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Abstract 33 

Flow cytometry is suitable to discriminate and quantify aquatic microbial cells within a 34 

spectrum of fluorescence and light scatter signals. Using fixed operational and gating settings, 35 

a mixture model, coupled to Laplacian operator and Nelder-Mead optimization algorithm, 36 

allowed deconvolving bivariate cytometric profiles into single cell subgroups. This procedure 37 

was applied to outline recurrent patterns and quantitative changes of the aquatic microbial 38 

community along a river hydrologic continuum. We found five major persistent subgroups 39 

within each of the commonly retrieved populations of cells with Low and High content of 40 

Nucleic Acids (namely, LNA and HNA cells). Moreover, we assessed changes of the 41 

cytometric community profile over-imposed by water inputs from a wastewater treatment 42 

plant. Our approach for multiparametric data deconvolution confirmed that flow cytometry 43 

could represent a prime candidate technology for assessing microbial community patterns in 44 

flowing waters. 45 

 46 

47 
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Introduction 48 

Flow cytometry has been used in combination with statistical tools for dredging 49 

multiparametric representations of single cells within microbial communities from different 50 

aquatic environments (Glüge et al., 2014; Koch et al., 2014; Li, 2002). Because sample 51 

acquisition offers snapshots of single cells by delivering a multivariate dataset exportable for 52 

post-hoc analysis (Davey and Davey, 2011), different bioinformatics approaches were 53 

proposed to discriminate cytometric subgroups based on specific light scatter and 54 

fluorescence signals (Andreatta et al., 2004; Le Meur, 2013; De Roy et al., 2012). The basic 55 

cytometric cell detection combines: (i) light signals of the laser beam, scattered off at small 56 

and large angles form the cell interrogation point and related to cell size and morphology (i.e., 57 

forward and side light scatters); (ii) primary fluorescence signals related to type and content 58 

of endocellular autofluorescent pigments (i.e., autofluorescence); (iii) secondary fluorescence 59 

signals, owing to type and content of cell constitutive compounds detected upon specific 60 

staining procedures (e.g., nucleic acids) (Shapiro, 2005).  61 

Numerous studies provided algorithms that automatically generate approximated gates to 62 

distinguish two or more cytometric groups in univariate and bivariate cytograms for a 63 

smoother interpretation of cytometric datasets (Aghaeepour et al., 2013; Hahne et al., 2009; 64 

Pyne et al., 2009; Verschoor et al., 2015). The cytometric-fingerprinting similarity among 65 

samples can be assessed and indicated through specific deviation plots and heat maps (Hsiao 66 

et al., 2016; Rogers and Holyst, 2009). However, gating and deconvolution procedures have 67 

found standardized procedures mainly for clinical diagnostic applications (Chattopadhyay and 68 

Roederer, 2012; Mittag and Tárnok, 2009; Perfetto et al., 2006).  69 

Such procedures are fraught with failure when exploring cytometric profiles of environmental 70 

microbial communities, since the cytometric description of a natural system can be far more 71 

puzzled than that of a clinical specimen (Hyrkas et al., 2015; Koch et al., 2013b). The aquatic 72 

microbial communities comprise large populations of phylogenetically and phenotypically 73 
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dissimilar cells, whose structural and cytometric dynamics depend on their specific metabolic 74 

preferences and abilities to cope with local environmental conditions (Koch et al., 2014). 75 

Moreover, dispersal of microorganisms among communities (e.g., passive movements), 76 

species sorting (e.g., selection of species within the local pool) and biotic interactions (e.g., 77 

resource competition, grazing activity, prey-predator balance) may fundamentally affect the 78 

community structure and assembly processes (Shade et al., 2012).  79 

Natural abiotic ranges and gradients were reported to determine the cytometric fingerprinting 80 

of local communities within a given water mass at different temporal and spatial scale 81 

(Schiaffino et al., 2013; Van Wambeke et al., 2011). Moreover, a large body of literature 82 

reported a high level of analysis at log-scales to deal with the cytometric complexity of 83 

environmental samples, such as those from marine, freshwater and groundwater systems 84 

(Amalfitano et al., 2014; Boi et al., 2016; Vila-costa et al., 2012). 85 

Given such structural and functional complexity, cytometric fingerprints may provide 86 

information on structural dynamics of microbial communities, by detecting the modifications 87 

of scatter and fluorescence signals of recurrent localized cytometric subgroups. Although 88 

disregarding a direct taxonomic sense, localization and signal intensities of cytometric 89 

subgroups have been used to define the cytometric profile of samples, which can be then 90 

compared to others from the same system. This approach can be especially effective to assess 91 

structural dynamics of microbial communities in highly dynamic systems such as flowing 92 

waters, which receive inputs from tributaries of distinct characteristics to that of the main 93 

stem. When waters flows directionally, each section along the hydrologic continuum acts as 94 

both recipient and source of waters with definite physical, chemical and biological 95 

characteristics (Nelson et al., 2009). The mass transport and the rate of external inputs to the 96 

recipient volume determine the intensity of the mass effects and the residence time available 97 

for microbial life processes (Niño-García et al., 2016).  98 
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By disregarding external inputs and stressors, it is assumable that the water network in a river 99 

system behaves as a passive corridor, particularly at high flow velocities and over short 100 

distances (Butturini et al., 2016), with the aquatic microbial community showing preserved 101 

structural traits. In such conditions, the cytometric fingerprinting might be also recurrent.  102 

Here, we provide a methodological procedure suitable to deconvolve cytometric bivariate 103 

datasets into n subjacent subgroups. Specifically, we tested a method for processing 104 

microbiological patterns in the headwaters of a Mediterranean river, assuming that significant 105 

external water inputs may potentially affect community structure and, thus, the cytometric 106 

profiles along the river continuum.  107 

 108 

Methods 109 

Study site and sampling 110 

River waters were sampled during a morning survey from the upstream area of the River 111 

Tordera (Barcelona, Spain), approximately every 3 km from its natural spring to the coastline. 112 

The anthropic impact is relatively low since only small urban settlements are located within 113 

the study area. Thus, the river flows almost unimpacted for about 20 Km, until the outflow of 114 

a small Waste Water Treatment Plant (WWTP) reaches the main stem (Freixa et al., 2016). 115 

We collected five samples from the river before the WWTP outflow (T1, T2, T3, T4, T5), the 116 

WWTP waters before the conjunction with the river (A1) and the river waters after the 117 

WWTP outflow (T6). All samples were immediately fixed (2% formaldehyde, final 118 

concentration). 119 

 120 

Flow cytometry and cytograms 121 

The aquatic microbial community was characterized within one week from sampling by using 122 

the Flow Cytometer A50-micro (Apogee Flow System, Hertfordshire, England) equipped 123 

with a solid-state laser set at 20 mV and tuned to an excitation wavelength of 488 nm. The 124 
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volumetric absolute counting was carried out on fixed samples, stained with SYBR Green I 125 

(1:10000 dilution; Molecular Probes, Invitrogen) for 10 min in the dark at room temperature. 126 

The light scattering signals (forward and side scatters) and the green fluorescence (530/30 127 

nm) were acquired for the single cell characterization. Thresholding was carried out using the 128 

green channel. Samples were run at low flow rates to keep the number of events below 1000 129 

events/s (Gasol and Moran, 2015). The total number of prokaryotes was determined by their 130 

signatures in a plot of the side scatter vs the green fluorescence. The intensity of green 131 

fluorescence emitted by SYBR-positive cells allowed for the discrimination among cell 132 

groups exhibiting different nucleic acid content and morphology. The instrumental settings 133 

were kept the same for all samples in order to achieve comparable data (Prest et al., 2013). 134 

The Apogee Histogram Software (v89.0) was used for data handling and visualization. A 135 

preliminary gating was applied to distinguish the single-celled prokaryotic community from 136 

background caused by suspended abiotic particulate, cells in aggregates and electronic noise. 137 

This step was applied to all samples during the data acquisition in a cytogram of SSC versus 138 

Green fluorescence, in accordance with previous published protocols (Gasol and Moran, 139 

2015). The microbial community at each site was then represented in a plot of FSC vs Green 140 

fluorescence at the image resolution of 1024x1024 pixels. For each sample, the data matrix of 141 

the two variables was exported (.csv files) and deconvolved by the methodological approach 142 

described below. 143 

 144 

Deconvolution approach and model description 145 

According to the Finite Distribution mixture Modelling (FDM), the complex surface f(x,y) of a 146 

bivariate cytogram (i.e., Sybr Green fluorescence vs forward scatter) is described as the sum 147 

of n subjacent peaks (eq. 1): 148 

                               
1

),(),( 



n

i
iyxyx cf     (1) 149 
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Each peak represents a subgroup that fits a predefined probabilistic density functions (c(x,y)). 150 

Here, an asymmetric parameter (r) was incorporated into the Gaussian PDF probability model 151 

(Fruhwirth-Schnatter, 2006) in order to cope with asymmetries and long tails (Kato et al., 152 

2002) (eq. 2): 153 
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     (2)                       154 

If the skewness ri (rix, riy) is equal to the unity, equation 2 is equivalent to a Gaussian 155 

distribution defined by its mean i (ix, iy), deviation i (ix, iy), and height ai  (aix, aiy).  156 

A two-steps procedure was performed to estimate the unknown parameters of recurrent peaks 157 

(i, i,, ai  and ri), and to cluster those peaks into subgroups of events with a direct 158 

quantification of their density.  159 

In step A, a surface analysis was performed according to the Nelder-Mead optimisation 160 

algorithm to detect and locate the position of local maxima (Ln = {1, 2, 3, n}) in the 161 

f(xy), and the position of local minima of the differential Laplacian operator of f(xy) (2f) 162 

(Ganzha and Vorozhtsov, 1996; Horst and Pardalos, 2013). To avoid overestimating the 163 

number (n) of potential subjacent peaks (Ln), we first extracted all i distinct subsets of 164 

Ln, (given i=2n-1), then we run equations 1 and 2 for each subset i.  165 

In step B, the optimal number of peaks (Ln) was found at the lowest value of the 166 

Bayesian Information Criterion (BIC) (Schwarz, 1978). To avoid meaningless results, 167 

all selected peaks must have a positive height (ai > 0). 168 

Steps A and B are detailed below. 169 

The analysis of f(xy) was performed to detect the position of potential peaks in a density plot. 170 

This step combines two search strategies: 171 

a) Detection of global and local maxima in the f(xy): 172 

 173 
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Maxf(xy)={a,,b,,c,...,,n}      (3) 174 

 175 

b)  Detection of local minima (’i) of the differential Laplacian operator of f(xy) (2f): 176 

 177 

Min 2f= {’a, ’b, ’c,…, ’n }      (4) 178 

 179 

2f describes the sum of the second derivative of f(xy) with respect to x and y (Ganzha and 180 

Vorozhtsov, 1996). It was used to detect shoulders, edges and non-evident peaks in complex 181 

surfaces (Butturini and Ejarque, 2013).  182 

The search for maxima in f(xy) and minima in2f was performed with the Nelder-Mead 183 

optimization algorithm under constrained conditions (Horst and Pardalos, 2013). The 184 

sensitivity of this algorithm can be increased or reduced by modifying selected parameters 185 

(namely: the contraction ratio, the expansion ratio, the reflection ratio and the shrink ratio). In 186 

our application, we used the standard values for these parameters (0.5, 2, 1, and 0.5 187 

respectively) (Nelder et al., 1964) as they guaranteed an exhaustive search of main local 188 

minima in 2f into a relatively short computational time. The2f operator is sensible to edges. 189 

Therefore, the minimum in 2f surface found in the proximity perimeter of the cytogram were 190 

omitted. Once Max f(xy) and Min2f were obtained, results were joined to sort all distinct 191 

coordinates that appear in the two lists: 192 

 193 

Ln = Max f(xy) U Min 2 f        (5) 194 

 195 

In which Ln is the list of the putative n peaks in f(x,y).  196 

In complex surfaces such those of cytograms, the Nelder-Mead algorithm can be trapped in 197 

local minima (or maxima), which are very close to each other and presumably identify the 198 
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same peak. From a statistical perspective, it was assumed that these neighbour peaks fall into 199 

the same cluster. In this case, it is necessary to merge them into a single coordinate. The 200 

search for clusters was performed according to the fixed radius near neighbour approach 201 

(Bentley et al., 1977). At each detected coordinate (i), a circular influence area (IAi) of radius 202 

R is associated (IAi= R2), centred at the point i. The value of the radius R was the same for 203 

all detected i and fixed to set the IA value to 7.5% of the planar area of the surface matrix. 204 

The coordinates within the area IAi of i were automatically grouped into the same cluster. 205 

Two criteria were established to assign a coordinate to each cluster: 206 

Criterion # 1 (applicable for the equations 3 and 5): the coordinate with the highest maxima 207 

was selected, the rest was discarded. 208 

Criterion # 2 (applicable for the equation 4): the coordinate with the lowest 2f was selected, 209 

the rest was discarded. 210 

Each cytogram was converted into an n x n array (bins of 5% of width) to obtain the surface 211 

f(x,y) and its 2f. When ignoring a priori the number cytometric subgroups, Step A identifies a 212 

set of n potential peaks and their coordinates (Ln). In order to obtain the optimal number of 213 

subgroups, we adopted the Bayesian Information Criterion (BIC) descriptor: 214 

 215 

BICi= -2 ln (MLi)+ki ln (O)       (6) 216 

 217 

Where MLi is the maximized likelihood of the model associated to the subset i, ki the number 218 

of input parameters (i.e. number of element in the subset i), and O the sample size. The 219 

model with the smallest BIC value was selected as the most representative one (Schwarz, 220 

1978). This procedure first requires the identification of all i distinct subsets of Ln:  221 

 222 

P(Ln)={{ 1}1,{2}2,{3}3,{ 1, 2} 4……. {1, 2, 3,…, n}i}   (7) 223 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 11, 2016. ; https://doi.org/10.1101/063164doi: bioRxiv preprint 

https://doi.org/10.1101/063164
http://creativecommons.org/licenses/by/4.0/


 10 

 224 

Where i=2n-1  225 

 226 

Successively, FDM (see equations 1 and 2) is run for each i subset, and the optimal 227 

model (i.e., the one with the optimal number of subgroups) was selected by relying on 228 

the lowest BIC value. 229 

Figures 2 and 3 describes the entire process for the cytogram T6. In this cytogram the Nelder-230 

Mead algorithm detected 3 local maxima in the f(x,y) (Fig. 1a) and 7 local minima in the 2f 231 

(Fig. 1b). According to eq. 5, Ln represented a list of 10 potential peaks (n=10) and 210-1 = 232 

1023 subsets were generated (Fig. 2). The model with the lowest BIC values was the one with 233 

8 peaks (BIC=5469, r2=0.978, Fig. 2). The model output with the higher r2 (0.979) was 234 

discarded because of the higher BIC value (5522). This process was executed for all 235 

cytograms in the data set. 236 

A hyper-scatterplot was created by including all BIC selected peaks (µi) which were 237 

retrieved from the bivariate cytograms in the dataset. 238 

The Voronoi diagram tessellation approach was adopted to cluster all BIC selected 239 

peaks into adjacent polygons with boundaries outlined by the Delaunay triangulation 240 

algorithm (Aurenhammer and Klein, 2000). All events that lie within a polygon are 241 

assigned to the centre of that polygon, and the number of events lying within each 242 

polygon was converted into cell concentration values. 243 

 244 

Statistical analyses 245 

A hierarchical clustering produces, based on Ward’s method and Euclidean distance, was 246 

used to show how sampling points were clustered according to percentages of cytometric 247 

groups over the total events in the cytogram. The overall significance of such difference was 248 

tested by the non-parametric Kolmogorov-Smirnov test to give information if the densities of 249 
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different cytometric groups change differently along the river system (difference in mean and 250 

if this depend on site). The multi-group SIMilarity PERcentage test (SIMPER), using the 251 

Bray-Curtis similarity measure (multiplied by 100), was run to assess which cytometric 252 

clusters were primarily responsible for the observe difference between groups of sample and 253 

the average dissimilarity among sites and (Clarke, 1993). 254 

 255 

Results and discussion 256 

In line with the consolidated approach for analyzing planktonic prokaryotes across a wide 257 

range of natural and engineered water systems (Bouvier et al., 2007), two major cytometric 258 

populations, namely cells with low nucleic acid content (LNA cells) and cells with high 259 

nucleic acid content (HNA cells), could be discriminated from our river continuum samples 260 

without further data processing and counted by using fixed polygons. As expected, HNA cells 261 

were relatively brighter in fluorescence and bigger in size than LNA cells (Fig. 3). In a 262 

previous study, drinking waters were distinguishable from one another based on the 263 

percentage of HNA cells and the direct comparison of their green fluorescence histograms 264 

(Prest et al., 2013).  265 

Our methodological approach allowed deconvolving five major recurrent subgroups within 266 

either LNA (clusters 1-4 and 10) or HNA (clusters 5-9) cytometric populations. Samples form 267 

T2 and T4 retained the lowest and larger number of subgroups, respectively (2 LNA+ 4 HNA 268 

and 4 LNA + 5 HNA). The identified peaks within the Voronoi tessellation poligons, applied 269 

for cell counting, are shown in fig. 4.  270 

The dynamic of each identified cytometric subgroup and the evolution of the microbial 271 

community structure as a whole were assessable along the hydrologic continuum at such finer 272 

scale analysis level to provide a basis for a variety of existing statistical analysis. Hierarchical 273 

clustering offered an indication of the cytometric community similarities among sampling 274 

sites (Fig. 5). The cytometric community profiles were cross-compared (Table 1) and the 275 
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community changes over-imposed by an external water input (i.e., the outlet of a wastewater 276 

treatment plant) were statistically endorsed. Moreover, clusters #3 and #8, belonging to LNA 277 

and HNA respectively, were recognized as those groups mostly contributing to the overall 278 

average dissimilarity among sites (i.e., SIMPER test). In this study, the cytometric fingerprint 279 

appeared sensitive to detect the complex microbial community dynamics of flowing waters, 280 

since expected changes due to tributary inputs were clearly detected. 281 

Deconvolution models represent a way to deal with the complexity of water samples from 282 

natural and engineered water systems, allowing for an understanding of microbial interactions 283 

and structuring dynamics not described by the traditional approaches (Koch et al., 2013a).  284 

A key perspective of the proposed deconvolution approach is the ability to discern recurrent 285 

subgroups of cells within complex mixtures, without an a priori knowledge of which cells are 286 

which. It is noteworthy that a further advanced step of cell sorting can be potentially 287 

performed to provide gate-specific phylogenetic information according to selected 288 

fluorescence properties and phenotypes of major cytometric populations (Schattenhofer et al., 289 

2011; Vila-Costa et al., 2012). 290 

Thousands of particles and microbial cells within a wide size range (from virus-like particles 291 

to prokaryotes and small protists) can be analyzed per second by flow cytometry, thus 292 

providing a direct quantification of their abundance and morphological traits within minutes 293 

from sampling (Van Nevel et al., 2013). A prototype machine for the automatic and 294 

programmable staining of aquatic bacteria was successfully tested on-line and in real time to 295 

monitor the quality of drinking water at the household tap (Besmer et al., 2014). 296 

Owing to high versatility and potential for rapid analysis of large numbers of cells 297 

individually, specific benefits of flow cytometry will also accrue from novel bioinformatics 298 

and statistical approaches to analyze the multiparametric dataset, thus leading to significant 299 

and promising technological advancements in innovating the field of real time control of 300 

water quality. 301 
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 302 

Conclusions 303 

The application of flow cytometry to freshwater samples collected along a river continuum 304 

allowed discriminating diverse and recurrent subgroups of aquatic microorganisms by their 305 

constitutive traits at the single-cell level. Our data suggest that a flow cytometric approach 306 

could be suitable to detect changes of single-cell subgroups, thus serving as a candidate tool 307 

for water quality assessments in complex environmental settings. 308 
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Table 1. 462 

Average dissimilarity between sites computed by SIMPER test (lower part of the matrix), and 463 

related statistical diversity assessed by the non-parametric Kolmogorov-Smirnov test (upper 464 

part of the matrix). 465 

 466 

SIMPER \ KS p T1 T2 T3 T4 T5 T6 A1 

T1 - 0.975 0.313 0.975 0.313 0.031 0.000 

T2 16.4 - 0.975 0.675 0.675 0.031 0.000 

T3 23.3 8.2 - 0.313 0.675 0.031 0.000 

T4 12.0 20.0 23.3 - 0.111 0.007 0.000 

T5 29.4 15.2 7.8 29.6 - 0.031 0.000 

T6 62.2 52.2 46.9 63.0 42.2 - 0.002 

A1 95.4 93.9 93.0 95.5 92.1 81.7 - 

 467 

468 
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Figure legends 469 

Figure 1. 470 

Quantile contour plot (f(x,y)) of the model cytogram (T6) used to describe the deconvolution  471 

process (a) and its associate Laplacian (2f ) (b). Black arrows indicate the position of the 472 

local maxima in f(x,y). Red arrows indicate the position of the local minima in 2f . According 473 

to eq. 5, ten relevant peaks were detected in this cytogram from sample T6 (see fig. 3). 474 

 475 

Figure 2. Visual example of the optimal model selection process. This example refers to the 476 

sample T6 with ten potential peaks (n=10) (see fig 3). Panel a shows the relationship between 477 

BIC values and number of peaks obtained executing the FDM z(x,y) (eqs. 1 and 2) for all 478 

possible subsets i of the ten potential peaks, where i=210-1=1023. Gray disks and black dots 479 

discern modeled cytograms adjust with r2 lower and higher than 0.95 respectively. Panel b 480 

shows the contour plots of four modelled cytograms with a “poor” adjust (i); a good not 481 

“optimal” adjust (ii); the “optimal” adjust (i.e., lower BIC values, iii) and overfitted adjust 482 

(i.e. larger number of peaks, iv). Large white and small black dots in contours plots show 483 

location of potential and selected peaks respectively. 484 

 485 

Figure 3. 486 

Representative cytograms of freshwaters sampled form the upstream area of the River 487 

Tordera (Barcelona, Spain). Curved arrows indicate the directional connections between 488 

sampling sites along the hydrologic continuum. The green fluorescent signals (Sybr Green I) 489 

were used to discriminate two major populations of cells with low and high content of nucleic 490 

acids (LNA and HNA, respectively). Small and large sized cells were distinguished according 491 

to forward scatter signals. 492 

 493 
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Figure 4. The Voronoi tessellation mask was calculated considering all recurrent peaks and 494 

applied back to each cytogram. The number of events lying within each polygon was 495 

converted into cell concentration values. 496 

 497 

Figure 5. 498 

Microbial community structure as assessed by the proposed deconvolution model. a) Cell 499 

abundance within each polygon identified by the Voronoi tessellation mask. b) Relative 500 

percentages and subgroup distribution within the LNA and HNA cytometric populations. 501 

Subgroups were ordered according to their average green fluorescence. c) Hydrologically 502 

connected samples were joined according to their cytometric profile by the Ward’s clustering 503 

method such that increase in within-group variance is minimized. 504 

505 
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Figure 4.  516 
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