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SUMMARY 
 
A number of high-throughput transcriptase drop-off 
assays have recently been developed to probe post-
transcriptional dynamics of RNA-protein interaction, 
RNA structure, and post-transcriptional modifications. 
Although these assays survey a diverse set of 
‘epitranscriptomic’ marks, they share methodological 
similarities and as such their interpretation is predicated 
on addressing similar computational challenges. Among 
these, a key question is how to learn isoform-specific 
chemical modification profiles in the face of complex 
read multi-mapping. In this paper, we propose PROBer, 
the first rigorous statistical model to handle these 
challenges for a general set of sequencing-based 
‘toeprinting’ assays. 
 
 
INTRODUCTION 
 
While much of the control of gene expression occurs via 
transcriptional regulation, it is becoming increasingly 
clear that post-transcriptional regulation also plays a key 
role in modulating expression products (Schwanhäusser 
et al., 2011). Several mechanisms contribute to this 
phenomenon, including covalent posttranscriptional 
chemical modification of RNA molecules (Roundtree 
and He, 2016), protein binding and the assembly of 
higher-order ribonucleoprotein complexes (Glisovic et 
al., 2008), and the ability of RNA molecules to fold into 
and switch between intricate 2- and 3- dimensional folds 
(Mortimer et al., 2014; Schwanhäusser et al., 2011; Wan 
et al., 2011). Understanding both the expression level 
and the ‘meta-information’ (post-transcriptional marks) 
associated with a given transcript can shed light not 
only on the functions that an individual sequence 
performs, but also on the cellular pathways that it 
participates in and controls.  

Recent advances in massively parallel DNA 
sequencing have enabled the transcriptome-wide 
investigation of several ‘epitranscriptomic’ layers. 
Although the specific of the assays differ depending on 
the specific chemicals used, there are several that share 

a common theme. We term these experiments 
‘toeprinting’ (Hartz et al., 1988) by high-throughput 
sequencing (Figure 1A) as they share a common 
workflow: chemically modifying RNAs to encode a 
signal of interest, decoding these chemical signals by 
reverse transcriptase drop-off, and lastly, sequencing 
and mapping the resulting cDNA toeprints to recover 
the chemical modification ‘signatures’.  

Within this framework, the iCLIP protocol (König 
et al., 2010) explores RNA-protein interactions, SHAPE 
and DMS probing (Ding et al., 2014; Rouskin et al., 
2014; Spitale et al., 2015; Talkish et al., 2014) explore 
RNA secondary structure   by using selective chemical 
probes to modify and ‘mark’ unpaired flexible 
nucleotides, and Pseudo-seq (Carlile et al., 2014) detects 
RNA pseudouridylation  by utilizing a reagent which 
specifically forms adducts at pseudouridine sites (Ψs). 
In each of these experiments, the upstream chemical 
modification is widely variable, but the library 
preparation and sequencing techniques are essentially 
the same: reverse transcription in a manner where 
cDNAs preferentially terminate at the sites of chemical 
modification, adaptor ligation to the site of reverse 
transcriptase drop-off, and PCR amplification followed 
by sequencing of the cDNA resulting library. 
Additionally, the number of characterizable 
epitranscriptomic marks is ever expanding, as are the 
associated chemical toolkits. As a result, ‘toeprinting’ 
by high-throughput sequencing is becoming an essential 
tool for probing post-transcriptional regulation. 

A key step in analyzing ‘toeprinting’ experiments is 
to accurately learn reverse transcriptase drop-off 
profiles from the sequence data. These profiles are 
subsequently used to infer, for example, sequence 
motifs, secondary structure predictions, or sites of 
posttranscriptional chemical modification. Data 
produced in the experiments potentially contain multiple 
layers of valuable information: reads contain 
information about both modification at sites as well as 
about the identity and abundance of RNA transcripts. 
The ability to make full use of this information becomes 
the key for accurate estimation of drop-off profiles and 
requires addressing associated bioinformatics challenges 
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including the conflation of read counts by reverse 
transcriptase noise, variable transcript abundances, and 
read mapping ambiguity. However, to date, the 
proposed solutions to these problems have mainly 
consisted of ad-hoc heuristics rather than statistical 
modeling. 

 
RESULTS 
 
Bioinformatics challenges 
Accurately determining the transcript abundances and 
drop-off profiles in ‘toeprinting’ experiments is 
complicated by several factors (Figure 1B) (Aviran and 
Pachter, 2014). Such experiments face a problem that is 
fundamental in RNA-seq: reads align ambiguously to 
multiple transcripts, and appropriately handling 
ambiguously mapped reads (which can represent a 
significant proportion of alignable reads in such 
experiments, see Table S1 and S2) is imperative to 
correctly learning transcript abundances (Bray et al., 
2016; Li and Dewey, 2011; Li et al., 2010; Roberts and 
Pachter, 2013; Trapnell et al., 2010). Incorrectly 
allocating multi-mapping reads adversely affects the 
estimated abundances of not only the transcripts that the 
reads were misallocated to/from, but also abundance 
estimates of related transcripts.  

In toeprinting experiments, the multi-mapping 
problem is further exacerbated by the fact that accurate 
estimation of the RNA chemical modification 
probabilities depends on both correctly allocating multi-
mapped reads, and deconvolving chemical modification 
profiles from adduct-independent noisy RT drop-off. 
All of these factors are inter-related and poor estimation 
of any one of them may significantly skew estimates of 
the others. Yet all of these factors must be accounted for 
to quantitative estimate modification rates. 
 
Our solution: the PROBer software 
To address the computational challenges associated to 
the interpretation and analysis of toeprinting assays we 
have developed a statistically rigorous approach that 
serves the dual purpose of unifying these assays via a 
shared computational framework, while providing an 
approach to inference that is robust to small variances in 
experimental protocol. Our methods are implemented in 
software, termed PROBer, that is based on a statistical 
model to jointly infer transcript abundance and 
modification probabilities, as well as several other 
parameters (see Experimental Procedures and Figure 
S1A) and was developed by building on previous work 
on RNA-Seq (Bray et al., 2016; Li et al., 2010; Li and 
Dewey, 2011; Roberts and Pachter, 2013; Trapnell et 
al., 2010), as well as models for simpler single-
transcript structure-probing SHAPE-seq experiments 
(Aviran et al., 2011a; 2011b). The PROBer model 
assumes that the input data consists of raw reads (either 

single- or paired- end) obtained separately from a 
chemically treated sample, containing information about 
modification probabilities, and from a mock-treated 
control, informing about noise parameters. It assumes 
that cDNA fragments were generated by first selecting a 
transcript from the transcriptome (according to its 
abundance and length), randomly priming (or 
fragmenting) that transcript, and primer extending one 
nucleotide at a time. At each nucleotide encountered by 
the reverse transcriptase (RT) in this process, there is 
some probability of terminating the reverse 
transcription, due to modification, RT noise, primer 
collision, or encountering the end of the template 
fragment. A cDNA fragment generated by this process 
is observed as sequenced read if it passes a size-
selection filter, which is dependent on the fragment 
length. From this the extent to which all the parameters 
in the experiment are inter-related becomes clear. 

We implemented an Expectation-Maximization 
algorithm (Dempster et al., 1977) in PROBer to infer 
the parameters of the model (see Experimental 
Procedures). As in many cases it is of interest to have 
transcript-specific modification profiles rather than 
genes; indeed for structure probing experiments it is 
meaningless to consider the modification profiles of a 
gene, so we modeled modification at the isoform level. 
The PROBer workflow, shown schematically in Figure 
1C, begins with a set of reads alignments (separately for 
the chemically-treated experiment and the untreated 
control). Starting with initial parameter estimates, reads 
are allocated to transcripts based on both abundance and 
structure parameters. The allocated read ‘pseudocounts’ 
are then used to estimate maximum a posterior (MAP) 
modification probabilities as well as RT noise, size-
selection terms and maximum-likelihood estimates 
(MLEs) of transcript abundances. These steps are 
repeated until convergence.  
 
PROBer outperforms other methods in profiling 
RNA structures 
To test the accuracy of PROBer on structure-probing 
experiments we investigated its performance on both 
simulated and experimental data. In simulations, we 
generated a dataset in a manner consistent with the 
chemical mapping protocol (see Experimental 
Procedures) and attempted to recover parameter 
estimates from these simulated reads alone. As shown in 
Figure 2A, at a global scale, PROBer yielded 
significantly improved parameter estimates when 
compared with other approaches. These results were 
representative of multiple simulations (Figure S3C) and 
this improvement was observed across a range of 
expression levels. In addition, because PROBer takes 
structure information into consideration, it also 
estimates transcript abundances better than popular 
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RNA-Seq quantification tools that are not aware of 
RNA structures (Figure S4). 

PROBer’s performance at recovering secondary 
structure constraints for transcripts with moderate 
expression levels (between 100 and 1000 TPM) vastly 
improves on alternative methods at the highest 
expression levels (greater than 10,000 TPM). This result 
indicates that PROBer requires approximately 90% less 
data (when compared to ad hoc methods) to produce 
structural estimates of equal or better accuracy. As 
transcript abundances follow an exponential 
distribution, a moderate improvement in the range of 
expression levels that yields useful structural constraints 
translates to a large increase in the number of transcripts 
that can be probed. Thus, PROBer allows the 
experimenter to access a larger fraction of the 
transcriptome at the same sequencing depth and 
experimental cost. 

As these simulations were based on the same 
generative model for structure probing experiments that 
the PROBer software uses, we were concerned that our 
protocol would artificially inflate the apparent 
performance of PROBer. We therefore included in our 
simulated transcriptome three additional transcripts for 
which chemical modification profiles have been 
independently measured by SHAPE-seq (Aviran et al., 
2011b; Lucks et al., 2011). These transcripts (see 
Experimental Procedures) served as a “digital spike-in”, 
allowing us to verify that our simulated experiments 
were not biased by the simulation parameters. The 
accuracy of PROBer was confirmed by these digital 
spike-in experiments (Table S3). 

We further tested whether this improvement was 
also evident in real datasets by examining modification 
probability estimates for ribosomal RNAs, which have 
well-characterized structures (Cannone et al., 2002). We 
calculated receiver operating characteristic (ROC) 
curves on a variety of structure-probing data sets (Ding 
et al., 2014; Spitale et al., 2015; Talkish et al., 2014) 
(Figure S5). These data sets were from different 
organisms (Arabidopsis, yeast, or mouse), used different 
chemical agents (DMS or NAI-N3), and adopted 
different priming methods (random priming or 
fragmentation). While performing this analysis we 
observed that all methods tested showed similar area 
under ROC curve (AUROC) values, indicating that 
DMS reactivity might not be captured by the consensus 
secondary structure ground-truth. 

 
PROBer identifies more true Ψs than other methods 
As the lack of other experimentally validated secondary 
structures prevented us from further studying the 
performance of PROBer in structure profiling, we 
therefore explored whether it could be used to quantify 
pseudouridylation profiles produced by CMCT 
modification of RNA. As this experimental method 

performs the RNA modification reaction in purified 
(and likely denatured / unfolded) RNA, we did not 
expect solvent accessibility to confound the chemical 
modification signal. We analyzed Pseudo-seq data from 
(Carlile et al., 2014) and used all known Ψ sites in 
ribosomal and small nuclear RNAs as a ground truth, to 
which we compared PROBer estimated modification 
profiles. Precision-recall curve analysis of these data 
revealed that PROBer outperforms existing ad hoc 
methods for predicting Ψ. Importantly, PROBer was 
able to detect an experimentally validated pseudo-U site 
(m1acp3Ψ1191 in 18S rRNA) that was not detected by 
ad hoc approaches (Figure S6). This indicates that 
PROBer is capable of capturing biologically relevant 
information that would be otherwise lost. 
 
PROBer detects more putative protein binding sites 
with canonical motifs  
Next, we tested PROBer on iCLIP data. The iCLIP 
experiment encodes protein binding information in a 
toeprinting-type manner by crosslinking RNA to 
proteins and degrading the crosslinked protein by 
proteolysis. This leaves a short peptide fragment 
attached to the site on the RNA where it was 
crosslinked, and that can therefore cause RT drop-off.  

The iCLIP protocol differs from other ‘toeprinting’ 
protocols in two aspects: First, the RNase degradation 
process produces fragments that are only around the 
crosslink sites. This results in sparse iCLIP read 
alignment to the genome. Second, it does not include a 
sequenced control that can help reduce background 
noise. Therefore, PROBer uses a simpler model (Figure 
S1B) to allocate ambiguously mapped iCLIP reads, 
which compose a significant portion of iCLIP data 
(Table S2). 

We reanalyzed one set of iCLIP data generated by 
Nostrand et al. (Van Nostrand et al., 2016), which 
investigated the transcriptome-wide binding preferences 
for the RNA regulating protein RBFOX2. Importantly, 
the UGCAUG binding motif of this protein has been 
validated in vitro, providing an independent ground 
truth for our evaluation.  

As expected, our analysis of this dataset with 
PROBer yielded the sequence motif that was previously 
reported, indicating that the PROBer model can indeed 
handle iCLIP data as well. More importantly, we found 
that PROBer can detect extra binding sites with the 
exact sequence motif, which could not be detected if we 
restrict to uniquely mapping reads. Figure 3A gives an 
example in protein-coding gene NUP133. The detected 
binding site is located at the intronic region downstream 
of exon 15 of NUP133, which implies RBFOX2 may 
promote the inclusion of this exon in the mature 
transcripts (Yeo et al., 2009). Note that this significantly 
enriched binding site cannot be detected using only 
uniquely mapping reads. We compared PROBer with a 
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baseline method that distributes multi-mapping reads 
evenly to all aligned locations. Superior performance of 
PROBer over the baseline method (Figure 3C) 
demonstrated the power of PROBer’s statistically sound 
iCLIP model. Our results with the RNA binding protein 
RBFOX2 clearly demonstrate that multi-mapping iCLIP 
reads contain valuable information and that the common 
practice of restricting analysis to unique mappings is 
suboptimal.	
 
DISCUSSION 
 
We present PROBer, a statistically rigorous approach to 
quantify chemical reactivity profiles from 
transcriptome-wide sequencing data. We have evaluated 
PROBer’s performance with three diverse chemical 
modification protocols, as well as a variety of library 
preparation protocols. In each of these cases, PROBer 
outperformed ad hoc methods in analysis of the data. As 
it is becoming clear that a systems-wide view of such 
post-transcriptional regulation processes is highly 
informative, we believe that multiple of these chemical 
modification / toeprinting protocols will be performed 
within the same study. As such a unified pipeline such 
as PROBer is even more valuable. 

PROBer is freely available with open-source at 
http://pachterlab.github.io/PROBer.  All experiments 
can be replicated using the snakemake scripts at 
https://github.com/pachterlab/PROBer_paper_analysis. 
 
EXPERIMENTAL PROCEDURES 
 
Transcript and genome references  
Arabidopsis thaliana. We downloaded the latest 
genome and gene annotation (TAIR10) from The 
Arabidopsis Information Resource. Following Ding et 
al. (Ding et al., 2014), we extracted every mRNA, 
rRNA, tRNA, ncRNA, snRNA, miRNA, and snoRNA 
annotated in the GFF3 file. We also discovered and thus 
removed 568 duplicate sequences. In addition, we found 
two copies of 18S rRNA with minor differences and no 
25S rRNA (but a subsequence of it, AT2G01021.1) in 
the extracted sequences. Thus, we added 25S rRNA 
sequence from the RNA structure database (Cannone et 
al., 2002) and removed one copy of 18S rRNA, 
AT3G41768.1, and the 25S subsequence, 
AT2G01021.1. The final reference consists of 36,264 
transcripts in total. 

Saccharomyces cerevisiae. We downloaded the 
genome (R64-1-1) and gene annotation (build R64-1-
1.84) from Ensembl. After removing duplicate 
sequences, the final reference consists of 6,841 
transcripts. 

Mus musculus. We downloaded the genome 
(GRCm38) and gene annotation (build GRCm38.74) 
from Ensembl. The annotation contains no 18S or 25S 

rRNAs, and 353 variants of 5S rRNA. We added 18S 
sequence from the RNA structure database and removed 
all but one variant of 5S rRNA. We could not add 25S 
sequence because it is not included in the RNA structure 
database (Cannone et al., 2002). After removing 
duplicate sequences, the final reference consists of 
93,362 transcripts. 

Homo sapiens. We downloaded the human genome 
(GRCh38) from Ensembl. 

 
Sequencing data 
Structure probing data from (Ding et al., 2014) were 
downloaded from Sequence Read Archive 
(SRP027216). This data set contains two biological 
replicates, which were pooled together. We pre-
processed the data according to (Ding et al., 2014) 
which includes removing ssDNA linker and trimming 
adapter sequence using cutadapt (Martin, 2011) (v1.10).  
The pre-processed data contain 117,242,295 and 
81,596,350 single-end reads in modification-treated and 
mock-treated experiments respectively. Structure 
probing data from (Talkish et al., 2014) were 
downloaded from Sequence Read Archive 
(SRP029192). Only wild-type data were used and the 
two biological replicates were pooled together. Data 
were pre-processed following (Talkish et al., 2014). The 
pre-processed data contain 7,729,251 and 9,199,721 
single-end reads in modification-treated and mock-
treated experiments respectively. Structure probing data 
from (Spitale et al., 2015) were downloaded through 
Gene Expression Omnibus (GSE64169). The data 
volume in  (Spitale et al., 2015) precluded analysis of 
the entire dataset so we used only the first 100 million 
reads from biological replicate 2 of v6.5 mouse ES 
cells. We pre-processed these data by trimming 3’ 
adapters, removing PCR duplicates, and then removing 
unique molecular identifiers (UMI). Only reads with the 
same sequences and UMIs are considered as duplicates. 
The data we used consist of three conditions: mock-
treated, in vitro modification-treated, and in vivo 
modification-treated. After pre-processing, the three 
conditions contain 96,120,565, 23,455,089, and 
78,180,398 single-end reads respectively.  

Pseudo-seq data from (Carlile et al., 2014) were 
downloaded from Gene Expression Omnibus 
(GSE58200). Following advice of the authors, samples 
GSM1403085 and GSM1403086 were picked as mock-
treated experiments and samples GSM1403087 and 
GSM1403088 were picked as modification-treated 
experiments. Data were pre-processed as documented in 
(Carlile et al., 2014). The resulting pre-processed data 
contain 31,103,632 and 39,167,224 single-end reads in 
modification-treated and mock-treated experiments 
respectively. 

RBFOX2 iCLIP data from Nostrand et al. (Van 
Nostrand et al., 2016) were downloaded at Sequence 
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Read Archive. We only used one run of iCLIP data 
(SRR3147675). Data were pre-processed by trimming 
3’ adapters, removing PCR duplicates, and then 
removing UMIs. The pre-processed data contain 
18,724,388 single-end reads in total. 
 
PROBer’s generative probabilistic model  
We model sequencing-based ‘toeprinting’ experiments 
using a generative probabilistic model (Figure S3A). 
The key parameters that we model include the relative 
abundances for the set of transcripts in the sample, as 
well as modification probabilities, and RT noise 
probabilities for each site on a transcript. In order to 
reduce the number of parameters we have to estimate, 
we assume the abundances in the modification-treated 
experiment are the same as abundances in the mock-
treated experiment.  

To generate a read from the modification-treated 
experiment, we first pick a transcript at a rate 
proportional to the product of transcript abundance and 
length. We denote this rate by 𝛼𝑖. Then we choose the 
priming site uniformly across all valid priming sites in 
the transcript. We denote the total number of available 
priming sites by ℓ𝑖

′ . Once we have the priming site, 
reverse transcription starts. At each site 𝑗, there is a 
probability that RT stops due to either chemical 
modification (denoted by 𝛽𝑖𝑗) or background noises such 
as RT natural drop-off, primer collision or reaching the 
end of a fragment (denoted by 𝛾𝑖𝑗). Once the RT stops, a 
cDNA fragment is generated.  Thus, the probability of 
generating a cDNA fragment of length 𝑙, priming at 𝑗, 
and from transcript 𝑖 is  

 

𝛼𝑖 ⋅
1
ℓ𝑖
′ ⋅ 1 − 1 − 𝛽𝑖,𝑗!𝑙 1 − 𝛾𝑖,𝑗!𝑙 (1

𝑗!𝑙𝑝

𝑘!𝑗!𝑙!!
− 𝛽𝑖𝑘)(1 − 𝛾𝑖𝑘) 

 
The term 𝑙𝑝 in the above equation is the random primer 
length. In the Ding et al. protocol, this term is equal to 
6; however if RNA fragmentation-based protocols are 
used, this number would be 0. 

The next step is to decide if the obtained fragment 
passes the size selection. If not, this fragment will not be 
sequenced and therefore considered hidden. Otherwise, 
a sequence read will be produced according to our 
sequencing error model. Our model can generate either 
single-end or paired-end reads and allows both 
substitution and indel errors to occur during the 
sequencing step.  

To generate a read from the mock-treated 
experiment is similar, excepting that the chemical 
modification probabilities are not involved. Thus the 
probability of generating a similar cDNA fragment 
becomes 

𝛼𝑖 ⋅
1
ℓ𝑖
′ ⋅ 𝛾𝑖,𝑗!𝑙 (1 − 𝛾𝑖𝑘)

𝑗!!

𝑘!𝑗!𝑙!!

 

 
Our generative model is applicable to fragment-based 
probing protocols (Carlile et al., 2014; Rouskin et al., 
2014; Spitale et al., 2015; Talkish et al., 2014) as well. 
We just need to replace the assumption of uniform 
priming with the assumption of uniform fragmentation. 
For more details about our generative model, please 
refer to Supplemental Experimental Procedures, section 
2. 
 
Estimating PROBer parameters 
Our goal is to estimate toeprinting parameters and 
relative abundances in the sample. Toeprinting 
parameters include both modification probabilities (𝛽s) 
and RT noise probabilities (𝛾s) per transcript site. We 
obtain maximum likelihood (ML) estimates for 
transcript abundances. But for toeprinting parameters, 
we seek maximum a posteriori (MAP) estimates instead, 
because for most transcripts, we do not have enough 
coverage per site to obtain reliable ML estimates. To 
obtain MAP estimates, we introduce a Beta distribution 
for each structural parameter (either 𝛽 or 𝛾) as its prior. 
We tie the Beta distribution parameters together for all 
𝛽s and all 𝛾s respectively, and set them to 0.0001 by 
default. 

We have two types of hidden data. First, due to 
alignment ambiguity we cannot be sure about which 
transcript a read originates from; we can only infer a set 
of highly possible origins for the read using its 
alignments. Second, if a cDNA fragment does not pass 
the size selection, we cannot observe a read from it. For 
reasons explained in Supplemental Experimental 
Procedures, section 2.1, we only consider the first type 
of hidden data.  

We use the Expectation-Maximization (EM) 
algorithm (Dempster et al., 1977) to learn above model 
parameters. The workflow of our EM algorithm is 
shown in Figure 1C. In the E step, we interpolate the 
hidden data– the locations of multi-mapping read – 
given the estimated abundances and toeprinting 
parameters. In the M step, we calculate the ML and 
MAP estimates based on both the observed data and 
interpolated hidden data. The E and M steps are 
repeated until convergence. Supplementary Section 3 
provides a detailed discussion about our EM algorithm. 

 
PROBer’s iCLIP model 
Because iCLIP protocol does not have a sequenced 
control and iCLIP signals are sparse in the genome, 
PROBer only allocates multi-mapping reads for iCLIP 
data. For this reason, PROBer uses a simpler generative 
model (Figure S1B). To generate an iCLIP read, 
PROBer first picks a crosslink site and then generates 
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the read sequence according to a sequencing error 
model. PROBer uses an Expectation-Maximization-
Smoothing (EMS) algorithm (Silverman et al., 1990), 
which is similar to Chung et al.’s work on ChIP-Seq 
data (Chung et al., 2011), to infer model parameters and 
allocate multi-mapping reads. Please refer to 
Supplemental Experimental Procedures, Section 5 for 
more details. 
 
The PROBer software 
PROBer contains five commands: prepare, estimate, 
simulate, iCLIP and version.  

The first step in running PROBer is to build 
reference indices using the command PROBer prepare. 
The command accepts either a genome or a set of 
transcript sequences. If the input is a genome, users 
need to specify either a GTF file using the option --gtf 
or a GFF3 file using the option --gff3. Then PROBer 
will automatically extract transcript sequences from the 
specified annotation file. In addition, PROBer prepare 
can help users to build Bowtie (Ben Langmead et al., 
2009) and  Bowtie 2 (Ben Langmead and Salzberg, 
2012) indices by enabling --bowtie and --bowtie2 
options. For iCLIP data, --genome option should be set 
to notify PROBer that genome indices, instead of 
transcript indices, are required. PROBer prepare only 
needs to be run once per reference. 

Next, PROBer estimate is run on ‘toeprinting’ data 
(except iCLIP data). PROBer accepts either raw reads in 
FASTA/FASTQ format or alignments in 
SAM/BAM/CRAM format as its inputs. It can handle 
single-end reads, paired-end reads and indel alignments. 
If inputs are raw reads, PROBer will call Bowtie to 
align them by default. Users can ask PROBer to use 
Bowtie 2 instead by enabling --bowtie2 option. PROBer 
outputs ML estimates of transcript abundances and 
MAP estimates of modification and RT noise 
probabilities. If --output-bam is enabled, PROBer in 
addition outputs BAM files consisting of posterior-
probability-annotated read alignments. PROBer can run 
with only modification-treated data if mock-treated 
control is not available. In that case, the estimated 
modification probabilities might not be as accurate. 

PROBer estimate options include --primer-length, -
-size-selection-min, --size-selection-max, and --read-
length. --primer-length determines the random primer 
length. This option should be set to 6 if random 
hexamer priming was used and to 0 if the protocol was 
fragmentation-based. --size-selection-min and --size-
selection-max describe the minimum and maximum 
cDNA fragment lengths in your library after size 
selection. --read-length is only used for single-end reads 
and specifies the untrimmed read length. It helps 
PROBer to determine which single-end reads are 
adaptor trimmed and thus can be regarded as full 
fragments.  

For iCLIP data, we run PROBer iCLIP. Similar to 
other ‘toeprinting’ assays, PROBer accepts iCLIP data 
either as raw reads in FASTA/FASTQ formator as 
alignments in SAM/BAM/CRAM format. If inputs are 
raw reads, either Bowtie or Bowtie 2 can be called to 
align these reads. However, because of the differences 
between iCLIP and other ‘toeprinting’ protocols 
described in the main text, PROBer only allocate multi-
mapping reads for iCLIP data. The PROBer outputs 
consist of every iCLIP crosslink site and its unique read 
count & expected multi-read count. 

If users want to simulate ‘toeprinting’ reads based 
on parameters learned from real data, PROBer simulate 
should be used. The simulation parameters can be 
learned using PROBer estimate. Note that PROBer 
currently cannot simulate iCLIP data. 

PROBer version prints out the version information. 
 
Methods used in structure-probing experiments 
We compared PROBer with three other methods: 
StructureFold (Tang et al., 2015), Mod-seq (Talkish et 
al., 2014), and icSHAPE (Spitale et al., 2015). These 
three methods were proposed and used in Ding et al. 
(Ding et al., 2014), Talkish et al. (Talkish et al., 2014), 
and Spitale et al. (Spitale et al., 2015) respectively.  We 
re-implemented each method according to its original 
paper. Note that icSHAPE requires a parameter α for the 
mock-treated experiment. We set α to 0.25, which is the 
value used in (Spitale et al., 2015) for all structure-
probing data sets. 
 We used Bowtie (Ben Langmead et al., 2009) 
(v1.1.2) to align reads for all these methods (including 
PROBer). Because structure-probing protocols are 
strand-specific, we only aligned reads to the forward 
strand. For the (Ding et al., 2014) Arabidopsis data, we 
required at most 3 mismatches for each qualified 
alignment. For all other data sets, we used Bowtie’s 
default setting. To allocate multi-mapping reads, 
PROBer used all qualified alignments of a read. In 
addition, reads with more than 200 qualified alignments 
were filtered out. StructureFold and icSHAPE used all 
qualified alignments in the best stratum (least number of 
mismatches in either entire read or the “seed” region). 
Mod-seq used only the best single qualified alignment. 
These parameter settings were chosen according to the 
papers describing each method. 

PROBer’s protocol-specific options, such as --
primer-length, --size-selection-min, --size-selection-max, 
and –read-length, were set differently according to the 
characteristics of each protocol. Spitale et al. used biotin 
to selectively enrich structural signals in modification-
treated experiments8. This step significantly reduces the 
background noise contained in the modification-treated 
channel and also makes it hard to interpret the 
relationship between mock-treated and modification-
treated channels. Thus, for Spitale et al. data, we only 
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used modification-treated data as PROBer’s input. For 
further details, please refer to our Snakemake (Köster 
and Rahmann, 2012) workflow. 
 
Simulation of structure-probing experiments and 
digital spike-in experiments 
To assess the variability of the simulation, we simulated 
two sets of 30 million 37 nt single-end reads in both the 
modification-treated and mock-treated experiments, 
using the generative model described before. The model 
parameters used in the simulation were learned from the 
Ding et al. structure-probing data by running PROBer. 
To access if structure information can affect RNA-Seq 
quantification process (Figure S4), we in addition 
simulated 30 million 37 nt single-end reads using the 
RSEM simulator (Li and Dewey, 2011) (which ignores 
structure information) with the same simulation 
parameters.  

For digital spike-in experiments, our transcriptome 
was augmented with sequences of three model RNAs 
from Lucks et al. (Lucks et al., 2011): 1) RNase P from 
Bacillus subtilis, 198 nt; 2)  pT181 long from 
Staphylococcus aureus, 192 nt; 3) pT181 short from 
Staphylococcus aureus, 172 nt. 2) and 3) are two 
variants of the pT181 transcriptional attenuator. The 
RNA structure and RT noise parameters for these 
transcripts were calculated from SHAPE-seq data 
according to Aviran et al. (Aviran et al., 2011b). In 
order to explore the effect of expression level on 
estimation accuracy, we generated 4 sets of simulated 
data by varying the ground truth expression levels of the 
three RNAs between 100, 1000, 10,000, and 100,000 
Transcripts Per Million (TPM). Each set of simulated 
data consists of 30 million 37 nt single-end reads for 
both the modification-treated and mock-treated 
experiments. Model parameters for the rest of the 
transcriptome were set to the same values as described 
above.  

 
Comparison with other methods on simulated data  
Our main simulation results are box plots comparing 
PROBer with alternative methods. In these box plots, 
we only focused on 1,802 transcripts that we may obtain 
reasonable RNA structure estimates. These transcripts 
were selected according to the following criteria: 1) its 
ground truth expression level ≥ 50 TPM; 2) its length 
≥ 100  nt, and 3) its mappability score > 0 . The 
mappability score is defined as the ratio between the 
number of 21 mers that can be mapped back uniquely 
and the total number of 21 mers in the same transcript. 
We further partitioned the 1,802 transcripts into 4 
expression ranges in TPM: 887 transcripts in [50, 100], 
849 transcripts in (10!, 10!],  60 transcripts in 
(10!, 10!], and 6 transcripts in (10!, 10!]. 

For each transcript and method, we calculated 
Pearson’s correlation coefficient between the ground 

truth modification probabilities and the estimates. In the 
calculation, we only used sites containing ‘A’s or ‘C’s 
because DMS only modifies ‘A’s and ‘C’s. In addition, 
we excluded the last 36 nt (read length is 37 nt) of each 
transcript from the analysis because there are little reads 
aligned to the 3’ end. 

In addition to the results shown in Figure2A, we 
also investigated the effects of interpolating hidden 
fragments that failed to pass size selection. We named 
PROBer with this interpolation enabled as the full 
model (see Supplemental Experimental Procedures, 
section 3). As shown in Figure S2A, the full model 
significantly increased the variance for structural 
estimates in medium expression ranges, which contain 
over 96% of investigated transcripts. This result 
validates our decision of taking off the size selection 
correction step from PROBer. To demonstrate to the 
improvement in performing structure estimation and 
transcript quantification at the same time, we also 
compared PROBer with the RSEM + PROBer* 
pipeline. RSEM (Li et al., 2010; Li and Dewey, 2011) is 
a popular RNA-Seq transcript quantification software 
that is not aware of RNA structure information. 
PROBer* is a modified version of PROBer that only 
works on a single transcript and thus is not aware of 
multi-mapping reads. Figure S2B confirms our 
hypothesis --- PROBer performs better at all expression 
ranges than the RSEM+PROBer* pipeline.  

To assess the variability introduced by simulation, 
we simulated an extra data set. Boxplots for this 
simulation (Figure S3), demonstrate that our results are 
stable with respect to the simulation used. 
 
Comparison with other methods using ROC curves 
We compared PROBer’s MAP estimates of chemical 
modification probabilities with alternative methods’ 
scores using previously reported ribosomal RNA 
secondary structures (Cannone et al., 2002). Secondary 
structures for Arabidopsis 18S and 25S rRNAs, yeast 
18S and 25S rRNAs, and mouse 18S and 12S 
mitochondrial rRNAs were obtained as BPSeq files. 
Sites on these rRNAs that participate in a base-pairing 
interaction were assigned an idealized modification rate 
of 0, and unpaired sites were assigned an idealized 
modification rate of 1. ROC curves comparing PROBer 
estimated MAP chemical modification rate and 
alternative method scores to this binary ground truth 
vector were produced and the areas under the ROC 
curves were calculated using PRROC (Keilwagen et al., 
2014). 
 
Experiments on Carlile et al. Pseudo-seq data 
For yeast, we have 49 known Ψ sites. However, the 
rRNAs and snoRNA containing these Ψs have 1905 
thymines (T). Thus, this data set is highly skewed. It is 
known that when data sets are highly skewed, ROC 
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curves tend to be overly optimistic (Davis and Goadrich, 
2006). In fact, we can observe this phenomenon by 
plotting the ROC curves of this data set (Figure S7). 
Thus, in the main text, we chose Precision-Recall (PR) 
curve to evaluate different methods.  PR curves were 
produced using PRROC (Keilwagen et al., 2014). In 
addition, we have observed a strange read count pattern 
at the 5’ end of 25S rRNA. Normally, the 5’ end base of 
a transcript should have a very high read count because 
of RT run-off. However, for 25S, the high read count 
appears at the 3rd base. We hypothesize that this may be 
due to a small amount of degradation in the input RNA.   
 
Reproducing our experiments 
We implemented a Snakemake (Köster and Rahmann, 
2012) workflow which can be used to replicate all our 
analyses: 
https://github.com/pachterlab/PROBer_paper_analysis 
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FIGURE LEGENDS 
 
Figure 1. Cartoon depictions of sequencing-based "toeprinting" experiments, the associated Bioinformatics 
challenges, and our solution  
(A) Cartoon depiction of an idealized toeprinting experiment. The genome is transcribed and RNAs are spliced and 
folded to form the structured transcriptome. This pool of RNAs is split into two, and either treated with a chemical 
probe, or mock-treated without the chemical probe. These chemical adducts are detected by reverse transcriptase 
(RT) drop-off, but the signal is convoluted by reverse transcriptase noise. Reverse transcription products are 
collected and sequenced. (B) Potential bioinformatics challenges. The structured transcriptome that gave rise to a 
given toeprinting dataset consists of known transcripts of unknown relative abundance. Reads from this dataset 
might align ambiguously to one or more transcripts, and might have been generated by either RT drop-off at a 
chemical modification, or by RT noise. (C) Conceptual workflow of PROBer. Sequencing data (both treatment and 
control datasets) from a toeprinting experiment are used as the input. In the E- step, reads are assigned to transcripts 
depending on an initial alignment, and the relative abundances & toeprinting parameters of the transcripts estimated 
in the M-step. In the M- step, transcript abundances and toeprinting parameters are learned, using the read 
assignments calculated in the E-step.
 
Figure 2. Performance of PROBer as compared to alternative approaches 
(A) A simulated RNA structure-probing dataset was generated in a manner consistent with Ding et al. (Ding et al., 
2014), and used as the input for a number of structure-probing quantification methods, which include PROBer, 
StructureFold (Tang et al., 2015), Mod-seq (Talkish et al., 2014), and icSHAPE (Spitale et al., 2015). Accuracy was 
evaluated by comparing the results from these methods to the simulation parameters using Pearson’s correlation 
coefficient. PROBer consistently outperforms all other methods across a wide range of expression levels. See also 
Figure S3C and Experimental Procedures. (B) PROBer was compared to alternative methods on data for predicting 
known pseudouridine (Ψ) sites in yeast rRNAs and snoRNA (Carlile et al., 2014). Methods were evaluated by 
Precision-Recall (PR) curves and area under curve (AUC) values. PROBer outperforms all other methods 
significantly. See also Figure S6 and S7. 
 
Figure 3.  PROBer detected more RBFOX2 binding sites with canonical motifs by utilizing multi-mapping 
iCLIP reads
(A) The canonical motif containing NUP133 binding site can only be detected by using both unique and multi-
mapping reads. This plot is generated with UCSC Genome Browser (Kent et al., 2002). Within the plot, the first 
track shows the number of iCLIP reads (both unique and multi-mapping) dropped-off at each genomic position and 
the second track only shows the number of unique reads dropped-off at each genomic position. The dropped-off 
position is one base before the 5' end of an iCLIP read. In addition, the canonical motif is highlighted in the genomic 
sequences. (B) Numbers of putative RBFOX2 binding sites and the percentage of binding sites that contain the 
canonical motif UGCAUG. Only sites with at least 10 iCLIP counts are considered as putative binding sites. The 
canonical motif was searched around each putative binding site using a ±10 nt window. In the first row, Unique 
refers to binding sites that consist of only uniquely mapped iCLIP reads. PROBer (multi) and Baseline (multi) refers 
to binding sites that consist of only multi-mapping iCLIP reads and are identified by PROBer and the baseline 
algorithm respectively. Similarly, PROBer (extra) and Baseline (extra) refers to binding sites that could be identified 
by using all reads, but not using only uniquely mapped reads. The baseline algorithm distributes each multi-mapping 
read evenly to its alignments. PROBer identified one times more multi-mapping reads only binding sites with 
canonical motifs and two times more extra binding sites with canonical motifs than the baseline algorithm.  
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B
Unique PROBer (multi) Baseline (multi) PROBer (extra) Baseline (extra)

Total sites 42,795 13,269 11,663 18,793 13,353
UGCAUG 13.71% 2.76% 1.58% 5.43% 2.34%

A Window Position
Scale

--->

chr1:229,470,242-229,470,387 (146 bp)
50 bases hg38

GTAGGAGAATCACTGGAACCCGGGCAACAGAGTGAGACTCCATCTCAAAAAAAAAAAAAAAGAAGATCAGCATGCAAAGCAAATAGGTACTTGGAGACAGTTATTGGGGGAAAAAAGTAAACAGGGAGCACTTCTTAGTCAACTTT
using all reads

using only unique reads

RefSeq Genes
NUP133

all

205 _

0 _

unique

205 _

0 _
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