filter level 1, independently in each individual, which is recommended for most analyses. This
gave us a list of sites that were reliably variable in at least one of the 300 samples. Then, to avoid underestimating
the frequency of variants due to some samples being masked, we recalled all these sites in every individual at the
less strict filter level 0. We polarized SNPs assuming that the chimpanzee reference panTro2 carried the ancestral
allele (ignoring sites where the chimp genome could not be aligned to the human genome), and classified by the
two flanking bases in the human reference (hgl9). We restricted to sites of given derived allele counts. For
example, when we analyze f; variants, we consider both variants where a single individual is homozygous derived
and variants where any two separate individuals (ignoring population labels) are heterozygous derived. We count
two mutations if the individual is homozygous and one if it is heterozygous. We then merged reverse complement
classes to give counts of SNPs occurring in 96 possible mutational classes. Finally, we normalized these counts by
the frequency of ATA>ACA mutations. The remaining matrix represents the normalized intensity of each
mutation class in each sample, relative to the sample with the lowest intensity. Formally, let C;; be the counts of

mutations in class i for sample j. Then, the intensities that we analyze, Xj; are given by,

C.
X o= i

ij
C{ATA>C}j

We decomposed this matrix X using non-negative matrix factorization [15] implemented in the NMF R
package [16] with the multiplicative algorithm introduced by Lee & Seung [15], initialized using the non-negative
components from the output of a fast/CA analysis [33] implemented in the fast/CA package in R (https://cran.r-
project.org/web/packages/fastiCA/index.html). For the diagnostic plots in Supplementary Fig. 2, we used 200
random starting points to compare the results of different runs. When we initialized the matrix randomly, rather
than using fast/CA, we obtained a slightly closer fit to the data (root-mean-squared error in X of 0.024 vs 0.025)
and similar factor distributions (Supplementary Fig. 6A), except that all signatures were dominated by CpG
mutations (Supplementary Fig. 6B). Removing a constant amount of each CpG mutation from each signature
recovered signatures closer to the fast/CA-initialized signatures (Supplementary Fig. 6C), so we concluded that

this was a model-fitting artifact, and did not reflect true signatures. Finally we performed the analysis on a matrix
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normalized be the total number of mutations in each sample Y;; C;; rather than the number of ATA>C mutations.

(Supplementary Figure 6).

The ordering of the factors is arbitrary so, where necessary, we reordered for interpretability. To plot
mutational signatures and compare with the COSMIC signatures, we rescaled the intensities of each class
according to the trinucleotide frequencies in the human reference genome. The scale of the weightings is therefore
not easily interpretable. To perform principal component analysis on X, we normalized so that the variance of

each row was equal to 1.

Analysis of 1000 Genomes data

We classified 1000 Genomes variants according to the ancestral allele inferred by the 1000 Genomes
project, and counted the number of f; and f; variants carried by each individual in each mutation class. We ignored
SNPs that were multi-allelic or where the ancestral state was not confidently assigned (confident assignment
denoted by a capital letter in the “AA” tag in the “INFO” field of the vcf file). For each individual, we computed
the proportion of the total mutations carried by that individual that were in each of signatures 1 and 2. We
excluded the five outlying samples: HG01149 (CLM), NA20582 & NA20540 (TSI), NA12275 (CEU), NA19728

(MXL) which had extreme values in one of these signatures.

Transcriptional strand

We downloaded the knownGenes table of the UCSC genes track from the UCSC genome browser
(http://genome.ucsc.edu/). Taking the union of all transcripts in this table, we classified each base of the genome
according to whether it was transcribed on the + or — strand, both, or neither (including uncalled bases). These
regions totaled 607Mb, 637Mb, 36Mb and 1,599Mb of sequence respectively. We then counted mutations (not
collapsed with their reverse complements) in our dataset that occurred in regions that were transcribed on the + or

— strand, ignoring regions where both or neither strand was transcribed.
Methylation status

We downloaded the Testis BC 1 and 2 (two technical replicates from the same sample) tables from the
HAIB Methyl RRBS track from the UCSC genome browser (http://genome.ucsc.edu/). We constructed a list of

33,305 sites where both replicates had >=50% methylation and another list of 166,873 sites where both replicates

had <50% methylation. We then classified the CpG mutations in our dataset according to which, if either, of these
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lists they fell into. Ultimately, there were only 1186 classified mutations in the whole dataset, including 43 in
Native American samples and 12 in Native American samples with high rates of signature 2. Therefore, although
we found no significant interactions between methylation status and population, it may be simply that we lack

power to detect it.

B statistic and recombination rate

We classified each base of the genome according to which decile of B statistic [23] or HapMap 2

combined recombination rate [34] (in 1kb blocks) it fell into and counted mutations in each class.

Analysis of total number of mutations

To count the total mutations per-genome in Figures SA and 6A, we counted mutations at all frequencies,
rather than restricting to variants at a particular frequency in the whole dataset. We excluded the last 20Mb of

chromosome 2, where 46 samples had high rates of missing data.

Coalescent simulations

We simulated a sample of 50 haplotypes under the standard coalescent, by first simulating a coalescent
tree, and then generating mutations on the tree as a Poisson process. For the simulations shown in Figure 5, we
simulated 200,000 independent trees. To simulate repeat mutations, we simulated two mutations and performed
an OR operation on the genotype vectors — this correctly captures the probabilities of nested and non-nested
mutations. To simulate exponential growth, we first simulate under the standard coalescent, and then rescale time

t such that the new time ¢’ is given by:

é(egt -1) t<s
t' =
g(egs—1)+(t—s) t>s
log(N) . . . .
where g = to simulate N-fold growth starting at time s. We simulated for N=100 and 1000 and chose

s
s=0.01 in coalescent time, corresponding to 0.01x2N, generations, or around 9,000 years if we assume human-

like parameters of N.=15,000 and a generation time of 30 years.
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Analysis of ancient genomes

We identified heterozygous sites in five ancient genomes from published vcf files, and restricted to sites

where there was a single heterozygote in the SGDP. The corrected signature 1 log-ratio is defined by

X{TCC>A}jX{ACC>A}jX{TCT>A}jX{CCC>A}j
M =log, X

{TCA>A}j {ACA>A}jX{TCA>A)jX{CCA>A}j

and then normalized so that the distribution in African populations has mean 0 and standard deviation 1. We

estimated bootstrap quantiles by resampling the counts C;; for the ancient samples and recomputing M.
Increase in absolute mutation rate

Suppose that in a single sample there are M mutations in total, of which N are from a particular signature. Let

N . . . .
P=1 Suppose the number of mutations in that signature increases by AN, but the number of all other mutations

. . . . N+AN .
stays the same. Then the new proportion of mutations in the signature is ¢ = M: N Under these assumptions, the
. . . AN -
increase in the total mutation rate oo %.

Code availability

Scripts used to run the analysis are available from https://github.com/mathii/spectrum.
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386 Figure 2: Signatures 1 and 2 in the 1000 Genomes. A: Proportions of f; and f; variants in signature 1 (here

387 defined as TCT>T, TCC>T, CCC>T and ACC>T) in each 1000 Genomes individual, by population. B:
388 Proportions of /> and f; variants in signature 2 (here defined as NCG>T, for any N) in each 1000 Genomes
389 individual, by population (five outlying samples excluded).
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Figure 3: Transcriptional strand bias in mutational signatures. We plot the log of the ratio of f; mutations
occurring on the untranscribed versus transcribed strand. Therefore a positive value indicates that the C>T
mutation is more common than the G>A mutation on the untranscribed (i.e. coding) strand. P values in brackets
are, respectively, ANOVA P-values for a difference between regions and t-test P-values for a difference between
i) West Eurasia and other regions (excluding South Asia) in A&B ii) 11American samples with high rates of
signature 2 mutations and other regions in C&D. A: Boxplot of per-individual strand bias for mutations in
signature 1 (TCT>T, TCC>T, CCC>T and ACC>T). One sample (S_Mayan-2) with an extreme value (0.48) is
not shown. B: Population-level means for each of the mutations comprising signature 1. C,D: as A&B but for

signature 2. We separated out the 11 American samples with high rates of signature 2 mutations.
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Figure 4: Dependence of signatures on genomic features. A,B: dependence on conservation, measured by B

statistic (O=lowest B statistic; highest conservation). A: Comparison of proportions of signature 1 mutations

between West Eurasia and other populations (excluding South Asia). B: Comparison of proportions of signature 2

mutations between the 11 American samples with the highest proportions, and all other samples. C,D: As A&B,

but showing dependence on recombination rate decile computed in 1kb bins.
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Figure 5: Differences in signature 2 can be explained by demography. A: The proportion of variants that are in
signature 2 for different regions, for allele counts from 1 to 20. B: The proportion of variants that are in signature
2 for f; variants on the x-axis, and all variants per-genome on the y-axis. Samples in SGDP panel B, processed in
a different pipeline, shown as triangles. C: Simulated allele frequency spectra for repeat mutations for 50
haplotypes under the standard (i.e. constant population size) coalescent, and both single and repeat mutations
under the coalescent with exponential growth (100-fold in 0.04 N, generations). The y-axis is scaled by the
expected frequency of single mutations in the constant size case (i.e. 1/n). Inset trees show examples of the
genealogies obtained — constant size on left, exponential growth on right. Results from 200,000 independent trees.
D: Simulation of the proportion of mutations that are at CpG sites at different frequencies, assuming that 15% of

all mutations are CpGs and 10% of CpGs are repeat mutations. Compare to A.
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Figure 6: Details of signature 1 A: The proportion of variants that
are in signature 1 for f; variants on the x-axis, and all variants per-
genome on the y-axis. Samples in panel B, processed in a different
pipeline, shown as triangles. B: Proportion of mutations in
signature 1 as a function of derived allele count from 2 to 30. C:
Signature 1, corrected to be robust to ancient DNA damage
(Methods), for f> variants in the SGDP and five high coverage

ancient genomes. Solid lines show 5-95% bootstrap quantiles.
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Supplementary Figure 1: Diagnostic plots for NMF using variants of frequency 2. Each plot shows the value of
a measure, computed over 50 random start points, for factorization ranks from 2 to 8. From left to right:
Dispersion, a measure of reproducibility of clusters across runs (1=perfectly reproducible); Residual sum of
squares (lower=better fit); Silhouette, a measure of how reliably elements can be assigned to clusters (1=perfectly

reliably).
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535 Supplementary Figure 2: Distribution and characterization of mutational signatures, 4 3 and 4. A: Per-sample
536 coefticients for signatures 3 and 4. B: Geographic distribution of signatures 3 and 4. C: Mutational spectrum of
537 signature 3. D: Mutational spectrum of signature 4. E-F: Comparison of loadings of 1 and 2 with signatures 3 and

538 4. In supplementary plots, we denote the signatures obtained from f, variants with rank & by signature,, so that

539 signature,4is equivalent to the signature in the main text.
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Supplementary Figure 3: Analysis of f; variants A: The first two principal components of the mutational
spectrum of f; variants, showing the difference between cell line and primary tissue derived samples. B&C:
Mutational signatures inferred from f; variants with rank 2, but excluding cell line samples. B: Factor loadings for
signature;+, 1 and 2 (asterisk denotes no cell lines). C: Mutational signatures;«, 1 and 2. Signature«, 1 is
confounded with CpG mutations in this case, but clearly shows an elevated level of TCC>T and ACC>T

mutations.
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548 Supplementary Figure 4: Principal component analysis of the mutational spectrum of f, variants. A: The first
549 two principal components of the mutational spectrum of f; variants, showing no difference between cell line and
550 primary tissue derived samples. B: Principal component positions. Labeled by sample source (A) and geographic

551 region (B). C: Component loadings. Note that principal components 2,3 and 4 correspond roughly to mutational
552 signatures,4 3, 2 and 1 respectively.

553
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554
555 Supplementary Figure 5: NMF analysis of f2 variants at rank 4 - as the main analysis, but normalizing the

556 mutational spectra by the total number of mutations in each sample, rather than the number of ATA>C mutations.
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559 A: Distribution of signatures across samples. B: Mutational signatures 1-4. C: Mutational signatures 1-4 where,

560

Supplementary Figure 6: NMF analysis of /> variants at rank 4 with random initialization of the NMF algorithm.

for each CpG mutation class, we subtracted the minimum over all four signatures from the signature.
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