bioRxiv preprint doi: https://doi.org/10.1101/063446; this version posted July 12, 2016. The copyright holder for this preprint (which was not certified by peer review) is the
author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

“main” — 2016/6/23 — 19:50 — page 1 — #1

Bioinformatics

doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Manuscript Category

Subject Section

Fast genotyping of known SNPs through
approximate t-mer matching
Ariya Shaijii ', Deniz Yorukoglu 2, Y. William Yu2? and Bonnie Berger 2-3*

' Department of Electrical & Computer Engineering, Boston University, Boston, MA, USA
2Computer Science and Al Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
3Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

*To whom correspondence should be addressed.
Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: As the volume of next-generation sequencing (NGS) data increases, faster algorithms become
necessary. Although speeding up individual components of a sequence analysis pipeline (e.g. read
mapping) can reduce the computational cost of analysis, such approaches do not take full advantage
of the particulars of a given problem. One problem of great interest, genotyping a known set of variants
(e.g. dbSNP or Affymetrix SNPs), is important for characterization of known genetic traits and causative
disease variants within an individual, as well as the initial stage of many ancestral and population genomic
pipelines (e.g. GWAS).

Results: We introduce LAVA (Lightweight Assignment of Variant Alleles), an NGS-based genotyping
algorithm for a given set of SNP loci, which takes advantage of the fact that approximate matching of
mid-size k-mers (with & = 32) can typically uniquely identify loci in the human genome without full read
alignment. LAVA accurately calls the vast majority of SNPs in doSNP and Affymetrix’s Genome-Wide
Human SNP Array 6.0 up to about an order of magnitude faster than standard NGS genotyping pipelines.
For Affymetrix SNPs, LAVA has significantly higher SNP calling accuracy than existing pipelines while using
as low as ~5GB of RAM. As such, LAVA represents a scalable computational method for population-level
genotyping studies as well as a flexible NGS-based replacement for SNP arrays.

Availability: LAVA software is available at http://lava.csail.mit.edu.

Contact: bab@mit.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction (ASO) probes, often adhered onto a DNA microarray to form SNP arrays
(Pastinen et al., 2000).

One central challenge in genomics is genotyping: given an individual, .
However, there are millions of known SNPs (Sherry et al., 2001), and

identifying the locations at which that individual’s genome differs from

a reference (Luikart et al., 2003). In this paper, we will primarily focus even the state-of-the-art Affymetrix genome-wide SNP array 6.0 has only

906,000 SNP probes and 946,000 CNV probes. We can instead turn to

on SNPs (single nucleotide polymorphisms)—the most frequently used 3)
whole genome sequencing for genotyping. Currently, NGS whole genome

type of human genetic variation in population-level studies (Lancia et al.,
2001)—although other potentially-applicable variants include insertions,
deletions, short tandem repeats, CNVs (copy number variations), and

sequencing is still relatively more expensive than SNP arrays, but in recent
years, sequencing prices have been dropping drastically, going under even
the celebrated $1000 mark (Hayden, 2014).

In most NGS-based genotyping pipelines, the first step after
sequencing a genome is to map each read to the reference (Li and Durbin,
2009; Langmead and Salzberg, 2012; Yorukoglu et al., 2016). Standard
tools for genotyping (e.g. Samtools mpileup (Li et al., 2009) and GATK
HaplotypeCaller (McKenna et al., 2010)) require this mapping information

rearrangements. For simultaneous characterization of large numbers of
known SNPs, such as in genome-wide association studies (GWAS),
researchers have traditionally turned to allele-specific oligonucleotides

© The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1

https://doi.org/10.1101/063446
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/063446; this version posted July 12, 2016. The copyright holder for this preprint (which was not certified by peer review) is the
author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

“main” — 2016/6/23 — 19:50 — page 2 — #2

2 Shajii et al.
FEssEsEsssEsEEsEEEEEEEEEREEEEn
. . .
Reference) Reference Variant | = Preprocessin
Aen . i >seq
indexing index calling®) = ArTaGeTT =
- GraceacT — ||
b coTanAG |
arceeeaG Lo a g
cecareac £2 13 ¢ p
erIcacs g 4z G ¢ _—
- pasoTa
Reference Raw TTReq 64 C A
sequence reads

Dictionary

k-mer

SNP list

generation dictionaries

Fig. 1: LAVA pipeline (circled in blue) versus conventional genotyping
pipeline (circled in red). In contrast to traditional reference indexing
(violet), LAVA preprocessing generates k-mer dictionaries from a given
reference sequence and list of SNPs (teal). Our main contribution is altering
the pipeline to a k-mer based model, where the traditional read mapping
and variant calling stages are replaced by LAVA’s unified genotyping
method.

for every read before being able to call variants. Yet despite recent advances
in speed (Marco-Sola et al., 2012; Siragusa et al., 2013; Yorukoglu et al.,
2016; Zaharia et al., 2011), mapping still remains a computationally
expensive step. Furthermore, genotyping pipelines also include variant
calling steps, significantly increasing the total runtime.

As increases in modern genomic sequencing capabilities have been
outpacing even the exponential increases in computing power and storage
(Kahn, 2011; Berger et al., 2013), continuing to extract meaningful
knowledge from this data deluge requires not only faster computers, but
also algorithmic advances. One popular approach has been to accelerate
existing tools and algorithms using more sophisticated data structures (e.g.
the FM-index (Ferragina et al., 2004), compressive acceleration (Loh et al.,
2012; Daniels et al., 2013; Yu et al., 2015a), etc.). However, read mapping
is used as a building block for many different downstream applications
(Langmead and Salzberg, 2012), so it must be designed to be as general as
possible. When the specific downstream application is known beforehand,
the read mapping information need not be fully computed giving way to
more efficient, ‘alignment-free’ approaches.

While alignment-free sequence comparison has been around for
more than two decades (Hide et al., 1994; Jeffrey, 1990; Vinga and
Almeida, 2003), their mainstream use in the context of fast processing
of large NGS datasets is relatively recent, including tools making use
of lightweight alignment (Patro et al., 2015) or pseudo-alignment (Bray
et al., 2015) for transcript quantification and metagenomic classification
(Wood and Salzberg, 2014; Ounit ez al., 2015) as well as fully reference-
independent methods that identify differences between wild-type and
mutant individuals (Nordstrom et al., 2013; Peterlongo et al., 2010). These
methods differ from traditional genomic pipelines by going from unaligned
reads to analysis-ready results without needing to compute nucleotide-
level alignments of reads onto a reference sequence. In this paper, we
show that a k-mer based algorithm that employs similar alignment-free
sequence comparison principles, yet allows approximate k-mer matches,
can accurately genotype an individual for a given set of SNPs.

Due to linkage disequilibrium (LD) between variants that are close in
terms of recombination distance, relatively few SNP loci in the human
genome are needed for tagging the variants present in an individual
(Frazer et al., 2007). As such, a fast algorithm that can compute genotype
information of a given set of SNPs, even if it eschews discovery of novel
SNPs, is of great relevance in population genomics, impacting ancestral
and genome-wide association studies (GWAS). Aptly, fast genotyping
methods are most urgently needed in population-level studies, where

Reference and SNPs Reference and SNP
k-mer dictionaries
Processing
—
— —i
> — — -
e — [rs10432,ref,alt
GTaCaACT
> —_— . . +
B —}. . - | : : | =P |rs12345,ref,alt | +1
cceeAG Split read into k-mers rs14543,ref,alt
and obtain Hamming .
neighbors || :
Reads g Query all Update pileup table
J-mers based on aggregate

query results

Fig. 2: High-level view of LAVA method. We first produce dictionaries
of all reference k-mers and k-mers containing mutant SNP alleles in the
preprocessing stage from the given reference sequence and SNP list. These
dictionaries associate a position in the reference with each k-mer. The SNP
dictionary also contains reference and alternate alleles. The subsequent
online processing of the reads entails querying each read’s constituent k-
mers, in addition to their Hamming neighbors, in these two dictionaries.
For each read, the results of these queries are combined in order to predict
which SNPs the read overlaps, and we increment either the reference or
alternate allele counter in our pile-up table for all such SNPs, depending
on which allele the read contains for that SNP. Once all reads have been
processed in this way, the final, completed pile-up table is used to call
variants.

sequencing data from a large number of individuals need to be processed
for analyses.

2 Approach

Here we introduce LAVA (Lightweight Assignment of Variant Alleles),
which from raw sequencing reads performs something akin to a
computational SNP array, calling SNPs as either wild-type or mutant.
In particular, given a set of SNPs, LAVA constructs a comprehensive
dictionary of mid-size k-mers (with k£ = 32) that uniquely identify those
SNPs (where possible). Coupled with a second dictionary of all the k-
mers in the human genome, LAVA is able to quickly determine if a read
belongs to a particular SNP as either a wild-type or mutant through a
bipartite matching of k-mers in the reads to k-mers in the dictionaries up
to Hamming distance 1. The k-mers used in LAVA can be seen as the
computational analogue of the ASOs used on SNP arrays, allowing us to
choose only relevant reads, without doing a full alignment of all reads to a
reference genome (Figure 1). By aggregating those relevant reads, LAVA
can then call SNPs with a simple probabilitic model using expected read-
depth coverage as well as variant frequency priors from dbSNP (Sherry
etal., 2001).

LAVA accurately genotypes the vast majority of SNPs in our
experiments significantly faster than traditional genotyping through
mapping. For a SNP list consisting of a subset of common SNPs from
dbSNP, the speedup was 3.4-6.0x. Similarly, using the SNPs from the
Affymetrix Genome-Wide Human SNP Array 6.0 as a SNP list, we saw a
speedup of 2.2-9.2x. Furthermore, LAVA was able to use as little as ~40GB
of RAM for the dbSNP-common SNP list and ~5GB of RAM for the
Affymetrix SNP list. At the same time, because LAVA is a computational

https://doi.org/10.1101/063446
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/063446; this version posted July 12, 2016. The copyright holder for this preprint (which was not certified by peer review) is the
author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

“main” — 2016/6/23 — 19:50 — page 3 — #3

LAVA SNP Caller

3019 Identifying loci from k-mers

250

2.0}
g
E]
s
5 15 -
2
£
=1
4

10}

0.5} e—e Total loci

=—a Unambig loci (exact match)
: «— Unambig loci (Hamming dist 1)
0.0 H n n n n
0 10 20 30 40 50 60 70

k-mer size

Fig. 3: The number of identifiable loci in the human reference from k-
mers of different lengths. Total number of loci is ~ 3 x 109 (red circles).
Naturally, both the number of unambiguous loci given exact k-mer matches
(blue squares) and taking into account Hamming neighbors (green stars)
increase with k. Clearly, in the latter case we need much longer k-mer
lengths to correct for the presence of errors injecting ambiguity into the
loci corresponding to any particular k-mer.

method that relies on NGS, it does not require the construction of physical
SNP chips, and can address many more SNPs than ASOs can feasibly be
dotted onto a chip. Moreover, when the set of SNPs is altered, LAVA’s
dictionaries can easily be modified in silico as opposed to expensively
redesigning the probes used in the SNP array.

Our broader point is that while full mapping and genotyping will be
useful for the discovery of novel SNPs and more in depth computational
analyses of genomes, it is more costly than necessary for many population
genomics studies. LAVA provides a computationally much cheaper
solution for genotyping applications on a given set of SNPs.

On our human test dataset (NA12878 from the 1000 Genomes Project
(Consortium et al., 2012) and the GATK best practices bundle (DePristo
et al., 2011)), LAVA correctly called 93.1% of a subset of common
SNPs from dbSNP, and 96.4% of SNPs from Affymetrix Genome-Wide
Human SNP Array 6.0. By comparison, the other conventional genotyping
pipelines that were tested correctly called 92.6-94.8% of the former and
93.4-95.5% of the latter.

3 Methods

LAVA takes as input a reference genome, a list of SNPs, and a set of
reads. As its output, it produces predicted genotypes for those SNPs (wild-
type, heterozygous, homozygous mutant). A high-level visualization of the
method is depicted in Figure 2.

3.1 Choice of k-mer Length

We choose & = 32 for a combination of theoretical and machine
architectural considerations. First and foremost, we want our k-mers to,
as much as possible, uniquely identify the loci of the genome where
SNPs of interest are located. This is akin to the problem of the choice
of ASO probe sequence in SNP arrays. However, though ASO probes
are generally of length between 15 and 21, this choice only works for
a small subset of the human genome. Additionally, in order to take into
account machine error (which ASO probes need not), we also want to make

sure to choose a sufficiently long k-mer so that k-mers also do not have
Hamming neighbors in the genome (loci that are within Hamming distance
1). Figure 3 is an analysis of the human reference genome (version 19),
showing how many loci are uniquely identifiable by k-mers of different
lengths, either with exact matches or when Hamming neighbors are also
considered. Only 21.8% of 16-mers are unique in the human reference
genome and only 0.000786% of 16-mers have no Hamming neighbors.
On the other hand, by choosing k = 32, we are able to uniquely locate
85.7% of the human genome with exact 32-mer matches and 79.3% of
the human genome have no Hamming neighbors. Of note, although the
proportion of uniquely identifiable loci continues to increase with k, 32
seems to be past an inflection point and is well-suited for modern 64-bit
machine architectures.

On the other hand, too large of a choice for & runs into a different
set of problems. The most obvious practical problem is that the memory
requirements for £ much larger are prohibitive. Additionally, there is also a
more subtle issue caused by sequencing error rates: as k grows, the chances
of sequencing error being present also grow. By looking to Hamming
neighbors of the k-mer, we can correct for a single error present in a
k-mer, but looking to higher Hamming distances requires exponentially
more time. Thus, we need to ensure that k-mers rarely have more than one
machine error. Assuming independence of error locations with an error
rate of p, the binomial distribution gives that a k-mer will have [errors
with probability

(’;)(1 —p)Fiph.

With even a low 1% error rate, k = 32 gives > 2 errors at a rate of only
4%, whereas k = 64 results in > 2 errors at a rate of 13%. At just a 2%
error rate, k = 32 gives > 2 errors at a rate of only 13%, whereas k = 64
results in > 2 errors at a rate of 36%.

As far as machine architecture is concerned, a 32-mer can be simply
encoded as a 64-bit number. Note that k = 16 and k = 64 also fit nicely
in standard machine number sizes, but they do not serve our purposes for
the reasons listed above. Thus, we have chosen k = 32, which fits all of
the criteria above relatively well.

3.2 Preprocessing of Reference Sequence and SNP List

We begin by preprocessing the given reference sequence by considering
every k-length substring (“k-mer”) appearing within it. Our goal is to
create a dictionary D¢ that maps each k-mer to the index in the reference
sequence at which the k-mer appears. If a given k-mer appears more than
once in the reference sequence, we can treat it specially and store multiple
positions for it, up to some limit.

Using a standard binary encoding of reads, let £ be the bijection
mapping each 32-mer to its 64-bit unsigned integer encoding. Simply
treating Dyof as a list of (k-mer, position) tuples does not allow for
efficient querying. To decrease cache misses, we use a static hash table
implementation as follows (Yu et al., 2015b): we first sort D,.f by the
numerical values of the encoded k-mers, and then we make use of a
secondary hash table J.o¢ that maps each 32-bit unsigned integer u to
the first location in D.¢ at which there is a 32-mer whose encoding’s
upper 32 bits is u. Because D, is sorted by the numerical values of
the encoded 32-mers, 32-mers whose encodings have the same upper
32 bits will be grouped together in a sorted bucket, decreasing cache
misses when searching all Hamming neighbors of a k-mer and allowing
us to implicitly encode the upper 32 bits of k-mers by bucket, improving
memory efficiency. To query D, ¢ with some 32-mer K, we simply binary
search in Dyof between the indices Jyof[|€(K)/232]] (inclusive) and
Jrot [LE(K) /232] + 1] (exclusive) for K. A simplified visualization of
the querying process is given in Supplementary Materials.

https://doi.org/10.1101/063446
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/063446; this version posted July 12, 2016. The copyright holder for this preprint (which was not certified by peer review) is the
author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

“main” — 2016/6/23 — 19:50 — page 4 — #4

Shajii et al.

The known SNP list is also preprocessed analogously: instead of
considering all k-mers in the reference, we take only those that overlap
some SNP with the reference allele replaced by the alternate. Each element
of the SNP list consists of a position in the reference at which the SNP
is located, a reference allele, an alternate allele and population frequency
priors of the reference and alternate alleles. The SNP dictionary Dgnp (as
well as a secondary hash table Jgnp) thus contains k-mers (k = 32 again)
with the mutant allele. In addition to positions, we store SNP information
in Dgnp for each k-mer.

Though these structures are constructed during preprocessing, they
still must be loaded into RAM. We give exact total numbers in Table 1, but
space complexity of the static data structures is at most linear in size of
the genome (because each locus in the genome and each SNP contributes
one k-mer and each k-mer stores no more than constant information for
numbers of coinciding loci). Alternately, if only relevant k-mers are stored,
one can bring the space complexity down to linear in the number of SNPs
of interest (see LAVA Lite in Table 1). Additionally, the constant overhead
of the hash table buckets can be tuned to be on the order of the number of
k-mers.

3.3 Online Processing of Reads

To obtain variant calls from reads, we first create a “pileup table” P, where
we store for each SNP, reference and alternate allele counts (respectively
a and), which are updated incrementally as we process the reads. P
can be thought of as a dictionary mapping indices to SNPs and these two
counts. This pile-up table can be implemented to use space linear in either,
trivially, the genome length, or using a hash table, the number of SNPs, so
the space-complexity of LAVA is determined by the static structures given
in the previous section.

Each individual read () can be thought of as a length-m sequence of A,
C, G, T (N’s are handled separately as we discuss below). The processing
of a read begins with splitting it into non-overlapping, contiguous k-mers.
If there is a segment at the end of the read that is not covered by one of
these k-mers, we can optionally either omit that segment or choose a final
overlapping k-mer that covers it.

When the sequencer cannot call a base and emits an N, there are several
possible courses of action. The simplest one, and the one we use in the
results presented in this paper, is to discard any read that contains an N.
Alternately, as the LAVA framework is flexible with respect to read length,
another practical solution is to trim a read if N’s are clustered near the end
of the read. Lastly, for sporadic N’s in the middle of the read, another
option is to expand our alphabet to include N for use in Hamming distance
computations, but not allow it to play a role in SNP calling.

Now, let A/ K) be the “Hamming neighborhood” of some k-mer K for
Hamming distance 1. Notice that K € N/ (K) and that |V (K)| = 3k+1.
Our immediate goal in processing each read is to determine which SNP(s),
if any, the read corresponds to. We can then update the reference and
alternate allele counts in P for such SNPs appropriately. We identify these
SNPs by querying D, and Dgnp with all k-mers in N(K) for each
k-mer sampled from the read. For each read, we identify the locus to
which the most k-mers in that read can be concordantly matched. If there
are multiple such loci, or if there is no locus supported by two or more
k-mers, we do not update P. We apply this entire procedure to each read
and to its reverse complement, resulting in a completed pile-up table P*.

3.4 SNP Calling

The final stage of LAVA is to utilize the pile-up table P* to call the donor’s
genotype for each SNP locus. Specifically, we assign a label of either
“homozygous reference” (Go), “heterozygous” (G1) or “homozygous
alternate” (G2) to each position in P* that is covered by at least one
read (i.e. @ + B8 > 0). Since we have the reference and alternate allele

Table 1. Table of overall running times, peak memory usages, and accuracies
for LAVA and for several other genotyping pipelines. Results are shown for
two SNP lists: a subset of common SNPs from dbSNP and the SNPs from the
Affymetrix Human SNP Array 6.0. Each tool was allocated a single thread on
an Intel Xeon E5-2650 x86_64 CPU @ 2.30GHz. Note that LAVA Lite attains
alower peak memory usage by removing k-mers from the reference dictionary
that are not within a read length of any SNP, condensing the pile-up table, and
(for the Affymetrix SNP list) using 24-bit keys in the reference dictionary as
opposed to 32-bit keys.

Method Runtime (min.) RAM (GB) Correct Calls
LAVA (dbSNP) 294.4 60.0 93.1%
LAVA Lite (dbSNP) 367.7 40.0 92.7%
Bowtie 2 + mpileup (dbSNP) 1296.0 3.7 94.5%
BWA + mpileup (dbSNP) 1700.0 32 94.8%
Bowtie 2 + GATK HC (dbSNP) 1237.4 11.3 92.6%
BWA + GATK HC (dbSNP) 1779.6 11.9 93.3%
SNAP + GATK HC (dbSNP) 989.1 71.1 93.3%
LAVA (Affy.) 184.8 60.0 96.4%
LAVA Lite (Affy.) 247.0 52 96.4%
Bowtie 2 + mpileup (Affy.) 1296.0 3.7 93.4%
BWA + mpileup (Affy.) 1700.0 32 93.6%
Bowtie 2 + GATK HC (Afty.) 993.1 10.9 95.2%
BWA + GATK HC (Affy.) 1417.8 11.3 95.5%
SNAP + GATK HC (Afty.) 400.1 71.1 95.4%

frequencies (p and q respectively) in P*, we can estimate the posterior
probability of each genotype as:

Pr(Ga[C) = Pr(Gnlerr(C\Gn)

©) ’
where C'is the event that we observe reference and alternate allele counts
of o and S, respectively. Furthermore, by the law of total probability, we
have

Pr(Grn) Pr(C|Grn)
SiZo Pr(CIG:) Pr(Gy)

Pr(Gn|C) =

By Hardy-Weinberg, we know that

Pr(Go) = p*, Pr(G1) = 1 —p® — ¢%, Pr(G2) = ¢°.

We take each Pr(C|G») to be binomially distributed. For Gg and Ga,
we assume that we observe an incorrect allele (i.e. alternate allele given
G or reference allele given G'2) with some probability e. For G1, on the
other hand, we assume that we have an equal chance of seeing both the
reference and alternate alleles. Hence, we have

TR a-om e,

et = ("1 (3) (3) = (1)

a+ [o
5)@ =9

Pr(C|Go) = (

Pr(C|Ga) = (

With this observation, we are able to compute each Pr(G,|C). We
take whichever G, produces the largest Pr(Gy|C) to be our predicted
genotype for the given SNP. As our confidence metric for this assessment,
we take the Pr(Gy|C) value scaled by a quantity that depends on the
total coverage, o + 3. In this way, we penalize SNPs that have abnormally
high coverages as well as those that have lower coverages than expected.
This scaling term is simply the probability mass function of a Poisson
distribution with mean equal to the average coverage X of the reads:

https://doi.org/10.1101/063446
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/063446; this version posted July 12, 2016. The copyright holder for this preprint (which was not certified by peer review) is the
author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

“main” — 2016/6/23 — 19:50 — page 5 — #5

LAVA SNP Caller

T T
O Mapping
O Indexing/Sorting
1,500 |- B Genotyping |
B LAVA
= 1,000| i
E
Q
£
=
500 - n
. N ||]
! ! ! ! ! ! ! ! !
D D D \A \A \A \A D D
\PS“ \Pgd \Pv&“ O S S \o° o> \PS“ \Pgd
SR PR PR p& o o O S S
Vs s o S e S & ®
,Lxc’ QQP'XG 9 x© XG?’ XGP‘ XOP' Q'\\?‘\)Q Q\\e\)Q
g 9 N 2 > ?g xS x
9" ° S ?,o«i@m o

Fig. 4: Visualization of LAVA runtimes as compared to other genotyping pipelines. Note that “Indexing/Sorting” refers to intermediate operations
performed on the output of the mapping stage prior to genotyping. The actual numerical values of the various times are given in Supplementary Materials.

A\atB
Sla+B8)= —— e .
@+ = aray
For greater accuracy, we computed the average o+ 3 from P* to measure
the actual observed depth coverage, and took A to be this value. We report
the product of these two probabilities as our genotyping confidence values.

3.5 Parallelization

Parallelizing LAVA is straightforward, as different reads can be processed
independently by different threads. For comparison, a parallelized version
of LAVA (using a subset of common SNPs from dbSNP as the SNP list)
running with 4 threads (using shared memory) achieved a 3.3x speedup
while a pipeline consisting of Bowtie2 for read mapping and GATK’s
HaplotypeCaller for genotyping had a 2.9x speedup.

4 Results

Datasets. As our reference sequence, we used GRCh37/hgl9. We used
NA12878 reads from Phase 1 of the 1000 Genomes Project (Consortium
et al., 2012) and a high-quality trio-validated genotype annotation as our
gold standard (DePristo et al., 2011). Then we performed the experiment
for two different SNP lists: all common SNPs from dbSNP (Sherry
et al., 2001) and SNPs from the Affymetrix Genome-Wide Human
SNP Array 6.0. We compared our accuracy with the most popular
genotyping pipelines, consisting of various combinations of Bowtie 2,
BWA or SNAP for read mapping and Samtools mpileup or GATK’s
HaplotypeCaller (henceforth also referred to as “GATK HC”) for variant
calling. Additionally, as the HaplotypeCaller allows the user to specify a
set of alleles at which to genotype, GATK HC was also run specifically for
the Affymetrix SNP list with this setting enabled. Note that each SNP list
is filtered so that it contains only bi-allelic, single-nucleotide SNPs with
consistent alleles and allele frequency data.

Parameters. For the Poisson distribution in our model, we set A = 7.1,
which was the average coverage in our final pile-up table. Our assumed
error rate was € = 0.01, which is in line with known NGS base call
error rates. For k-mers with multiple mappings in the two dictionaries, we
stored up to 9 additional entries. Any reads containing an N base (~0.5%
of all reads) were discarded. Also, segments at the end of a read not evenly
covered by a k-mer were also discarded; for our read length of 101 bp,
this corresponded to discarding the last 5 bases in each read, which were
also the lowest quality regions of the read.

Benchmarking experiments. Depending on mode, LAVA used from as little
as 5.2 GB to up to 60 GB of peak memory while running for our dataset. By
contrast, BWA + mpileup used about 3.2 GB at its peak, Bowtie 2 + GATK
HC used 11.3 GB, and SNAP + GATK HC used 71.1 GB. In Table 1, we
present the timings and peak memory usages for all of our experiments,
both for LAVA and for the other genotyping pipelines. LAVA allows for
trading off memory usage for runtime. Of note, even the lowest memory
mode achieves impressive speed gains (Table 1 and Figure 4).

Dictionary generation. Generating the reference and SNP dictionaries
took a combined time of about 28 minutes on our machine (described
in the caption of Table 1), and used about 74 gigabytes of memory at
its peak (these benchmarks are essentially independent of the SNP list
since generating the reference dictionary is predominantly the time- and
memory-consuming step). Note that this is a preprocessing stage and that
the same reference and SNP dictionaries can be used repeatedly for the
same reference genome and SNP list, respectively.

Overall, compared to the other genotyping pipelines, LAVA proved to
be anywhere from 3.4 to 6 times faster for the dbSNP-common SNP list
and anywhere from 2.2 to 9.2 times faster for the Affymetrix SNP list.
Figure 5 shows the accuracy of LAVA and that of the other pipelines for
the two different SNP lists.

https://doi.org/10.1101/063446
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/063446; this version posted July 12, 2016. The copyright holder for this preprint (which was not certified by peer review) is the
author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

True Positive Calls

True Positive Calls

“main” — 2016/6/23 — 19:50 — page 6 — #6

6 Shajii et al.
Precision Benchmark (dbSNP-common SNP list) FDR Benchmark (dbSNP-common SNP list)
-106 -10%
3 T T p 3 T
\ o _____P=27.105 .7 |
2 - = 2 -
<
@]
o . LAVA
= A SNAP+GATK HC
g BWA + mpileup
A~ m Bowtie 2 + GATK HC
2
1f : 5 1p :
. LAVA
A SNAP+GATK HC
BWA + mpileup
] Bowtie 2 + GATK HC
0 | | I I 0 ‘Mf,
0 0.5 1 1.5 2 2.5 3 0.5 1 1.5 2 2.5 3
-106) -106
Total Positive Calls Total Positive Calls
(@) (b)
Precision Benchmark (Affymetrix SNP list) FDR Benchmark (Affymetrix SNP list)
-10° -10°
FreFor———m === - e == 1 T T
P =3.5.10° P
3.4 S
.7 0.8} -
3.2 N ®
=
9.) 0.6~ . LAVA
B A SNAP+GATK HC
i | 3 BWA + mpileup
Qé 04l m Bowtie2+GATKHC | |
5
2.8 -
. LAVA
A SNAP+GATK HC 0.2 -
| BWA + mpilewp | |
2.6 JJ m Bowtic 2 + GATK HC
’
P \ | I I 0 ‘o POPPPP WSS S S o i \
2.6 2.8 3 3.2 3.4 2.6 2.8 3 3.2 3.4
.10° 105

Total Positive Calls

(©

Total Positive Calls

(d)

Fig. 5: Accuracy plots for the dbSNP-common SNP list as well as for the Affymetrix SNP Array 6.0 list, showing true positives (a,c) and false positives
(b,d) as a function of total positive calls, both for LAVA and for several other genotyping pipelines. P denotes the total number of positives present in the
dataset. Note that the positive set contains the heterozygous and homozygous mutant SNPs (G1 and G'2) and the negative set contains the homozygous

wild-type SNPs (Gp).

Because a small subset of SNPs cannot be uniquely identified by any of
their overlapping 32-mers, LAVA only attempted to call 94.5% of dbSNP-
common and 98.5% of the Affymetrix SNPs. LAVA correctly called 93.1%
(98.5% of attempted calls) of the dbSNP-common list, and 96.4% (97.9%
of attempted calls) of the Affymetrix SNP Array 6.0 list. The Bowtie
2 + mpileup pipeline, by comparison, correctly called 94.5% and 93.4%
respectively. Furthermore, BWA + mpileup called 94.8% and 93.6% while
Bowtie 2 + GATK HC called 92.6% and 95.2%. Hence, despite its speed,
LAVA maintained a high accuracy for the dbSNP-common SNP list and
actually attained the highest accuracy for the Affymetrix SNP list.

Though LAVA performs genotyping from raw reads in a single unified
algorithm, rather than separating out mapping and variant calling, its
fast speed compares favorably against the individual components of

existing pipelines. As such, even when compared to variant calling from a
precomputed BAM file with no cost spent on mapping, LAVA can provide
significant speed improvements.

5 Discussion

LAVA applies the idea of mid-size k-mer based lightweight algorithms to
the problem of genotyping and in doing so achieves great improvements
in speed. By replacing full read mapping and variant calling from the
sequence analysis pipeline with LAVA, we improve the speed of the process
and also unify it considerably in a framework that performs an approximate
bipartite matching between k-mers in the reference and the read datasets.

https://doi.org/10.1101/063446
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/063446; this version posted July 12, 2016. The copyright holder for this preprint (which was not certified by peer review) is the
author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

“main” — 2016/6/23 — 19:50 — page 7 — #7

LAVA SNP Caller

While in this study we have focused LAVA on SNPs, DNA microarrays
are applicable to other variants such as insertions, deletions, and CNVs
(copy number variations). Because physical ASOs (with 15 < k < 21)
can assay for these variants, we expect that even accounting for sequencing
error, the 32-mers LAVA uses can also address these variants. For small
indels, the reference and alternate k-mers are exactly analogous to the
ones used for SNPs, requiring only that we find nearly unique k-mers
for each variant. With a length-n insertion, for instance, we would take
the k (k — n)-mers surrounding the start of the insertion and place the
insertion sequence into each of them at the correct position to produce k
k-mers representing the insertion. Similarly, for a length-n deletion, we
would take the k (k + m)-mers surrounding the start of the deletion and
remove the deleted sequence from each to produce k£ k-mers representing
the deletion. Copy number variation information is already present to
some extent in the pile-up table, and we need only update the Bayesian
model to include more possible classifications; it is likely that CNVs will
require higher average coverage to accurately call. Or, alternately, known
structural duplications may be accessible through k-mers covering the
boundary between a duplicated region and its neighboring regions.

Additionally, in the interest of speed, LAVA uses a more streamlined
probabilistic base calling algorithm. However, once LAVA performs its
k-mer matching step, any number of different probabilistic models could
be applied for base calling. Further augmentations to the LAVA framework
could include more complicated models—such as those used in tools like
GATK HaplotypeCaller and Samtools mpileup—and better priors for the
Bayesian model, such as linkage disequilibrium information. While these
other models have some advantages in accuracy, we deliberately chose to
make the trade-off of gaining additional speed through our streamlined
probabilistic model, while still retaining reasonably high accuracy.

Of note, LAVA demonstrates the highest accuracy amongst all
pipelines we tested for the Affymetrix dataset. This is because LAVA’s
dictionaries effectively simulate the behavior of ASO probes, so SNPs for
which SNP arrays are effective are also particularly amenable to LAVA’s
variant calling.

6 Conclusion and Future Work

While we demonstrate LAVA’s capabilities for efficiently processing DNA
sequencing datasets for known SNP loci, if common splice junction
coordinates in the population are known, which is available from studies
such as GENCODE (Derrien et al., 2012) and REFSEQ (Pruitt et al.,
2007), LAVA can also be augmented to perform bipartite matching of k-
mers in the RNA-seq reads and the transcriptome for identifying SNP/indel
variants as well as estimate differential allelic expression of heterozygous
loci.
Furthermore,
benchmarking experiments, LAVA does not actually distinguish between
paired- and single-end, unlike the read mappers we compared against.

although paired-end reads were used in our

Future work on LAVA entails incorporating a paired-end mode to further
improve accuracy.

To conclude, as NGS read databases grow, the lightweight nature of
LAVA will enable much faster targeted analyses than can be performed with
standard NGS genotyping pipelines. These methods will prove invaluable
as sequencing becomes the assay of choice for population genomics
studies.

Acknowledgements

We thank Noah Daniels, Hoon Cho, Sean Simmons, and David Rolnick
for helpful discussions and comments.

Funding

A.S., D.Y., and B.B. are partially supported by the National Institutes
of Health (NIH) RO1IGM108348. Y.W.Y. gratefully acknowledges support
from the Fannie and John Hertz Foundation. D.Y. is also partially supported
by HHMI and IBM. This content is solely the responsibility of the authors
and does not reflect the official views of the NIH.

References

Berger, B., Peng, J., and Singh, M. (2013). Computational solutions for omics data.
Nature Reviews Genetics, 14(5), 333-346.

Bray, N., Pimentel, H., Melsted, P., and Pachter, L. (2015). Near-optimal RNA-Seq
quantification. arXiv preprint arXiv:1505.02710.

Consortium, . G. P. et al. (2012). An integrated map of genetic variation from 1,092
human genomes. Nature, 491(7422), 56-65.

Daniels, N. M., Gallant, A., Peng, J., Cowen, L. J., Baym, M., and Berger, B. (2013).
Compressive genomics for protein databases. Bioinformatics, 29(13), i283-i290.

DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl,
C., Philippakis, A. A., Del Angel, G., Rivas, M. A., Hanna, M., et al. (2011).
A framework for variation discovery and genotyping using next-generation DNA
sequencing data. Nature genetics, 43(5), 491-498.

Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., Guernec,
G., Martin, D., Merkel, A., Knowles, D. G., et al. (2012). The GENCODE v7
catalog of human long noncoding RNAs: analysis of their gene structure, evolution,
and expression. Genome research, 22(9), 1775-1789.

Ferragina, P., Manzini, G., Mikinen, V., and Navarro, G. (2004). An alphabet-
friendly FM-Index. In A. Apostolico and M. Melucci, editors, String Processing
and Information Retrieval, volume 3246 of Lecture Notes in Computer Science,
pages 150-160. Springer Berlin Heidelberg.

Frazer, K. A., Ballinger, D. G., Cox, D. R, Hinds, D. A., Stuve, L. L., Gibbs, R. A.,
Belmont, J. W., Boudreau, A., Hardenbol, P,, Leal, S. M., et al. (2007). A second
generation human haplotype map of over 3.1 million SNPs. Nature, 449(7164),
851-861.

Hayden, E. C. (2014). The $1,000 genome. Nature, 507(7492), 294-295.

Hide, W., Burke, J., and DA VISON, D. B. (1994). Biological evaluation of d2, an
algorithm for high-performance sequence comparison. Journal of Computational
Biology, 1(3), 199-215.

Jeffrey, H. J. (1990). Chaos game representation of gene structure. Nucleic Acids
Research, 18(8), 2163-2170.

Kahn, S. D. (2011). On the future of genomic data. Science(Washington), 331(6018),
728-729.

Lancia, G., Bafna, V., Istrail, S., Lippert, R., and Schwartz, R. (2001). SNPs
problems, complexity, and algorithms. In AlgorithmsESA 2001, pages 182-193.
Springer.

Langmead, B. and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie
2. Nat Meth, 9(4), 357-359. Brief Communication.

Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with
BurrowsWheeler transform. Bioinformatics, 25(14), 1754-1760.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,
Abecasis, G., Durbin, R., and Subgroup, . G. P. D. P. (2009). The Sequence
Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079.

Loh, P.-R., Baym, M., and Berger, B. (2012). Compressive genomics. Nat Biotech,
30(7), 627-630.

Luikart, G., England, P. R., Tallmon, D., Jordan, S., and Taberlet, P. (2003). The
power and promise of population genomics: from genotyping to genome typing.
Nat Rev Genet, 4(12), 981-994.

Marco-Sola, S., Sammeth, M., Guigo, R., and Ribeca, P. (2012). The GEM mapper:
fast, accurate and versatile alignment by filtration. Nat Meth, 9(12), 1185-1188.
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A.,
Garimella, K., Altshuler, D., Gabriel, S., Daly, M., and DePristo, M. A. (2010). The
Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation

DNA sequencing data. Genome Research, 20(9), 1297-1303.

Nordstrom, K. J., Albani, M. C., James, G. V., Gutjahr, C., Hartwig, B., Turck,
F., Paszkowski, U., Coupland, G., and Schneeberger, K. (2013). Mutation
identification by direct comparison of whole-genome sequencing data from mutant
and wild-type individuals using k-mers. Nature biotechnology, 31(4), 325-330.

Ounit, R., Wanamaker, S., Close, T. J.,, and Lonardi, S. (2015). Clark:
fast and accurate classification of metagenomic and genomic sequences using
discriminative k-mers. BMC genomics, 16(1), 1.

Pastinen, T., Raitio, M., Lindroos, K., Tainola, P., Peltonen, L., and Syvinen, A.-C.
(2000). A System for Specific, High-throughput Genotyping by Allele-specific
Primer Extension on Microarrays. Genome Research, 10(7), 1031-1042.

Patro, R., Duggal, G., and Kingsford, C. (2015). Salmon: Accurate, versatile and
ultrafast quantification from RNA-seq data using lightweight-alignment. bioRxiv,

https://doi.org/10.1101/063446
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/063446; this version posted July 12, 2016. The copyright holder for this preprint (which was not certified by peer review) is the
author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.

“main” — 2016/6/23 — 19:50 — page 8 — #8

Shajii et al.

page 021592.

Peterlongo, P., Schnel, N., Pisanti, N., Sagot, M.-F., and Lacroix, V. (2010).
Identifying snps without a reference genome by comparing raw reads. In String
Processing and Information Retrieval, pages 147-158. Springer.

Pruitt, K. D., Tatusova, T., and Maglott, D. R. (2007). NCBI reference sequences
(RefSeq): a curated non-redundant sequence database of genomes, transcripts and
proteins. Nucleic acids research, 35(suppl 1), D61-D65.

Sherry, S. T., Ward, M.-H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M.,
and Sirotkin, K. (2001). dbSNP: the NCBI database of genetic variation. Nucleic
Acids Research, 29(1), 308-311.

Siragusa, E., Weese, D., and Reinert, K. (2013). Fast and accurate read mapping with
approximate seeds and multiple backtracking. Nucleic Acids Research, 41(7), e78.

Vinga, S. and Almeida, J. (2003). Alignment-free sequence comparison-a review.
Bioinformatics, 19(4), 513-523.

Wood, D. E. and Salzberg, S. L. (2014). Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol, 15(3), R46.

Yorukoglu, D., Yu, Y. W., Peng, J., and Berger, B. (2016). Compressive mapping for
next-generation sequencing. Nature Biotechnology, page In press.

Yu, Y. W,, Daniels, N. M., Danko, D. C., and Berger, B. (2015a). Entropy-scaling
search of massive biological data. Cell systems, 1(2), 130-140.

Yu, Y. W,, Yorukoglu, D., Peng, J., and Berger, B. (2015b). Quality score compression
improves genotyping accuracy. Nat Biotech, 33(3), 240-243. Opinion and
Comment.

Zaharia, M., Bolosky, W.J., Curtis, K., Fox, A., Patterson, D. A., Shenker, S., Stoica,
1., Karp, R. M., and Sittler, T. (2011). Faster and more accurate sequence alignment
with SNAP. CoRR, abs/1111.5572.

https://doi.org/10.1101/063446
http://creativecommons.org/licenses/by-nd/4.0/

