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Measuring experimental cyclohexane-water distribution coefficients for the SAMPLS challenge
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Small molecule distribution coefficients between immiscible nonaqueuous and aqueous phases—such
as cyclohexane and water—measure the degree to which small molecules prefer one phase over another
at a given pH. As distribution coefficients capture both thermodynamic effects (the free energy of transfer
between phases) and chemical effects (protonation state and tautomer effects in aqueous solution), they
provide an exacting test of the thermodynamic and chemical accuracy of physical models without the long
correlation times inherent to the prediction of more complex properties of relevance to drug discovery, such as
protein-ligand binding affinities. For the SAMPLS5 challenge, we carried out a blind prediction exercise in which
participants were tasked with the prediction of distribution coefficients to assess its potential as a new route for
the evaluation and systematic improvement of predictive physical models. These measurements are typically
performed for octanol-water, but we opted to utilize cyclohexane for the nonpolar phase. Cyclohexane was
suggested to avoid issues with the high water content and persistent heterogeneous structure of water-
saturated octanol phases, since it has greatly reduced water content and a homogeneous liquid structure.
Using a modified shake-flask LC-MS/MS protocol, we collected cyclohexane/water distribution coefficients
for a set of 53 druglike compounds at pH 7.4. These measurements were used as the basis for the SAMPL5
Distribution Coefficient Challenge, where 18 research groups predicted these measurements before the
experimental values reported here were released. In this work, we describe the experimental protocol we
utilized for measurement of cyclohexane-water distribution coefficients, report the measured data, propose
a new bootstrap-based data analysis procedure to incorporate multiple sources of experimental error, and
provide insights to help guide future iterations of this valuable exercise in predictive modeling.
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Abbreviations used in this paper 28 I. INTRODUCTION

SAMPL - Statistical Assessment of the Modeling of Proteins
and Ligands

log P - log,, partition coefficient

log D - log;, distribution coefficient

LC-MS/MS - Liquid chromatography - tandem mass spec-
trometry

HPLC - High-pressure liquid chromatography

MRM - Multiple reaction monitoring

PTFE - Polytetrafluoroethylene

DMSO - Dimethyl sulfoxide

PBS - Phosphate buffered saline

RPM - Revolutions per minute

CV - Coefficient of variation

MAP - Maximum a posteriori

MCMC - Markov chain Monte Carlo

* arr2011@med.cornell.edu

T Current address: Theravance Biopharma, South San Francisco, CA 94080,
United States

¥ lin.baiwei@gene.com

§ feng@dnli.com

9 ortwine.daniel@gene.com
** dmobley@uci.edu

t john.chodera@choderalab.org; Corresponding author

29

30

3

32

33

34

35

36

3

9

3

3

3

o

4

S

4

4

S

4

@

4.

IS

45

46

a7

4

@

4

o

5i

S

5

5!

)

Rigorous assessment of the predictive performance of
physical models is critical in evaluating the current state
of physical modeling for drug discovery, assessing the po-
tential impact of current models in active drug discovery
projects, and identifying limits of the domain of applicability
that require new models or improved algorithms. Past itera-
tions of the SAMPL (Statistical Assessment of the Modeling of
Proteins and Ligands) experiment have demonstrated that
blind predictive challenges can expose weaknesses in com-
putational methods for predicting protein-ligand binding
affinities and poses, hydration free energies, and host-guest
binding affinities [1-4]. In addition, these blind challenges
have contributed new, high-quality datasets to the commu-
nity that have enabled retrospective validation studies and
data-based parameterization efforts to further advance the
current state of physical modeling.

By focusing community effort on the prediction of hydra-
tion free energies in the first few iterations of this challenge,
the SAMPL experiments have now brought physical model-
ing approaches to the point where they can reliably identify
erroneous experimental data [5]. While hydration free energy
exercises have shown their utility in improving the state of
physical modeling, they are laborious, require specialized
equipment no longer found in modern laboratories, are (at
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s3 least using traditional protocols) limited in dynamic range,
s« and are of questionable applicability in their ability to mimic
ss protein-to-solvent transfer. As a result, no experimental lab-
ss oratory has emerged to provide new hydration free energy
s measurements to sustain this aspect of the SAMPL challenge.
ss We sought to replace this component of the SAMPL challenge
so portfolio with a new physical property that was easy to mea-
s0 Sure, accessible to multiple laboratories, had a wide dynamic
« range (in a free energy scale), and better mimicked physical
« and chemical effects relevant to protein-to-solvent transfer
e free energies, but was still free of the conformational sam-
s+ pling challenges protein-ligand binding affinities present. As
s the measurement of partition and distribution coefficients
e IS Now widespread in pharma (due to its relevance in opti-
& mizing lipophilicity of small molecules), we posited that a
es blind challenge centered around the prediction of distribu-
e tion coefficients—which face many of the same physical and
o chemical effects (such as protonation state [6, 7] and tau-
n tomer issues [8]) observed in protein-ligand binding—might
= provide such a challenge.

7 While the measurement of octanol/water distribution coef-
 ficientsis commonplace (a 2008 benchmark of structure- and
s property-based log P prediction methods used 96,000 exper-
s imental measurements [9]), a number of previously-reported
= complications in the physical simulation of 1-octanol sug-
= gested that this might be too complex for an initial distribu-
» tion coefficient challenge [10-13], despite some recent re-
so ports of success [14]. In particular, water-saturated octanol
@ IS very wet, containing 47+1 mg water/g solution [15], and
&2 forms complex microclusters or inverse-micelles that create
g3 a heterogeneous environment that persist for long simula-
s+ tion times [10-13]. For the inaugural distribution coefficient
s Challenge in SAMPL5, we therefore chose to measure cyclo-
ss hexane/water distribution coefficients. The water content
& of water-saturated cyclohexane is much lower than water-
s Saturated octanol—0.12 mg water/g solution, approximately
& 400 times smaller [16-18], and possesses no long-lived het-
w0 erogeneous structure [19].

o The number of freely available sources of cyclohexane-
« Water partition is very limited, and for the purpose of the
s SAMPL5 distribution coefficient challenge[20], blind data was
o« required. As part of an internship program at Genentech ar-
s ranged by the coauthors, the lead author was dispatched to
s« work out modifications of a high-throughput shake-flask pro-
o tocol [21] currently in use for octanol/water distribution coeffi-
s Cientmeasurements. In particular, the low dielectric constant
o Of cyclohexane (2.0243) compared to 1-octanol (10.30) [22]
o and cyclohexane’s surprising ability to dissolve laboratory
o consumables presented some unexpected challenges. In this
o report, we describe the modified protocol that resulted, and
s provide suggestions on how it can further be refined for fu-
s ture iterations of the distribution coefficient challenge. Of 95
s lead-like molecules with diverse functional groups selected
s for measurement, we report 53 log D measurements that
wr passed quality controls that were used in the SAMPLS5 chal-
108 lenge.

we  To ensure the reported experimental dataset is useful in
no assessing, falsifying, and improving computational physical

©

1

5]

3

m models of physical properties, we require a robust approach
to estimating the experimental error (uncertainty in exper-
imental measurements). We explored several procedures
for propagating known sources of error in the measurement
process into the final reported log distribution coefficients,
and report those efforts here. Our primary approach features
a parametric bootstrap, which allows the use of a physical
model of the data generating process to sample additional
realizations of the data, using distributions specified in the
model. These additional realizations are new data points,
over which estimates can be calculated. We compared this to
a nonparametric bootstrap, which can be useful if a physical
model can not be constructed. This method generates new
data points as well, but it constructs them from selection with
replacement from the existing data. We also calculated the
arithmetic mean and standard error of the measured data.
1w We hope that future efforts to measure cyclohexane-water
distribution coefficients can benefit from the model we have
developed, so that this work will also be useful for future
challenges.

All code used in the analysis, as well as raw and processed
data, can be found at https://github.com/choderalab/
samplb5-experimental-logd-data.

Theory of distribution coefficients

The distribution coefficient, D, is a measure of preferential
distribution of a given compound (solute) between two im-
miscible solvents at a specified pH, usually specified as log D
in its base-10 logarithmic form,

Solute]
pH _ [ solventl, pH
IOg Dsolvenﬂ/solventz - 10glO [Solute}

(M

solvent2, pH

Typically, one solvent is aqueous and buffered at the spec-
ified pH (e.g. Tris pH 7.4), while the other is apolar (e.g. 1-
octanol). At the given pH, the solute may populate multiple
protonation or tautomeric states, but the total concentration
summed over all states is used in the calculation of concen-
trations in Equation (1). The total salt concentration of the
aqueous phase can also play a role, in case salts can provide
stabilization of an ionic state of the ligand in the aqueous
phase [23]. Additionally, temperature can cause shifts in the
equilibrium populations [23]. Because of this, care must be
exercised when comparing distribution coefficients obtained
under different experimental conditions.

For the SAMPLS5 challenge, we concern ourselves with
the cyclohexane-water distribution coefficient, where
phosphate-buffered saline (PBS) at pH 7.4 is used for the
aqueous phase, at a temperature of 25 °C:

[Solute]

= log,, - ydohexane
B10 [Solute]pgs oiy74

cyclohexane

log DpH 7.4

chx/wat

(2)

s Another commonly reported value is the partition coefficient
s P, which quantifies the relative concentration of the neutral
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species in each phase, again usually specified in log;, form,

neutral
[SOIUte] cyclohexane

neutral
[SOlUte]PBs, pH 7.4

log Pchx/wat = 1Oglo (3)

For ligands with a single titratable site and known pK,, one
can readily convert between log P and log D for a given pH
(see, e.g. [23]), but ligands with more complex protonation
state effects or tautomeric state effects make accounting for
the transfer free energies of all species significantly more
challenging.

Il. EXPERIMENTAL METHODS

In the following sections we describe how we measured
cyclohexane/water distribution coefficients for the 53 com-
pounds displayed in Figure 1. The compound selection pro-
cedure is described in Section Il A.

Distribution coefficient measurements utilized a shake-
flask approach based on a liquid chromatography-tandem
mass spectrometry (LC-MS/MS) technique previously devel-
oped for 1-octanol/water distribution coefficient measure-
ments [21]. The approach is described in Section Il B, and the
procedure is schematically summarized in Figure 2.

The measured data was subjected to a quality control pro-
cedure that eliminated measurements thought to be too un-
reliable for use in the SAMPLS5 challenge (Section 11 C). Re-
maining data were analyzed using a physical model of the
experiment by means of a parametric bootstrap procedure.
We compared this approach to a nonparametric bootstrap
approach, and the arithmetic mean and standard error of the
data without bootstrap analysis. In Section 11 D, we describe
each approach. The results for each approach can be found
in Table I.

A. Compound selection

Compounds were initially selected from a database of
9115 lead-like molecules available in eMolecules that were
present in the Genentech chemical stores in quantities of
over 2 mg, with molecular weights between 150-350 Da. The
lower bound on molecular weight was chosen to increase
the likelihood of detectability by mass spectrometry, and the
upper bound to limit molecular complexity.

We initially chose approximately 88 compounds based on
several criteria:

e First, we selected 8 carboxylic acid compounds. These
were of potential interest for the purpose of the chal-
lenge, since it was suspected these could potentially
partition along into the cyclohexane phase together
with water or cations [23].

e The software MoKa, version 2.5 was used to obtain cal-
culated LogP, LogD, and pKa values [24, 25]. This ver-
sion of MoKa was trained with Roche internal data to
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improve accuracy. We selected 20 compounds with
predicted pKa values that would potentially be mea-
surable with a Sirius T3 instrument (Sirius Analytical)
so validation with an orthogonal technique (electro-
chemical titration) could be performed in the future.
The pKa predictions for compounds in our final data
set have been made available in the Supplementary
Information.

e The remaining compounds were divided into 10 equal-
size bins that spanned the predicted dynamic range
of log P values (-3.0 to 6.6), and 6 compounds were
drawn from each bin, to a total of 60.

This set of 88 molecules was later reduced to 64 molecules
due to the unavailability of some compounds or the inability
to detect molecular fragments by mass spectrometry at the
time of measurement. This selection was expanded to in-
clude 31 compounds used as internal standards for the previ-
ously developed octanol/water assay protocol [21], bringing
the total number of compounds for which measurements
were performed to 95. These compounds were randomly
assigned numerical SAMPL_XXX designations for the SAMPL5
blind challenge. After the quality control filtering phase (Sec-
tion 11 C), the resulting data set contained 53 compounds,
which are displayed in Figure 1. Canonical isomeric SMILES
representations for the compounds can also be found in
Table S1. These were generated using OpenEye Toolkits
v2015.June by converting 3D SDF files, after manually ver-
ifying the correct stereochemistry.

B. Shake-flask measurement protocol for cyclohexane/water

distribution coefficients

We adapted a shake-flask assay method from an original
octanol/water LC-MS/MS protocol [21] to accommodate the
use of cyclohexane for the nonaqueous phase. Our modified
protocol is described here, and the procedure is explained
schematically in Figure 2.

The log D is estimated by quantifying the concentration of
a solute directly from two immiscible layers, present as an
emulsion in a single vial. Capped glass 1.5 mL auto-injector
vials with PTFE-coated silicone septa' were used for parti-
tioning, as cyclohexane was found to dissolve polystyrene
96-well plates used in the original protocol.

For each individual experiment, 10 uL of 10 mM compound
in dimethyl sulfoxide (DMS0O)? and 5 L of 200 um propanolol
in acetonitrile (an internal standard) were added to 500 uL
cyclohexane?, followed by the addition of 500 uL of PBS so-
lution®. The ionic components of the buffer were chosen to
replicate the buffer conditions used in other in-vitro assays at

' Shimadzu cat. no. 228-45450-91

2 DMSO stocks from Genentech compound library

3 ACS grade >99%, Sigma-Aldrich cat. no 179191-2L, batch #00555ME

4136 mM NaCl, 2.6 mM KCl, 7.96 mM NagHPO4, 1.46 mM KH2POy4, with pH
adjusted to 7.4, prepared by the Genentech Media lab
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Genentech. Unlike the original protocol, neither phase was
presaturated prior to pipetting.

The solute was allowed to partition between solvents while
the mixture was shaken for 50 minutes using a plate shaker®
at 800 RPM, while the vials were mounted in a vial holder and
taped down to the sides of the vial holder®. The two solvents
were then separated by centrifugation for 5 minutes at 3700
RPM in a plate centrifuge, using the plate rotor’, with the
vials seated in the same vial holder.

Aliquots were extracted from each separated phase using a
standard adjustable micropipette, and transferred into a 384-
well glass-coated polypropylene plate for subsequent quan-
tification®. Cylcohexane wells were first prepared with 45
uL of 1-octanol® per well. 5 L of cyclohexane was extracted
from the top phase by micropipette and mixed with 45 uL of
octanol in the 384 well plate. 50 uL of aqueous solution was
subsequently extracted from the bottom phase. The octanol
dilution was performed mainly to prevent accumulation of
cyclohexane on the C18 HPLC columns'® that were used. For
the aqueous (bottom) phase, the aliquot of 50 pL was trans-
ferred directly into the 384-well plate, into wells that did not
contain octanol. The 384-well plates were sealed with using
glueless aluminum foil seals", and fragment concentrations
assayed using quantitative LC-MS/MS.

Measuring solute distribution into the two phases depends
on two separate mass spectrometry measurements'? :

e The solute is analyzed to identify and select parent
and daughter ions, and optimize ion fragment param-
eters',

We used a flow rate of 0.2 mL/min, mobile phase of
water/acetonitrile/formic acid (50/50/0.1 v/v/v) and 1.5
min run time. All parameters were automatically stored
for further multiple-reaction monitoring (MRM) anal-
ysis. For several compounds, the fragment identifi-
cation LC-MS/MS procedure did not yield high inten-
sity fragments, and these could therefore not be mea-
sured using the MRM approach. All identified parent
and daughterions are available as part of the Supple-
mentary Information.

5 Thermo Fisher Scientific, Titer Plate Shaker, model: 4625,Waltham, MA,
USA

6 Agilent Technologies, Vial plate for holding 54 x 2 mL vials part no. G2255-
68700

" Eppendorf, Centrifuge 5804, Hamburg, Germany

8 384-well glass coat plate:Thermo Scientific, Microplate, 384-Well; Web-
seal Plate; Glass-coated Polypropylene; Square well shape; U-Shape well
bottom; 384 wells; 90uL sample volume; catalog number: 3252187

9 ACROS Organics, 1-octanol 99% pure, catalog number: AC150630010, Geel,
Belgium

10 Waters Xbridge C18 2.130 mm with 2.5 m particles

1 Agilent cat no 24214-001

12 All LC solvents were HPLC-grade and purchased from OmniSolv (Charlotte,
NC, USA)

3 This was done using a Shimadzu NexeraX2 consisting of an LC-
30AD(pump), SIL-30AC (auto-injector), and SPD-20AC(UV/VIS detector)
with Sciex API4000QTRP (MS)
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e Aseparate mass spectrometer is employed using MRM
to select for parent ions and daughter ions of the so-
lute identified in the previous step. The mass/charge
(m/z) intensity (proportional to the absolute number of
molecules) is quantified as a function of the retention
time'. Information on the gradient can be found in
Supplementary Table 1 of Lin and Pease 2013 [21].

Highest m/z intensity fragments were selected using 5 mm
solutions consisting of 50% DMSO, 50% acetonitrile.

From each solvent phase in the partitioning experiment,
one aliquot was prepared, and replicate MRM measurements
were performed 3 times per aliquot. The log D can be cal-
culated from the relative MRM-signals, obtained by integrat-
ing the single peak in the MRM-chromatogram, using Equa-
tion (4).

MRM Sigﬂalcyclohexane/ [dCthinJ:ChX]
MRM signalpgg oy 7.4/ Vini, PBS

log DpH 7.4

chx/wat = 10g10

(4)
The cyclohexane signal is normalized by the dilution fac-
tor of our cyclohexane aliquots, dchy = 0.1, and the injec-
tion volume wjyj chx- As the PBS aliquots were not diluted,
this is only normalized by the injection volume vjyj pas. Ex-
periments were carried out independently at least in dupli-
cate, repeated from the same DMSO stock solutions. Injec-
tion volumes of the MRM procedure were 1 uL for cyclohex-
ane (diluted in octanol), and 2 uL for PBS samples. To op-
timize experimental parameters, we carried out two addi-
tional repeat experiments with 2 L injections for cyclohex-
ane (diluted in octanol), and 1 uL for PBS. This set included
SAMPL5_003, SAMPL5_005, SAMPL5_006, SAMPL5_011,
SAMPL5_027, SAMPL5_049, SAMPL5_050, SAMPL5_055 ,
SAMPL5_058, SAMPL5_060, and SAMPL5_061. The addi-
tional repeats were carried with higher cyclohexane injection
volumes to increase the strength of signal in the cyclohexane
phase, and lower PBS volumes to decrease the chances of
oversaturation of PBS phase signals.

C. Quality control

In order to eliminate measurements thought to be too
unreliable for the SAMPLS5 challenge, we utilized a simple
quality control filter after MRM quantification. Compounds
where the integrated MRM signal within either phase var-
ied between replicates or repeats by more than a factor of
10 were excluded from further analysis. We additionally re-
moved compounds that exceeded the dynamic range of the
assay because they did not produce a detectable MRM signal
in either the cyclohexane or buffer phases during the quan-
tification.

4 This was done using a Shimadzu NexeraX2 consisting of an LC-
30AD(pump), SIL-30AC (auto-injector), and SPD-20AC(UV/VIS detector)
with Sciex AP14000 (MS)
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D. Bootstrap analysis

Since our ultimate goal is to compare predicted distribu-
tion coefficients to experiment to evaluate the accuracy of
current-generation physical modeling approaches, it is crit-
ical to have an accurate assessment of the uncertainty in
the experimental measurement. Good approaches to uncer-
tainty analysis propagate all known sources of experimen-
tal error into the final estimates of uncertainty. To accom-
plish this, we developed a parametric bootstrap model [26]
of the experiment based on earlier work [27], with the goal of
propagating pipetting volume and technical replicate errors
through the complex analysis procedure to estimate their
impact on the overall estimated log D measurements.

Bootstrap approaches provide new synthetic data sets, de-
noted as realizations, sampled using some function of the
observed data that approximates the distribution that the
observed data was drawn from. For each compound that
was measured, suppose our data set provides N indepen-
dent repeats (from the same stock solution, typically 2 or
4), and 3 technical replicates for each repeat (quantitation
experiments from each repeat, typically 3). Each realiza-
tion of the bootstrap process leads to a new synthetic data
set, of the same size, from which a set of synthetic distribu-
tion coefficients can be computed for the realization. We
applied two additional approaches for comparison to assess
the performance of our parametric bootstrap method (Sec-
tion 11 D 1). One features a nonparametric bootstrap approach
(Section 11D 2), which does not include any physical details.
The other is a calculation of the arithmetic mean and stan-
dard error that is limited to the observed data (Section I D 3).

1. Parametric bootstrap

We used a parametric bootstrap [28] method to introduce
arandom bias and variance into the data, based on known
experimental sources. This procedure allows us to use a
model to propagate known uncertainty throughout the pro-
cedure [28]. This allows us to better estimate the distribution
that the observed data was drawn from, so that more ac-
curate estimates of the means and sample variance can be
obtained.

Uncertainties in pipetting operations were modeled based
on manufacturer descriptions [29, 30], following the work of
Hanson, Ekins and Chodera [27]. Technical replicate variation
was modeled by calculating the coefficient of variation (CV)
between individual experimental replicates. We then took
the mean CV of the entire data set, which was found to be
~0.3. As a control, we verified that the CV did not depend on
the solvent phase that was measured. We included thisin the
parametric model by adding a signal imprecision, modeled
by a normal distribution with zero mean, and a standard
deviation of 0.3. We perform a total of 5 000 realizations of
this process, and calculate statistics over all realizations, such
as the mean (expectation) and standard deviation (estimate
of standard error) for each measurement.
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2. Nonparameteric bootstrap

A traditional nonparametric Monte Carlo procedure was
applied to resample data points[26]. This approach can es-
timate the distribution that the observed data was drawn
from by resampling from the observed data with replace-
ment, to generate a new set of data points with size equal
to the observed data set. Nonparametric bootstrap can be a
useful approach if larger amounts of data are available, and
a detailed physical model of the experiment is absent. We
implemented the procedure in two stages:

1. Aset of N repeats is drawn with replacement from the
original set of measured repeats.

2. For each of the repeats, we similarly draw a set of 3
technical replicates from the original set of technical
replicates.

This yields a sample data set with the same size as the origi-
nally observed data (IV repeats, with 3 replicates each). We
perform a total of 5 000 realizations of this process, and cal-
culate statistics over all realizations, such as the mean (expec-
tation) and standard deviation (estimate of standard error)
for each measurement.

3. Arithmetic mean and sample variance

We calculated the arithmetic mean over all replicates and
repeats, and estimated the standard error from the total of 6
or 12 data points, to compare to our bootstrap estimates.'

E. Kerneldensities

As avisual guide, in Figure 3 data are plotted on top of an
estimated density of points. This density was calculated us-
ing kernel density estimation [31], which is a nonparametric
way to estimate a distribution of points using kernel func-
tions. Kernel functions assign density to individual points in
a data set, so that the combined set of data points reflects
a distribution of of the data. We used the implementation
available in the python package seaborn, version 0.7.0 [32].
We used a product of Gaussian kernels, with a bandwidth
of 0.4 for log D and 0.3 for the standard error. To prevent
artifacts such as negative density estimates for the standard
errors, they were first transformed by the natural logarithm
In, and the results were then converted back into standard
errors by exponentiation.

'> For the purpose of the D3R/SAMPL5 workshop, we originally erroneously
reported the standard deviation -v/3 instead of the standard error -/3.
The factor of v/3 corrects the sample standard deviation across all MRM
measurements for the correlation between the 3 replicate measurements
belonging to a single independent experimental repeat.
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lll. DISTRIBUTION COEFFICIENTS

The log D values and their uncertainties for the 53 small
molecules that passed quality controls are presented in Ta-
ble I. In the following two sections, we describe the differ-
ences between the analysis results in more detail.

A. Mean and standard errors in log D

The results from the arithmetic mean and sample variance
calculation ( Section 11 D 3) are plotted in Figure 3c.

Despite the compound selection effort, the distribution
of data along the log D-axis is less dense in the region -1 to
0 log units. The data outside this region seems to be cen-
tered around -2 log units, or around 1 log unit. We could
attribute this distribution of data to coincidence, though this
may warrant future investigations into systematic errors. Us-
ing the arithmetic mean of the combined repeat and replicate
measurements (Section Il D 3) the distribution coefficients
measured spanned from -3.9 to 2.5 log units.

The log D measurements distribution appears bimodal
along the uncertainty axis. A subset of mostly negative log D
values (Figure 3c) has a smaller estimated standard deviation,
though this is not the case for the majority of negative log D
values. The average standard error, rounded to 1 significant
figure, is 0.2 log units for the arithmetic mean calculation.

B. Bootstrap results

Estimates of the log D span the range between -3.9 to 2.6
log units, using either of the two bootstrap approaches (Sec-
tion 11D 1and Section 11 D 2). Thelog D estimates do not differ
significantly from the arithmetic mean calculations. The dif-
ference between the results is seen when we compare the
estimated standard errors. When applying our bootstrap pro-
cedures (Section 11 D 1and Section II D 2), we see an upwards
shiftin the uncertainties, compared to the sample variance
calculations. The nonparametric approach yields an aver-
age uncertainty of 0.3 log units. The parametric approach
yields an average uncertainty of 0.4 log units. The parametric
bootstrap suggests that by propagating errors such as the
cyclohexane dilution, and the replicate variability into the
model, some of the observed low uncertainties might be an
artifact of the low number of measurements. This suggest
that simply calculating the arithmetic mean, and standard
error of all measured data might not reliably capture the error
in the experiments. We also note that for certain compounds,
bootstrap distributions exhibit multimodal character and as
such, standard errors might not accurately capture the full
extent of the experimental uncertainty. We provide the boot-
strap sample distributions of the parametric model in the
supplementary information.

Using the parametric scheme, we see an average shift of un-
certainties to larger values compared to the nonparametric
bootstrap. The density estimate suggests we should expect
a lower bound to the error that we have now incorporated
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into the analysis. Not every compound shows the same in-
crease in uncertainty, though if we compare the two boot-
strap approaches, results are similar above this empirically
observed lower bound. The nonparametric approach returns
higher uncertainties for some data on average, but estimates
lower uncertainties for some as well. It can be concluded
that the error would typically be underestimated without
the use of a bootstrap approach. Without a physical model,
a nonparametric approach might still underestimate errors
due to the limited sample size for each measurement (either
2 or 4 fully independent repeats, and a total of 3 replicates
per data point).

C. Correlation of uncertainty with physical properties

We investigated whether there was an obvious correlation
between the uncertainty estimates obtained from our analy-
sis and the properties of the molecules in our data set. A set
of simple physical descriptors including molecular weight,
predicted net charge, and the total number of amines and
hydroxyl moieties were plotted against the bootstrap uncer-
tainty. None of the descriptors tested had an absolute Pear-
son correlation coefficient R whose 95% confidence interval
did not contain the correlation-free R = 0, according to meth-
ods described by Nicholls [33]. The analysis can be found in
the Supplementary Information as an Excel spreadsheet.

IV. DISCUSSION
1. Solvent conditions

Itis important to consider the influence of cosolvents on
the measured values. The solutions contained approximately
1% DMSO, as well as approximately 0.5% acetonitrile. Fur-
ther work would benefit from a comparison with experiments
starting from dry stocks, and thereby not adding extra sol-
vents. This would eliminate DMSO and acetonitrile, by dis-
pensing compound directly into either cyclohexane, or the
mixture of cyclohexane and PBS. In this case, care must be
taken that the compound is fully dissolved. If found to be nec-
essary all experiments could be started from dry compound
stocks, to entirely eliminate effects from cosolvents such as
DMSO and acetonitrile. This would make experiments more
laborious, and would therefore reduce the bandwidth of the
method.

Differential evaporation rates of cyclohexane and water
could be an additional source of error. Cyclohexane (vapor
pressure 97.81 torr [34]) is more volatile than water (vapor
pressure 23.8 torr[35]). Evaporation from the cyclohexane-
water phase-separated mixture or aliquots from individual
phases could increase the concentration of the cyclohexane
phase more rapidly than the water phase, leading to an over-
estimation of the log D. For future investigations, it would be
prudent to verify that evaporation rates are sufficiently low
to ensure no significant impact on the measured log D.
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2. Compound detection limits

Calculations using COSMO-RS software[36] suggested a
systematic underestimation of log D values in the negative
log unit range, in particularly past a log D of -2. Without fur-
ther experimental investigation, we can not draw definite
conclusions as to whether this is the case, or if so, where the
source of the systematic error lies.

One possibility that may cause an artificial reduction of
the dynamic range—especially at high log D values—is the
potential for MS/MS detector saturation at high ligand con-
centrations. Previous work (Figure 2 from [21]) examined
detector saturation effects, finding it possible to reach suf-
ficiently high compound concentrations (generally >10 um)
that MRM is no longer linear in compound concentration for
that phase. This work also found that different compounds
reach detector saturation at different concentrations [21], in
principle requiring an assessment of detector saturation to
be performed for each compound. While we could not de-
duce obvious signs of detector saturation in our LC-MS/MS
chromatograms, these effects could be mitigated by perform-
ing a dilution series of the aliquots sampled from each phase
of the partitioning experiment to ensure detector response
is linear in the range of dilutions measured. This may also re-
veal whether compound dimerization may be a complicating
factor in quantitation.

3. Experimental design considerations

In order to adjust our experimental setup, we had to switch
away from using polystyrene 96 well plates, as these were
dissolved by cyclohexane. We attempted the use of glass
inserts, and glass tubes but these were too narrow and pro-
vided insufficient mixing when shaken. We switched to glass
vials because their larger diameter provides improved mix-
ing when shaken. For future work, we would recommend
the use of glass coated plates, which have the automation
advantages of the plates used in the original protocol [21].

Plate seals need to be selected carefully. We experimented
with silicone sealing mats, but these absorbed significant
quantities of cyclohexane. We also had to discontinue use of
aluminum seals that contained glue, since the glue is soluble
in cyclohexane and would contaminate LC-MS/MS measure-
ments. In the end, we used aluminum PlateLoc heat seals
and glass coated 384 well plates to circumvent these issues.

Sensitivity also suffered due to the need to dilute cyclohex-
ane in octanol to prevent its accumulation on C18 columns
used in the LC-MS/MS phase of the experiment. Trial injec-
tions on a separate system and chromatograms showed ac-
cumulation of unknown origin at the end of each UV chro-
matogram. Accumulation was reduced by injecting less cy-
clohexane. As a result, we diluted the cyclohexane with 1-
octanol for the experiments described here, and ran blank
injections containing ethanol between batches of 64 mea-
surements to ensure the column was clean.

Another change to the protocol that we would like to con-
sider for future measurements is to optimize the time spent
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equilibrating the mixture. In this work, we separated phases
via centrifugation and sampled aliquots for concentration
measurement within minutes. The post-centrifugation time
prior to sampling aliquots could be extended to 24 hours to
allow for more equilibration for the solute between phases.
This may have a downside, since we would have to consider
the effects that may follow if compounds prefer to be in the
interface-region between cyclohexane and water, or water
and air. These could cause high local concentrations, intro-
ducing a dependency of the results on exactly which part of
the solution aliquots are taken from. We can get around this
by only taking samples from the pure cyclohexane and aque-
ous regions, avoiding the interfaces. This way, we still get the
right distribution coefficients for partitioning between bulk
phases even if some compound is lost to the interfaces.

It may be worthwhile to consider other effects of pipetting
operations on the procedure. Some compounds could poten-
tially stick to the surface of pipettes, or glass surfaces. This
could adversely affect our measurements by changing local
concentrations.

We also consider that assay results might be less variable if
we presaturated water and cyclohexane before mixing them.
While cyclohexane and water have much lower mutual sol-
ubility than octanol, it is still possible that this affects the
measurement.

For future challenges, we would recommend that these
assays are carried out at multiple final concentrations of the
ligand in the assay. This could be achieved using different vol-
umes of 10 mm ligand stocks. This would help detect dimer-
ization issues, and may help account for issues with detector
oversaturation. Note that the absolute errors in these stock
volumes will not be critical, since the measurements rely on
the relative measurement between the two phases. We could
build models that allow for extrapolation to the infinite dilu-
tion limit, which should then provide simpler test cases for
challenge participants to reproduce. On the opposite end,
it may be useful to even investigate ways to design an ex-
perimental set that represents these type of issues, such as
compound dimerization, so that we can focus more on these.

4. Uncertainty analysis

We hope the experience from this challenges will lay the
groundwork for improving the reliability of data sets regard-
ing the physical properties that we as a modeling commu-
nity rely on. Many computational studies are limited in the
amount of high-quality experimental data that they have ac-
cess to. Unfortunately, most data are taken straight from liter-
ature tables, without much thought being spent on the data
collection process. By performing the experimental part of
the SAMPLS5 challenge we were in the position to provide new
data to the modeling community, with an opportunity to de-
cide on an analysis strategy that suits modeling applications.
This not only allows for blind validation of physics-based
models, but also a re-evaluation of the exact properties a
data set should have to provide utility to the modeling com-
munity. An important fact that we feel needs reemphasizing


https://doi.org/10.1101/063081
http://creativecommons.org/licenses/by/4.0/

63!

&

63

4

63

&

63

&

64(

S

64

64

S

64

by

64

ES

64!

&

641

>

64

ks

64

@

64

o

65

S

65

65

[N

65!

[

65:

£

65!

a

65

-3

65

g

658

65

o

66

S

66

66,

S

66.

&

66

R

66.

&

66

o

66’

2

66

&

66

©

67

=)

67

67

N

67.

@

67:

N

67!

@

67!

>

67

3

67

@

67

=)

68

S

68

68

N}

68

&

684

685

686

687

688

689

690

bioRxiv preprint doi: https://doi.org/10.1101/063081; this version posted September 28, 2016. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY 4.0 International license.

is that experimental data are limited in utility by the method
that was used to analyze it.

Among the lessons learned from this challenge, we would
recommend that future challenges would also feature a rig-
orous statistical treatment of the experimental analysis pro-
cedure, ideally going beyond these initial efforts. One crucial
part of the analysis procedure is obtaining not only accu-
rate estimates of the observable, but also its uncertainty.
As indicated in our data set, standard error estimates from
small populations may underestimate the error. Several ap-
proaches can be taken to resolve part of this issue. Among
the options are the use of statistical tests, such as the boot-
strapping methods we applied in this work. These can help us
both propagate information on uncertainty into the model
(such as a parametric bootstrap) or extract uncertainty al-
ready available in the data (such as nonparametric bootstrap).
The parametric approaches can be improved in terms of the
physical models that are used to analyze the data. These
models should ideally include all known sources of error,
such as pipetting errors, evaporation of solvent, errors in in-
tegration software, fluctuations in temperature, pressure and
likewise many other conditions that could affect the results.

Another approach would be to perform statistical infer-
ence on the data set, to provide uncertainty estimates from
the data itself. The model structure can provide ways to in-
corporate data and propagate uncertainty from multiple ex-
periments. Common parameters, such as variance in mea-
surements between experiments could be inferred from com-
bining the entire data set into one model. When prior knowl-
edge on the experimental parameters is available, a Bayesian
model can be used to effectively infer this type of uncertainty
from the data, and use it to propagate the error into log D
estimates. Distinctions could be made between an objective
treatment of the problem, or an empirical Bayesian approach,
where prior parameters are derived from the data. One could
use a maximum a posteriori (MAP) probability approach to ob-
tain an estimate of one of the modes of the parameter distri-
bution. This has obvious downsides when posterior densities
are multimodal, and in such a case, one may wish to estimate
the shape of the entire posterior distribution instead. An ap-
proach like Markov chain Monte Carlo (MCMC) [37] could pro-
vide such estimates, and will allow for calculation of credible
intervals. MCMC methods can be computationally intensive
compared to MAP, though if the resulting posterior is compli-
cated, a MAP estimate can give poor results. Unfortunately,
we were unable to construct a Bayesian model of the exper-
iments within our time constraints. We would encourage
future challenges to make an attempt at creating a Bayesian
model, since this would allow for robust inference of all ex-
perimental parameters.

5. Funding future challenges

The execution of this work would not have been possi-
ble without the resources provided by Genentech. Access
to arich library of compounds onsite allowed us to select a
dataset that was both challenging and useful for the purposes
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of the SAMPL challenge. At the same time, the instrumenta-
tion provided us with the bandwidth to perform many mea-
surements. Rapid redesign of experiments by trial and error,
as a result of the difficulties with cyclohexane compatibility
of laboratory consumables and equipment, would not have
been possible without the expertise shared by Genentech
scientists and the opportunities to do many measurements.

Future iterations of this challenge would benefit from con-
tinued collaboration between industry and academia. Aca-
demic groups can partner with industry groups to pair avail-
able skilled academic labor (graduate students and postdoc-
toral researchers) with specialized measurement equipment
and compound libraries. The graduate student industry in-
ternship model proved to be a particularly successful ap-
proach, with measurements for a blind challenge providing
a well-defined, limited-scope project with clear high value to
the modeling community.

V. CONCLUSION

The experimental data provided by this study was very
useful for hosting the first small-molecule distribution coeffi-
cientchallenge in the context of SAMPL. It revealed thatlog D
prediction, as well as measurement, is not always straightfor-
ward. We showed that it was possible to perform cyclohex-
ane/water log D measurements in the same manner as the
original octanol/water assays, though further optimizations
are needed to reach the same level of throughput. Cyclo-
hexane did pose several challenges for experimental design,
such as the need for different container types, and the po-
tential accumulation of substrate on reversed phase HPLC
columns.

Many details, such as protonation states, tautomer states,
and dimerization might need to be accounted for in order to
reproduce experiments. This challenge taught us considera-
tions that should be made on the experimental side. Cases
where dimerization were pointed out as possible reason for
discrepancy between experiment and model, could only be
hypothesized from the modeling end and not tested exper-
imentally. Issues with detector saturation could also be af-
fecting the overall quality of the data set. Future experiments
would benefit from more rigorous protocols, such as mea-
surements at multiple concentrations, and models of all ex-
perimental components.

We recommend that future challenges, and experimentsin
general, use physical models of experiments in the analysis
of experimental uncertainty. These should be part of the
analysis procedure, but also in experimental design. These
will reveal abnormalities in data more clearly.

We recommend that future challenges look into the use of
bootstrap models such as those considered here. Addition-
ally, the use of Bayesian inference methods, that allow the
incorporation of prior information should lead to a more ro-
bust estimate of experimental uncertainty. They will allow for

us joint inference on multiple experiments, thereby increasing

744

745

the information gain by using the model.
Lastly, the sponsoring of this internship by Genentech was
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fundamental to generating this data. Access to compound
libraries, and the equipment to perform the experiments is
crucial to the design and execution of a study. Close collabo-
rations with Genentech scientists were important in solving
many technical challenges. The collaboration between indus-
try and academics was not only fruitful, but fundamental in
establishing standardized challenges for the modeling field.
The amount of data we were able to gather would have been
hard to come by without industry resources. At the same
time, the need and expertise in investigating these challeng-
ing physical chemical problems provided by the community,
and the forum provided by the SAMPL challenge was essen-
tial in turning this challenge into a success. We welcome
such future efforts and collaborations, as it is apparent that
both experimental and computational approaches for ob-
taining log D estimates for small molecules, would benefit
from further optimization.

VI. SUPPLEMENTARY INFORMATION

Canonical isomeric smiles for each of the measured com-
pound are available in Table S1. An sdf file containing all com-
pounds, including the measured distribution coefficients is
available as part of the Supplementary Information. Parent
and daughter fragment ion information is available as part of
the Supplementary Information. Integrated MRM data includ-
ing excluded data points are available as part of the Supple-
mentary Information. Bootstrap distributions from the para-
metric bootstrap samples for each compound are provided
in the Supplementary Information. A correlation analysis be-
tween the parametric bootstrap uncertainty, and the chemi-
cal properties of the compounds in the dataset is available
as an Excel spreadsheet in the Supplementary Information.
We also include a csv file containing a full list of SAMPL5_XXX
identifiers and canonical isomeric smiles, including unmea-
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sured compounds. Source code of the bootstrap uncertainty
analysis is available on Github at https://github.com/
choderalab/sampl5-experimental-logd-data. A copy
of this source code is also included in a zip file, as part of the
supporting information.
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FIG. 1: Molecules and corresponding measured log distribution coefficients for measurements that passed quality
controls. Log D measurements are reported as expectation + standard errors, calculated using our parametric bootstrap
method (Section |1 D).
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FIG. 2: Illustration of the shake-flask procedure used for cyclohexane-water distribution coefficient measurements.
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TABLE I: Log distribution coefficient measurements and standard errors. Estimates of log distribution functions and their
associated standard errors are described for parametric bootstrap (Section Il D 1), nonparametric bootstrap (Section 11 D 2),
and arithmetic mean and corrected sample variance (Section 11 D 3).

Uncertainty analysis method

Bootstrap Arithmetic mean

Compound ID Parametric Nonparametric Standard error
SAMPL5_002 1.5 +£0.3 15 +£0.2 14 +0.1
SAMPL5_003 19 +06 19 +£05 1.94 +0.04
SAMPL5_004 22 +£0.3 22 +£0.1 22 +0.1
SAMPL5_005 —-0.9 +0.7 -0.9 +0.7 —0.86+0.03
SAMPL5_006 —1.0 £0.7 —1.0 £0.6 —1.02+0.03
SAMPL5_007 1.4 +£0.3 1.39 +0.08 1.38 +0.09
SAMPL5_010 —1.7 £0.6 —1.7 £05 —-1.7 +£0.1
SAMPL5_011 —3.0 £09 —-3.0 £0.9 —2.96 +0.03
SAMPL5_013 —-13 +0.6 —-1.3 +0.5 —-15 +0.1
SAMPL5_015 —2.3 £0.3 —-23 £0.2 —2.25+0.09
SAMPL5_017 26 +£0.3 26 +0.2 25 +£0.1
SAMPL5_019 1.4 +£0.7 1.4 +£0.7 1.2 +£0.1
SAMPL5_020 1.7 +£0.3 1.7 £0.1 1.6 +£0.1
SAMPL5_021 1.2 +£03 1.18 £0.07 1.2 +£0.1
SAMPL5_024 1.0 £04 1.0 £04 1.0 £0.1
SAMPL5_026 —2.6 +0.3 —2.6 +0.1 —2.58 +0.04
SAMPL5_027 —-19 £08 —-19 £0.7 —1.87 £0.02
SAMPL5_033 1.8 +£0.3 1.82 +0.07 1.80 4+ 0.08
SAMPL5_037 —1.5 £0.3 —1.54+0.07 —1.53+0.03
SAMPL5_042 —1.1 +0.2 —-1.13+0.04 —1.1 +£0.1
SAMPL5_044 1.1 £04 1.1 +£0.3 1.0 £0.1
SAMPL5_045 —2.1 £0.3 —2.09+0.04 —2.09+0.08
SAMPL5_046 0.2 £0.3 0.19 £ 0.09 0.20 £ 0.09
SAMPL5_047 —0.4 £0.2 —0.37+0.07 —0.37 £ 0.09
SAMPL5_048 1.0 £0.3 1.0 £0.2 09 +£0.1
SAMPL5_049 1.3 +£05 1.3 £05 1.28 +0.04
SAMPL5_050 —3.4 +£05 —-34 £05 —32 +0.2
SAMPL5_055 —-15 +£0.7 -15 4+0.7 —1.48+0.04
SAMPL5_056 —2.5 £0.3 —2.46+0.05 —2.46 +0.05
SAMPL5_058 0.8 £0.6 0.8 £0.5 0.82 +£0.03
SAMPL5_059 —1.3 £0.3 —1.34+0.03 —1.33+0.09
SAMPL5_060 —3.9 +£04 -39 +£03 —3.87 £ 0.08
SAMPL5_061 —-15 +09 —-15 +0.9 —1.45+0.03
SAMPL5_063 —3.1 £04 —-32 +04 —-3.0 £0.1
SAMPL5_065 0.7 £0.3 0.7 £0.1 0.69 £+ 0.07
SAMPL5_067 —1.3 £03 —-1.3 £0.2 —-1.3 +0.1
SAMPL5_068 1.4 4+0.3 1.4 +0.2 1.41 +0.09
SAMPL5_069 —-1.3 +0.4 —-1.2 +0.3 —-13 +0.1
SAMPL5_070 1.6 +0.3 1.6 +£0.2 1.61 +0.09
SAMPL5_071 —-0.0 +04 —-0.0 +£0.4 —0.1 +£0.2
SAMPL5_072 0.6 +0.3 0.6 +£0.2 0.6 £0.1
SAMPL5_074 —-19 +03 -19 +£0.2 —-19 £+0.1
SAMPL5_075 —-2.8 £0.3 —-2.8 £0.1 —2.77 £ 0.09
SAMPL5_080 —2.2 +0.3 —-22 +£0.1 —2.18 £ 0.07
SAMPL5_081 —2.2 +0.3 —-22 #£0.1 —2.19+0.09
SAMPL5_082 25 +0.3 25 +£0.2 25 +£0.1
SAMPL5_083 —2.0 +0.3 —-2.0 +£0.2 —-19 £+0.1
SAMPL5_084 —0.0 £0.3 —0.02+0.05 —0.02 +0.08
SAMPL5_085 —2.3 +03 -23 +£0.2 —2.2 £0.1
SAMPL5_086 0.7 £0.3 0.7 +£0.1 0.70 £ 0.06
SAMPL5_088 —-19 +03 -19 +0.2 —-19 £+0.1
SAMPL5_090 0.7 £0.2 0.75 £ 0.06 0.76 £ 0.08
SAMPL5_092 —0.4 £0.3 —0.41+0.09 —0.39+0.09
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(a) Parametric bootstrap (Section I D 1). Standard error estimates
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(b) Nonparametric bootstrap (Section |1 D 2). Standard error (c) Arithmetic mean and sample variance (Section I D 3).
estimates calculated using a nonparametric bootstrap (circles), and Standard error estimates calculated using corrected sample
a kernel density estimate (contours) of the entire set. variance (circles), and a kernel density estimate (contours) of the
entire set.

FIG. 3: Joint kernel density estimates of log distribution coefficient (log D) measurements and measurement error
estimates. log D measurements are plotted with their corresponding estimated standard errors (circles) for the three
analysis approaches described in Section I D. A kernel density estimate (contours, described in Section Il E) is shown to
highlight the differences in error estimates for the different methods.
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X. SUPPLEMENTARY INFORMATION

A. Compound identifiers

TABLE S1: All of the compounds that were selected, and for which log D was obtained.

Molecule ID  Canonical Isomeric SMILES

eMolecules ID (if available)

SAMPL5_002 CCOC(=0)clc(c2¢c(c(c(nc2s1)C)C)C)N

SAMPL5_003 clccc2c(cl)e(=0)oc(n2)c3ccccc3F

SAMPL5_004 CCOclccc(ccl)Ne2ec(c3cceee3n2)C

SAMPL5_005 Cnlcenc1SCC(=0)Nc2cec3c(c2)0C03

SAMPL5_006 C=C(Cnlc2cccce2nc1CO)Br

SAMPL5_007 clcec(ccl)CCNe2ce3cc(cee3nen2)Br

SAMPL5_010 clcc(cc(c1)NCc2eencc2)C(=0)0

SAMPL5_011 Cclec(nc(n1)Nc2ceecec2C(=0)0)C

SAMPL5_013 Ccleec(cel)e2nc(c3c(n2)n(c(=0)[nH]3)c4cccccd)C(=0)N
SAMPL5_015 Cclccc2c(cl)c(nen2)NCC(=0)0

SAMPL5_017 clcec2c(cl)c(nc(n2)c3ccccc30)NCACCCC4
SAMPL5_019 Cclcec(ccl)Ne2eene(n2)Ne3cee(ce3)C

SAMPL5_020 CCCC(=0)Nclnc2cec(cc2s1)C(C)C

SAMPL5_021 Cclnn2cc(nc2s1)c3ceccc(c3)0C

SAMPL5_024 Cclccc2c(cl)ce3cec(se3n2)C(=0)Ncdceec(c(c4)C)C
SAMPL5_026 Cclec(c2c(cl)c(c([nH]2)C)CC(=0)0)C

SAMPL5_027 clccc(ccl)CNe2nenc(n2)N

SAMPL5_033 Cclece(ccINC(=0)N2CCCCC[C@@H]2¢3cces3)Cl
SAMPL5_037 CN(C)S(=0)(=0)N1CCNCC1

SAMPL5_042 clccc(cel)c2ccccc2NC(=0)c3ccc(=0)[nH]n3
SAMPL5_044 clccc2c(cl)ec(c(=0)02)C(=0)Nc3cccdc(c3)scn4
SAMPL5_045 CCC(=0)Nclccc2c(cl)nes2

SAMPL5_046 CSclccc(cc1)CC(=0)Nc2c3cese3nen2

SAMPL5_047 clcnoclC(=0)Nc2c(c3¢(s2)CCCC3)CHN

SAMPL5_048 clccc2c(c)nc(s2)c3ccec(c3)NC(=0)cdccnod
SAMPL5_049 clcc(c(c(c1)Cl)CI)NC(=0)c2ccno2

SAMPL5_050 Cclccc2c(n1)nn3c2nc(cc30)C

SAMPL5_055 clcec2c(cl)nee(n2)C(=0)N

SAMPL5_056 CC(C)[C@@H]1Cc2c(cc(c(n2)0)C#N)COT

SAMPL5_058 clccc(ccl)n2c(=0)c3cccce3en2

SAMPL5_059 clccc(ccl)c2ne(sn2)N

SAMPL5_060 clccc2c(cl)c3cc(nce3[nH]2)C(=0)0

SAMPL5_061 Cclncee(n1)[C@@]2(CNCCO2)C

SAMPL5_063 C1C[C@H](CNC1)N2CCC(CC2)C(=0)N

SAMPL5_065 COclcce2c(cl)[nH]c3c2CCIN@]4[C@@H]3C[C@H]I5[C@@H](C4)CIC@H]([C@@H]([C@H]5C(=0)0C)0C)0C(=0)cbec(c(c(c6)0C)0C)0C
SAMPL5_067 CC(C)NC[C@@H](COclccec2clcccc2)0

SAMPL5_068 clccc(ccl)c2¢(nne(n2)c3cccen3)cdcccccd

SAMPL5_069 C[N@]1CCc2cc(c(c-3c2[C@@H]1Cc4c3cc(c(c4)0)0C)0C)0
SAMPL5_070 CN(C)CCC=Clc2ccccc2CCe3clcccc3

SAMPL5_071 CCOclcc(c(ccIN2CCOCC2)0CC)N

SAMPL5_072 CN(C)CCOC(clcceecl)c2cceec2

SAMPL5_074 cInc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](03)CO)0)O)N
SAMPL5_075 CC(C)NC[C@@H](COclcec(cc1)CCOC)0

SAMPL5_080 Cnlcnc2clc(=0)n(c(=0)n2C)C

SAMPL5_081 CC(C)NC[C@H](COc1ccc(ccl)CC(=0)N)O

SAMPL5_082 CC/C(=C(\clcceeel)/c2cec(cc2)OCCN(C)C)/c3ccccc3
SAMPL5_083 C[C@H]1/C=C/C=C(\C(=0)NC\2=C(C3=C(C(=C4C(=C3C(=0)/C2=C/NN5CCN(CC5)C)C(=0)[C@](04)(0/C=C/[C@@H]([C@H]([C@H]([C@@H]([C@@H]([C@@H]([C@H]10)C)0)C)OC(=0)C)C)OC)C)C)0)0)/C
SAMPL5_084 clcc(ccc]1C(=0)CCCN2CCC(CC2)(c3ccc(ce3)Cl)0)F
SAMPL5_085 clccc(ccl)C2(C(=0)NC(=0)N2)c3cccce3

SAMPL5_086 CCCCOclcc(c2ccccc2n1)C(=0)NCCN(CC)CC
SAMPL5_088 CCN(Cclcenccl)C(=0)[C@H](CO)c2ccccc2
SAMPL5_090 Cclec2c(cc1C)ne(c(n2)c3cceen3)ccccend
SAMPL5_092 CC(=0)N1CCN(CC1)c2cec(cc2)0C[C@H]3CO[C@](03)(Cn4ccncd)c5ecc(cc5Cl)CL

1254130
1231787
1221528
1363085
2118862
1373587
1491855
542592
16095985
1355949
2425478
43423819
5522978
31467689
16329490
703690
2483781
16363773
833953
1552842
4987019
12474692
12046880
5627778
5627798
5627856
5663556
3800934

3730323
mogl
42618372
43241882
38498425
531303

484219
1123008
534331
918817
716786
534228
10520934
493944
498172
43444435

538987
507449
536705

479985
30512844
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