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Small molecule distribution coe�icients between immiscible nonaqueuous and aqueous phases—such
as cyclohexane and water—measure the degree to which small molecules prefer one phase over another
at a given pH. As distribution coe�icients capture both thermodynamic e�ects (the free energy of transfer
between phases) and chemical e�ects (protonation state and tautomer e�ects in aqueous solution), they
provide an exacting test of the thermodynamic and chemical accuracy of physical models without the long
correlation times inherent to the prediction ofmore complex properties of relevance to drug discovery, such as
protein-ligand binding a�inities. For the SAMPL5 challenge, we carried out a blind prediction exercise inwhich
participantswere taskedwith thepredictionofdistributioncoe�icients toassess its potential as anewroute for
the evaluation and systematic improvement of predictive physical models. Thesemeasurements are typically
performed for octanol-water, but we opted to utilize cyclohexane for the nonpolar phase. Cyclohexane was
suggested to avoid issues with the high water content and persistent heterogeneous structure of water-
saturated octanol phases, since it has which has greatly reduced water content and a homogeneous liquid
structure. Using a modified shake-flask LC-MS/MS protocol, we collected cyclohexane/water distribution
coe�icients for a set of 53 druglike compounds at pH 7.4. These measurements were used as the basis for the
SAMPL5 Distribution Coe�icient Challenge, where 18 research groups predicted these measurements before
the experimental values reported here were released. In this work, we describe the experimental protocol we
utilized for measurement of cyclohexane-water distribution coe�icients, report the measured data, propose
a new bootstrap-based data analysis procedure to incorporate multiple sources of experimental error, and
provide insights to help guide future iterations of this valuable exercise in predictive modeling.
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I. INTRODUCTION12

Rigorous assessment of the predictive performance of13

physical models is critical in evaluating the current state14

of physical modeling for drug discovery, assessing the po-15

tential impact of current models in active drug discovery16

projects, and identifying limits of the domain of applicability17

that require newmodels or improved algorithms. Past itera-18

tions of the SAMPL (StatisticalAssessment of theModeling of19

Proteins and Ligands) experiment have demonstrated that20

blind predictive challenges can expose weaknesses in com-21

putational methods for predicting protein-ligand binding22

a�inities and poses, hydration free energies, and host-guest23

binding a�inities [1–4]. In addition, these blind challenges24

have contributed new, high-quality datasets to the commu-25

nity that have enabled retrospective validation studies and26
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data-based parameterization e�orts to further advance the27

current state of physical modeling.28

By focusing community e�ort on the prediction of hydra-29

tion free energies in the first few iterations of this challenge,30

the SAMPL experiments have now brought physical model-31

ing approaches to the point where they can reliably identify32

erroneous experimental data [5]. While hydration free energy33

exercises have shown their utility in improving the state of34

physical modeling, they are laborious, require specialized35

equipment no longer found in modern laboratories, are (at36

least using traditional protocols) limited in dynamic range,37

and are of questionable applicability in their ability to mimic38

protein-to-solvent transfer. As a result, no experimental lab-39

oratory has emerged to provide new hydration free energy40

measurements to sustain this aspect of the SAMPL challenge.41

We sought to replace this component of the SAMPL challenge42

portfolio with a new physical property that was easy to mea-43

sure, accessible tomultiple laboratories, had awide dynamic44

range (in a free energy scale), and better mimicked physical45

and chemical e�ects relevant to protein-to-solvent transfer46

free energies, but was still free of the conformational sam-47

pling challenges protein-ligand binding a�inities present. As48

the measurement of partition and distribution coe�icients49

is now widespread in pharma (due to its relevance in opti-50

mizing lipophilicity of small molecules), we posited that a51

blind challenge centered around the prediction of distribu-52

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2016. ; https://doi.org/10.1101/063081doi: bioRxiv preprint 

mailto:arr2011@med.cornell.edu
mailto:Current address: Theravance Biopharma, South San Francisco, CA 94080, United States
mailto:Current address: Theravance Biopharma, South San Francisco, CA 94080, United States
mailto:lin.baiwei@gene.com
mailto:feng@dnli.com
mailto:ortwine.daniel@gene.com
mailto:dmobley@uci.edu
mailto:john.chodera@choderalab.org
https://doi.org/10.1101/063081
http://creativecommons.org/licenses/by/4.0/


2

tion coe�icients—which face many of the same physical and53

chemical e�ects (such as protonation state [6, 7] and tau-54

tomer issues [8]) observed in protein-ligand binding—might55

provide such a challenge.56

While themeasurement of octanol/water distribution coef-57

ficients is commonplace (a 2008benchmarkof structure- and58

property-based log P predictionmethods used 96,000 exper-59

imentalmeasurements [9]), a number of previously-reported60

complications in the physical simulation of 1-octanol sug-61

gested that this might be too complex for an initial distri-62

bution coe�icient challenge [10–13], despite some recent re-63

ports of success [14]. In particular, water-saturated octanol64

is very wet, containing 47±1 mg water/g solution [15], and65

forms complex microclusters or inverse-micelles that create66

a heterogeneous environment that persist for long simula-67

tion times [10–13]. For the inaugural distribution coe�icient68

challenge in SAMPL5, we therefore chose to measure cyclo-69

hexane/water distribution coe�icients. The water content70

of water-saturated cyclohexane is much lower than water-71

saturated octanol—0.12 mg water/g solution, approximately72

400 times smaller [16–18], and possesses no long-lived het-73

erogeneous structure [19].74

The number of freely available sources of cyclohexane-75

water partition is very limited, and for the purpose of the76

SAMPL5 distribution coe�icient challenge[20], blind data77

was required. As part of an internship program at Genen-78

tech arranged by the coauthors, the lead author was dis-79

patched to work out modifications of a high-throughput80

shake-flask protocol [21] currently in use for octanol/water81

distribution coe�icient measurements. In particular, the82

low dielectric constant of cyclohexane (2.0243) compared83

to 1-octanol (10.30) [22] and cyclohexane’s surprising ability84

to dissolve laboratory consumables presented some unex-85

pected challenges. In this report, we describe the modified86

protocol that resulted, and provide suggestions on how it87

can further be refined for future iterations of the distribution88

coe�icient challenge. Of 95 lead-like molecules with diverse89

functional groups selected for measurement, we report 5390

logDmeasurements that passed quality controls that were91

used in the SAMPL5 challenge.92

To ensure the reported experimental dataset is useful in93

assessing, falsifying, and improving computational physical94

models of physical properties, we require a robust approach95

to estimating the experimental error (uncertainty in exper-96

imental measurements). We explored several procedures97

for propagating known sources of error in the measurement98

process into the final reported log distribution coe�icients,99

and report those e�orts here. Our primary approach features100

a parametric bootstrap, which allows the use of a physical101

model of the data generating process to sample additional102

realizations of the data, using distributions specified in the103

model. These additional realizations are new data points,104

overwhich estimates can be calculated. We compared this to105

a nonparametric bootstrap, which can be useful if a physical106

model can not be constructed. This method generates new107

data points as well, but it constructs them from selection108

with replacement from the existing data. We also calculated109

the arithmetic mean and standard error of the measured110

data. We hope that future e�orts to measure cyclohexane-111

water distribution coe�icients can benefit from the model112

we have developed, so that this work will also be useful for113

future challenges.114

All code used in the analysis, as well as raw and processed115

data, can be found at https://github.com/choderalab/116

sampl5-experimental-logd-data.117

Theory of distribution coe�icients118

The distribution coe�icient,D, is a measure of preferential119

distribution of a given compound (solute) between two im-120

miscible solvents at a specified pH, usually specified as log D121

in its base-10 logarithmic form,122

logDpH
solvent1/solvent2 = log10

[Solute]solvent1, pH
[Solute]solvent2, pH

. (1)

Typically, one solvent is aqueous and bu�ered at the spec-123

ified pH (e.g. Tris pH 7.4), while the other is apolar (e.g. 1-124

octanol). At the given pH, the solute may populate multiple125

protonation or tautomeric states, but the total concentration126

summed over all states is used in the calculation of concen-127

trations in Equation (1). The total salt concentration of the128

aqueous phase can also play a role, in case salts can provide129

stabilization of an ionic state of the ligand in the aqueous130

phase [23]. Because of this, care must be exercised when131

comparing distribution coe�icients obtained under di�erent132

experimental conditions.133

For the SAMPL5 challenge, we concern ourselves with134

the cyclohexane-water distribution coe�icient, where135

phosphate-bu�ered saline (PBS) at pH 7.4 is used for the136

aqueous phase:137

logDpH 7.4
chx/wat = log10

[Solute]cyclohexane
[Solute]PBS, pH 7.4

. (2)

Another commonly reported value is the partition coe�icient138

P , which quantifies the relative concentration of the neutral139

species in each phase, again usually specified in log10 form,140

log Pchx/wat = log10
[Solute]neutralcyclohexane

[Solute]neutralPBS, pH 7.4

. (3)

For ligands with a single titratable site and known pKa, one141

can readily convert between log P and logD for a given pH142

(see, e.g. [23]), but ligands with more complex protonation143

state e�ects or tautomeric state e�ects make accounting for144

the transfer free energies of all species significantly more145

challenging.146

II. EXPERIMENTAL METHODS147

In the following sections we describe how wemeasured148

cyclohexane/water distribution coe�icients for the 53 com-149
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pounds displayed in Figure 1. The compound selection pro-150

cedure is described in Section II A.151

Distribution coe�icient measurements utilized a shake-152

flask approach based on a LC-MS/MS technique previously153

developed for 1-octanol/water distribution coe�icient mea-154

surements [21]. The approach is described in Section II B,155

and the procedure is schematically summarized in Figure 2.156

Themeasured data was subjected to a quality control pro-157

cedure that eliminated measurements thought to be too158

unreliable for use in the SAMPL5 challenge (Section II C). Re-159

maining data were analyzed using a physical model of the160

experiment by means of a parametric bootstrap procedure.161

We compared this approach to a nonparametric bootstrap162

approach, and the arithmeticmean and standard error of the163

data without bootstrap analysis. In Section II D, we describe164

each approach. The results for each approach can be found165

in Table I.166

A. Compound selection167

Compounds were initially selected from a database of168

9115 lead-like molecules available in eMolecules that were169

present in the Genentech chemical stores in quantities of170

over 2 mg, with molecular weights between 150-350 Da. The171

lower bound on molecular weight was chosen to increase172

the likelihood of detectability bymass spectrometry, and the173

upper bound to limit molecular complexity.174

We initially chose approximately 88 compounds based on175

several criteria:176

• First, we selected 8 carboxylic acid compounds. These177

were of potential interest for the purpose of the chal-178

lenge, since it was suspected these could potentially179

partition along into the cyclohexane phase together180

with water or cations [23].181

• MoKa 2.5 was used to calculate cLogP, cLogD, and182

pKa values [24, 25]. This version of MoKa was trained183

with Roche internal data to improve accuracy. We se-184

lected 20 compounds with predicted pKa values that185

would potentially be measurable with a Sirius T3 in-186

strument (Sirius Analytical) so validation with an or-187

thogonal technique (electrochemical titration) could188

be performed in the future.189

• The remaining compounds were divided into 10 equal-190

size bins that spanned the predicted dynamic range191

of log P values (-3.0 to 6.6), and 6 compounds were192

drawn from each bin, to a total of 60.193

This set of 88 total was later reduced to 64 due to the un-194

availability of some compounds or the inability to detect195

molecular fragments by mass spectrometry at the time of196

measurement. This selection was expanded to include 31197

compounds used as internal standards for the previously de-198

veloped octanol/water assay protocol [21], bringing the total199

number of compounds for which measurements were per-200

formed to 95. These compoundswere randomly assigned nu-201

merical SAMPL_XXX designations for the SAMPL5 blind chal-202

lenge. A�er the quality control filtering phase (Section II C),203

the resulting data set contained 53 compounds, which are204

displayed in Figure 1. Canonical isomeric SMILES represen-205

tations for the compounds can also be found in Table S1.206

These were generated using OpenEye Toolkits v2015.June by207

converting 3D SDF files, a�er manually verifying the correct208

stereochemistry.209

B. Shake-flask measurement protocol for210

cyclohexane/water distribution coe�icients211

We adapted a shake-flask assay method from an original212

octanol/water LC-MS/MS protocol [21] to accommodate the213

use of cyclohexane for the nonaqueous phase. Our modified214

protocol is described here, and the procedure is explained215

schematically in Figure 2.216

The logD is estimated by quantifying the concentration217

of a solute directly from two immiscible layers, present as an218

emulsion in a single vial. Capped glass 1.5 mL auto-injector219

vials with PTFE-coated silicone septa1 were used for parti-220

tioning, as cyclohexane was found to dissolve polystyrene221

96-well plates used in the original protocol.222

For each individual experiment, 10 µL of 10mM compound223

in dimethyl sulfoxide (DMSO)2 and 5 µL of 200 µM propanolol224

in acetonitrile (an internal standard)were added to 500µL cy-225

clohexane3, followed by the addition of 500 µL of phosphate226

bu�ered saline (PBS) solution4. The ionic components of the227

bu�er were chosen to replicate the bu�er conditions used228

in other in-vitro assays at Genentech. Unlike the original229

protocol, neither phase was presaturated prior to pipetting.230

The solute was allowed to partition between solvents231

while the mixture was shaken for 50 minutes using a plate232

shaker5 at 800 RPM, while the vials were mounted in a vial233

holder and taped down to the sides of the vial holder6. The234

two solventswere then separated by centrifugation for 5min-235

utes at 3700 RPM in a plate centrifuge, using the plate rotor7,236

with the vials seated in the same vial holder.237

Aliquots were extracted from each separated phase using238

a standard adjustable micropipette, and transferred into a239

384-well glass-coated polypropylene plate for subsequent240

quantification8. Cylcohexane wells were first prepared with241

45 µL of 1-octanol9 per well. 5 µL of cyclohexane was ex-242

1 Shimadzu cat. no. 228-45450-91
2 DMSO stocks from Genentech compound library
3 ACS grade≥99%, Sigma-Aldrich cat. no 179191-2L, batch #00555ME
4 136 mM NaCl, 2.6 mM KCl, 7.96 mM Na2HPO4, 1.46 mM KH2PO4, with pH
adjusted to 7.4, prepared by the Genentech Media lab

5 Thermo Fisher Scientific, Titer Plate Shaker, model: 4625,Waltham, MA,
USA

6 Agilent Technologies, Vial plate for holding 54 x 2 mL vials part no. G2255-
68700

7 Eppendorf, Centrifuge 5804, Hamburg, Germany
8 384-well glass coat plate:Thermo Scientific, Microplate, 384-Well; Web-
seal Plate; Glass-coated Polypropylene; Square well shape; U-Shape well
bottom; 384 wells; 90uL sample volume; catalog number: 3252187

9 ACROS Organics, 1-octanol 99% pure, catalog number: AC150630010,
Geel, Belgium
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tracted from the top phase by micropipette andmixed with243

45 µL of octanol in the 384 well plate. 50 µL of aqueous so-244

lution was subsequently extracted from the bottom phase.245

The octanol dilution was performed mainly to prevent ac-246

cumulation of cyclohexane on the C18 HPLC columns10 that247

were used. For the aqueous (bottom) phase, the aliquot of248

50 µL was transferred directly into the 384-well plate, into249

wells that did not contain octanol. The 384-well plates were250

sealed with using glueless aluminum foil seals11, and frag-251

ment concentrations assayed using quantitative LC-MS/MS.252

Measuring solutedistribution into the twophasesdepends253

on two separate mass spectrometry measurements12 :254

• The solute is analyzed to identify and select parent255

and daughter ions, and optimize ion fragment param-256

eters13.257

We used a flow rate of 0.2 mL/min, mobile phase of258

water/acetonitrile/formic acid (50/50/0.1 v/v/v) and259

1.5 minutes run time. All parameters were automati-260

cally stored for further MRM analyses. For several com-261

pounds, the fragment identification LC-MS/MS proce-262

dure did not yield high intensity fragments, and these263

could therefore not be measured using the MRM ap-264

proach.265

• A separate mass spectrometer is employed using266

multiple-reaction monitoring (MRM) to select for par-267

ent ions and daughter ions of the solute identified in268

the previous step. The mass/charge (m/z) intensity269

(proportional to the absolute number of molecules) is270

quantified as a function of the retention time14. Infor-271

mation on the gradient can be found in Supplementary272

Table 1 of Lin and Pease 2013 [21].273

Highest m/z intensity fragments were selected using 5mM274

solutions consisting of 50% DMSO, 50% acetonitrile.275

From each solvent phase in the partitioning experiment,276

one aliquot was prepared, and replicate MRMmeasurements277

were performed 3 times per aliquot. The logD can be cal-278

culated from the relative MRM-signals, obtained by integrat-279

ing the single peak in the MRM-chromatogram, using Equa-280

tion (4).281

logDpH 7.4
chx/wat = log10

MRM signalcyclohexane/
[
dchxvinj, chx

]
MRM signalPBS, pH 7.4/vinj, PBS

.

(4)

10 Waters Xbridge C18 2.130 mmwith 2.5 m particles
11 Agilent cat no 24214-001
12 All LC solventswereHPLC-gradeandpurchased fromOmniSolv (Charlotte,
NC, USA)

13 This was done using a Shimadzu NexeraX2 consisting of an LC-
30AD(pump), SIL-30AC (auto-injector), and SPD-20AC(UV/VIS detector)
with Sciex API4000QTRP (MS)

14 This was done using a Shimadzu NexeraX2 consisting of an LC-
30AD(pump), SIL-30AC (auto-injector), and SPD-20AC(UV/VIS detector)
with Sciex API4000 (MS)

The cyclohexane signal is normalized by the dilution fac-282

tor of our cyclohexane aliquots, dchx = 0.1, and the injec-283

tion volume vinj, chx. As the PBS aliquots were not diluted,284

this is only normalized by the injection volume vinj, PBS. Ex-285

periments were carried out independently at least in dupli-286

cate, repeated from the same DMSO stock solutions. In-287

jection volumes of the MRM procedure were 1 µL for cy-288

clohexane (diluted in octanol), and 2 µL for PBS samples.289

For one set of measurements, we carried out 2 additional290

repeat experiments with 2 µL injections for cyclohexane291

(diluted in octanol), and 1 µL for PBS. This set included292

SAMPL5_003, SAMPL5_005, SAMPL5_006, SAMPL5_011,293

SAMPL5_027, SAMPL5_049, SAMPL5_050, SAMPL5_055 ,294

SAMPL5_058, SAMPL5_060, and SAMPL5_061.295

C. Quality control296

In order to eliminate measurements thought to be too297

unreliable for the SAMPL5 challenge, we utilized a simple298

quality control filter a�er MRM quantification. Compounds299

where the integrated MRM signal within either phase var-300

ied between replicates or repeats by more than a factor of301

10 were excluded from further analysis. We additionally re-302

moved compounds that exceeded the dynamic range of the303

assay because they did not produce a detectable MRM sig-304

nal in either the cyclohexane or bu�er phases during the305

quantification.306

D. Bootstrap analysis307

Since our ultimate goal is to compare predicted distribu-308

tion coe�icients to experiment to evaluate the accuracy of309

current-generation physical modeling approaches, it is crit-310

ical to have an accurate assessment of the uncertainty in311

the experimental measurement. Good approaches to uncer-312

tainty analysis propagate all known sources of experimental313

error into the final estimates of uncertainty. To accomplish314

this, we developed a parametric bootstrap model [26] of315

the experiment based on earlier work [27], with the goal of316

propagating pipetting volume and technical replicate errors317

through the complex analysis procedure to estimate their318

impact on the overall estimated logDmeasurements.319

Bootstrap approaches provide new synthetic data sets,320

denoted as realizations, sampled using some function of321

the observed data that approximates the distribution that322

the observed data was drawn from. For each compound323

that was measured, suppose our data set providesN inde-324

pendent repeats (from the same stock solution, typically 2325

or 4), and 3 technical replicates for each repeat (quantita-326

tion experiments from each repeat, typically 3). Each real-327

ization of the bootstrap process leads to a new synthetic328

data set, of the same size, fromwhich a set of synthetic dis-329

tribution coe�icients can be computed for the realization.330

We applied two additional approaches for comparison to331

assess the performance of our parametric bootstrapmethod332

(Section II D 1). One features a nonparametric bootstrap ap-333
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proach (Section II D 2), which does not include any physical334

details. The other is a calculation of the arithmetic mean335

and standard error that is limited to the observed data (Sec-336

tion II D 3).337

1. Parametric bootstrap338

We used a parametric bootstrap [28] method to introduce339

a random bias and variance into the data, based on known340

experimental sources. This procedure allows us to use a341

model to propagate known uncertainty throughout the pro-342

cedure [28]. This allows us to better estimate the distribution343

that the observed data was drawn from, so that more accu-344

rate estimates of the means and sample variance can be345

obtained.346

Uncertainties in pipetting operations weremodeled based347

onmanufacturer descriptions [29, 30], following the work of348

Hanson, Ekins and Chodera [27]. Technical replicate varia-349

tion was modeled by calculating the coe�icient of variation350

(CV) between individual experimental replicates. We then351

took the mean CV of the entire data set, which was found352

to be∼0.3. As a control, we verified that the CV did not de-353

pend on the solvent phase that was measured. We included354

this in the parametric model by adding a signal imprecision,355

modeledby anormal distributionwith zeromean, anda stan-356

dard deviation of 0.3. We performa total of 5 000 realizations357

of this process, and calculate statistics over all realizations,358

such as the mean (expectation) and standard deviation (esti-359

mate of standard error) for each measurement.360

2. Nonparameteric bootstrap361

A traditional nonparametric Monte Carlo procedure was362

applied to resample data points[26]. This approach can es-363

timate the distribution that the observed data was drawn364

from by resampling from the observed data with replace-365

ment, to generate a new set of data points with size equal366

to the observed data set. Nonparametric bootstrap can be a367

useful approach if larger amounts of data are available, and368

a detailed physical model of the experiment is absent. We369

implemented the procedure in two stages:370

1. A set ofN repeats is drawn with replacement from the371

original set of measured repeats.372

2. For each of the repeats, we similarly draw a set of 3373

technical replicates from the original set of technical374

replicates.375

This yields a sample data set with the same size as the origi-376

nally observed data (N repeats, with 3 replicates each). We377

performa total of 5 000 realizationsof this process, and calcu-378

late statistics over all realizations, such as the mean (expec-379

tation) and standard deviation (estimate of standard error)380

for each measurement.381

3. Arithmetic mean and sample variance382

We calculated the arithmetic mean over all replicates and383

repeats, and estimated the standard error from the total of 6384

or 12 data points, to compare to our bootstrap estimates.15385

E. Kernel densities386

As a visual guide, in Figure 3 data are plotted on top of an387

estimated density of points. This density was calculated us-388

ing kernel density estimation [31], which is a nonparametric389

way to estimate a distribution of points using kernel func-390

tions. Kernel functions assign density to individual points in391

a data set, so that the combined set of data points reflects392

a distribution of of the data. We used the implementation393

available in seaborn 0.7.0 [32]. We used a product of Gaus-394

sian kernels, with a bandwidth of 0.4 for log D and 0.3 for the395

standard error. To prevent artifacts such as negative density396

estimates for the standard errors, theywere first transformed397

by the natural logarithm ln, and the results were then con-398

verted back into standard errors by exponentiation.399

III. DISTRIBUTION COEFFICIENTS400

The logD values and their uncertainties for the 53 small401

molecules that passed quality controls are presented in Ta-402

ble I. In the following two sections, we describe the di�er-403

ences between the analysis results in more detail.404

A. Mean and standard errors in logD405

The results from the arithmeticmean and sample variance406

calculation ( Section II D 3) are plotted in Figure 3c.407

Despite the compound selection e�ort, the distribution408

of data along the logD-axis is less dense in the region -1 to409

0 log units. The data outside this region seems to be cen-410

tered around -2 log units, or around 1 log unit. We could411

attribute this distribution of data to coincidence, though this412

way warrant future investigations into systematic errors. Us-413

ing thearithmeticmeanof the combined repeat and replicate414

measurements (Section II D 3) the distribution coe�icients415

measured spanned from -3.9 to 2.5 log units.416

The logD measurements distribution appears bimodal417

along the uncertainty axis. A subset of mostly negative log D418

values (Figure3c) hasa smaller estimated standarddeviation,419

though this is not the case for the majority of negative log D420

values. The average standard error, rounded to 1 significant421

figure, is 0.2 log units for the arithmetic mean calculation.422

15 For the purpose of the D3R/SAMPL5 workshop, we originally erroneously
reported the standard deviation ·

√
3 instead of the standard error ·

√
3.

The factor of
√
3 corrects the sample standard deviation across all MRM

measurements for the correlation between the 3 replicate measurements
belonging to a single independent experimental repeat.
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B. Bootstrap results423

Estimates of the logD span the range between -3.9 to 2.6424

log units, using either of the two bootstrap approaches (Sec-425

tion II D 1 andSection II D 2). The log D estimates donot di�er426

significantly from the arithmetic mean calculations. The dif-427

ference between the results is seen when we compare the428

estimated standard errors. When applying our bootstrap pro-429

cedures (Section II D 1 and Section II D 2), we see an upwards430

shi� in the uncertainties, compared to the sample variance431

calculations. The nonparametric approach yields an aver-432

age uncertainty of 0.3 log units. The parametric approach433

yields an average uncertainty of 0.4 log units. The parametric434

bootstrap suggests that by propagating errors such as the435

cyclohexane dilution, and the replicate variability into the436

model, some of the observed low uncertainties might be an437

artifact of the low number of measurements. This suggest438

that simply calculating the arithmeticmean, and standard er-439

ror of all measured data might not reliably capture the error440

in the experiments. We also note that for certain compounds,441

bootstrap distributions exhibit multimodal character and442

as such, standard errors might not accurately capture the443

full extent of the experimental uncertainty. We provide the444

bootstrap sample distributions of the parametric model in445

the supplementary information.446

Using theparametric scheme,weseeanaverage shi�ofun-447

certainties to larger values compared to the nonparametric448

bootstrap. The density estimate suggests we should expect a449

lower bound to the error that we have now incorporated into450

the analysis. Not every compound shows the same increase451

in uncertainty, though if we compare the two bootstrap ap-452

proaches, results are similar above this empirically observed453

lower bound. The nonparametric approach returns higher454

uncertainties for some data on average, but estimates lower455

uncertainties for some as well. It can be concluded that the456

error would typically be underestimated without the use of457

a bootstrap approach. Without a physical model, a nonpara-458

metric approach might still underestimate errors due to the459

limited sample size for each measurement (either 2 or 4 fully460

independent repeats, and a total of 3 replicates per data461

point).462

IV. DISCUSSION463

1. Solvent conditions464

It is important to consider the fact that di�erent cosolvents465

may have on the measured values. The solutions contained466

approximately 1% DMSO, as well as approximately 0.5% ace-467

tonitrile. Further workwould benefit froma comparisonwith468

experiments starting fromdry stocks, and therebynot adding469

extra solvents. This would eliminate DMSO and acetonitrile,470

by dispensing compound directly into either cyclohexane, or471

themixture of cyclohexane and PBS. In this case, care should472

be taken that all compound is dissolved. If found to be nec-473

essary, we could then consider starting all experiments from474

dry compound stocks, to entirely eliminate e�ects from co-475

solvents such as DMSO and acetonitrile. This would make476

experiments muchmore laborious, and would therefore re-477

duce the bandwidth of the method.478

One of the things we could not completely account for in479

the model was the exact ratio of cyclohexane and PBS so-480

lution. We attempted to account for volumetric errors from481

pipetting by performing independent repeat experiments,482

although this may still leave some systematic error. Cyclo-483

hexane is also a volatile compound, especialy compared to484

water. For comparison, the vapor pressure of cyclohexane485

is 97.81 torr [33], versus 23.8 torr for water [34]. It is possible486

that evaporationmay occur, which could lead to a systematic487

overestimation of the cyclohexane volume. For future inves-488

tigations, it may be fruitful to study the evaporation so that489

this can be accounted for in the model of the experiment,490

and to take note of systematic bias in the pipette models491

used.492

2. Compound detection limits493

Calculations using COSMO-RS so�ware[35] suggested a494

systematic underestimation of logD values in the negative495

log unit range, in particularly past a logD of -2. Without496

further experimental investigation, we can not draw definite497

conclusions as to whether this is the case, or if so, where the498

source of the systematic error lies.499

One possibility that may cause an artificial reduction of500

the dynamic range—especially at high log D values—is the501

potential for MS/MS detector saturation at high ligand con-502

centrations. Previous work (Figure 2 from [21]) examined503

detector saturation e�ects, finding it possible to reach suf-504

ficiently high compound concentrations (generally≥10 µM)505

that MRM is no longer linear in compound concentration for506

that phase. This work also found that di�erent compounds507

reach detector saturation at di�erent concentrations [21], in508

principle requiring an assessment of detector saturation to509

be performed for each compound. While we could not de-510

duce obvious signs of detector saturation in our LC-MS/MS511

chromatograms, these e�ects could bemitigated by perform-512

ing a dilution series of the aliquots sampled from each phase513

of the partitioning experiment to ensure detector response514

is linear in the range of dilutions measured. This may also re-515

veal whether compound dimerizationmay be a complicating516

factor in quantitation.517

3. Experimental design considerations518

In order to adjust our experimental setup, wehad to switch519

away from using polystyrene 96 well plates, as these were520

dissolved by cyclohexane. We attempted the use of glass521

inserts, and glass tubes but these were too narrow and pro-522

vided insu�icient mixing when shaken. We switched to glass523

vials because their larger diameter provides improvedmix-524

ing when shaken. For future work, we would recommend525

the use of glass coated plates, which have the automation526

advantages of the plates used in the original protocol [21].527
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Plate seals need to be selected carefully. We experimented528

with silicone sealing mats, but these absorbed significant529

quantities of cyclohexane. We also had to discontinue use of530

aluminum seals that contained glue, since the glue is soluble531

in cyclohexane and would contaminate LC-MS/MSmeasure-532

ments. In the end, we used aluminum PlateLoc heat seals533

and glass coated 384 well plates to circumvent these issues.534

Sensitivity also su�ered due to the need to dilute cyclohex-535

ane in octanol to prevent its accumulation on C18 columns536

used in the LC-MS/MS phase of the experiment. Trial injec-537

tions on a separate system and chromatograms showed ac-538

cumulation of unknown origin at the end of each UV chro-539

matogram. Accumulation was reduced by injecting less cy-540

clohexane. As a result, we diluted the cyclohexane with 1-541

octanol for the experiments described here, and ran blank542

injections containing ethanol between batches of 64 mea-543

surements to ensure the column was clean.544

Another change to the protocol that we would like to con-545

sider for future measurements is to optimize the time spent546

equilibrating the mixture. In this work, we separated phases547

via centrifugation and sampled aliquots for concentration548

measurement within minutes. The post-centrifugation time549

prior to sampling aliquots could be extend to 24 hours to550

allow for more equilibration for the solute between phases.551

This may have a downside, since we would have to consider552

the e�ects that may follow if compounds prefer to be in the553

interface-region between cyclohexane and water, or water554

and air. These could cause high local concentrations, intro-555

ducing a dependency of the results on exactly which part of556

the solution aliquots are taken from. We can get around this557

by only taking samples from the pure cyclohexane and aque-558

ous regions, avoiding the interfaces. This way, we still get the559

right distribution coe�icients for partitioning between bulk560

phases even if some compound is lost to the interfaces.561

It may be worthwhile to consider other e�ects of pipetting562

operations on the procedure. Some compounds could poten-563

tially stick to the surface of pipettes, or glass surfaces. This564

could adversely a�ect our measurements by changing local565

concentrations.566

Wealso consider that assay resultsmight be less variable if567

we presaturated water and cyclohexane before mixing them.568

While cyclohexane and water have much lower mutual sol-569

ubility than octanol, it is still possible that this a�ects the570

measurement.571

The computational end of the challenge featured some572

di�iculties with respect to interpretation of the data. This573

was mainly because we could not separate out many e�ects574

from the data that could a�ect the interpretation. We ob-575

served that for the many e�ects used to explain discrepan-576

cies between model and experiment, none of those could577

easily be tested with the current state of the data set. It may578

be possible to discombobulate matters such as compound579

dimerization, the transfer of water or ions into the cyclohex-580

ane phase, from changes in the logD values based on the581

molecular properties itself.582

For future challenges, we would recommend that these583

assays are carried out at multiple final concentrations of584

the ligand in the assay. This could be achieved using di�er-585

ent volumes of 10 mM ligand stocks. This would help detect586

dimerization issues, and may help account for issues with587

detector oversaturation. Note that the absolute errors in588

these stock volumes will not be critical, since the measure-589

ments rely on the relative measurement between the two590

phases. We could build models that allow for extrapolation591

to the infinite dilution limit, which should then provide sim-592

pler test cases for challenge participants to reproduce. On593

the opposite end, it may be useful to even investigate ways594

to design an experimental set that represents these type of595

issues, such as compound dimerization, so that we can focus596

more on these.597

4. Uncertainty analysis598

We hope the experience from this challenges will lay the599

groundwork for improving the reliability of data sets regard-600

ing the physical properties that we as a modeling commu-601

nity rely on. Many computational studies are limited in the602

amount of high-quality experimental data that they have ac-603

cess to. Unfortunately, most data is taken straight from liter-604

ature tables, without much thought being spent on the data605

collection process. By performing the experimental part of606

the SAMPL5 challengewewere in the position to provide new607

data to the modeling community, with an opportunity to de-608

cide on an analysis strategy that suits modeling applications.609

This not only allows for blind validation of physics-based610

models, but also a re-evaluation of the exact properties a611

data set should have to provide utility to the modeling com-612

munity. An important fact that we feel needs reemphasizing613

is that experimental data is limited in utility by the method614

that was used to analyze it.615

Among the lessons learned from this challenge, we would616

recommend that future challenges would also feature a rig-617

orous statistical treatment of the experimental analysis pro-618

cedure, ideally going beyond these initial e�orts. One crucial619

part of the analysis procedure is obtaining not only accu-620

rate estimates of the observable, but also its uncertainty.621

As indicated in our data set, standard error estimates from622

small populations may underestimate the error. Several ap-623

proaches canbe taken to resolvepart of this issue. Among the624

options are the use of statistical tests, such as the bootstrap-625

pingmethodsweapplied in thiswork. These canhelpusboth626

propagate information on uncertainty into the model (such627

as a parametric bootstrap) or extract uncertainty already628

available in the data (such as nonparametric bootstrap). The629

parametric approaches can be improved in terms of the phys-630

ical models that are used to analyze the data. These models631

should ideally include all known sources of error, such as632

pipetting errors, evaporation of solvent, errors in integration633

so�ware, fluctuations in temperature, pressure and likewise634

many other conditions that could a�ect the results.635

Another approach would be to perform statistical infer-636

ence on the data set, to provide uncertainty estimates from637

the data itself. The model structure can provide ways to638

incorporate data and propagate uncertainty frommultiple639

experiments. Common parameters, such as variance in mea-640
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surements between experiments could be inferred from com-641

bining the entire data set into one model. When prior knowl-642

edge on the experimental parameters is available, a Bayesian643

model can be used to e�ectively infer this type of uncertainty644

from the data, and use it to propagate the error into logD645

estimates. Distinctions could be made between an objec-646

tive treatment of the problem, or an empirical Bayesian ap-647

proach, where prior parameters are derived from the data.648

One could use a maximum a posteriori (MAP) probability ap-649

proach to obtain an estimate of one of the modes of the650

parameter distribution. This has obvious downsides when651

posterior densities are multimodal, and in such a case, one652

may wish to estimate the shape of the entire posterior distri-653

bution instead. An approach like Markov chain Monte Carlo654

could provide such estimates, and will allow for calculation655

of credible intervals. MCMCmethods can be computationally656

intensive compared to MAP, though if the resulting posterior657

is complicated, a MAP estimate can give poor results. Un-658

fortunately, we were unable to construct a Bayesian model659

of the experiments within our time constraints. We would660

encourage future challenges to make an attempt at creating661

a Bayesianmodel, since this would allow for robust inference662

of all experimental parameters.663

5. Funding future challenges664

The execution of this work would not have been possi-665

ble without the resources provided by Genentech. Access666

to a rich library of compounds onsite allowed us to select667

a dataset that was both challenging and useful for the pur-668

poses of the SAMPL challenge. At the same time, the instru-669

mentation provided us with the bandwidth to performmany670

measurements. Rapid redesign of experiments by trial and671

error, as a result of the di�iculties with cyclohexane compati-672

bility of laboratory consumables and equipment, would not673

have been possible without the expertise shared by Genen-674

tech scientists and the opportunities to domanymeasure-675

ments.676

Future iterations of this challenge would benefit from con-677

tinued collaboration between industry and academia. Aca-678

demic groups can partner with industry groups to pair avail-679

able skilled academic labor (graduate students and postdoc-680

toral researchers) with specialized measurement equipment681

and compound libraries. The graduate student industry in-682

ternship model proved to be a particularly successful ap-683

proach, with measurements for a blind challenge providing684

a well-defined, limited-scope project with clear high value to685

the modeling community.686

V. CONCLUSION687

The experimental data provided by this study was very688

useful for hosting the first small-molecule distribution coe�i-689

cient challenge in the context of SAMPL. It revealed that log D690

prediction, aswell asmeasurement, is not always straightfor-691

ward. We showed that it was possible to perform cyclohex-692

ane/water logDmeasurements in the samemanner as the693

original octanol/water assays, though further optimizations694

are needed to reach the same level of throughput. Cyclo-695

hexane did pose several challenges for experimental design,696

such as the need for di�erent container types, and the po-697

tential accumulation of substrate on reversed phase HPLC698

columns.699

Many details, such as protonation states, tautomer states,700

and dimerization might need to be accounted for in order701

to reproduce experiments. This challenge taught us con-702

siderations that should be made on the experimental side.703

Cases where dimerization were pointed out as possible rea-704

son for discrepancy between experiment andmodel, could705

only be hypothesized from the modeling end and not tested706

experimentally. Issues with detector saturation could also707

be a�ecting the overall quality of the data set. Future experi-708

ments would benefit frommore rigorous protocols, such as709

measurements at multiple concentrations, andmodels of all710

experimental components.711

We recommend that future challenges, and experiments in712

general, use physical models of experiments in the analysis713

of experimental uncertainty. These should be part of the714

analysis procedure, but also in experimental design. These715

will reveal abnormalities in data more clearly.716

We recommend that future challenges look into the use717

of bootstrap models such as those considered here. Addi-718

tionally, the use of Bayesian inference methods, that allow719

the incorporation of prior information should lead to a more720

robust estimate of experimental uncertainty. They will allow721

for joint inference onmultiple experiments, thereby increas-722

ing the information gain by using the model.723

Lastly, the sponsoring of this internship by Genentech was724

fundamental to generating this data. Access to compound725

libraries, and the equipment to perform the experiments is726

crucial to the design and execution of a study. Close collabo-727

rations with Genentech scientists were important in solving728

many technical challenges. Thecollaborationbetween indus-729

try and academics was not only fruitful, but fundamental in730

establishing standardized challenges for the modeling field.731

The amount of data we were able to gather would have been732

hard to come by without industry resources. At the same733

time, the need and expertise in investigating these challeng-734

ing physical chemical problems provided by the community,735

and the forum provided by the SAMPL challenge was essen-736

tial in turning this challenge into a success. We welcome737

such future e�orts and collaborations, as it is apparent that738

both experimental and computational approaches for ob-739

taining logD estimates for small molecules, would benefit740

from further optimization.741

VI. SUPPLEMENTARY INFORMATION742

Canonical isomeric smiles for each of the measured com-743

pound are available in Table S1. An sdf file containing all com-744

pounds, including the measured distribution coe�icients is745

available as part of the supplementary information. Inte-746

grated MRM data including excluded data points are avail-747
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able as part of the supplementary information. Bootstrap748

distributions from theparametric bootstrap samples for each749

compound are provided. We also include a csv file containing750

a full list of SAMPL5_XXX identifiers and canonical isomeric751

smiles, including unmeasured compounds.752
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FIG. 1: Molecules and corresponding measured log distribution coe�icients for measurements that passed quality
controls. Log Dmeasurements are reported as expectation± standard errors, calculated using our parametric bootstrap

method (Section II D).
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FIG. 2: Illustration of the shake-flask procedure used for cyclohexane-water distribution coe�icient measurements.
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TABLE I: Log distribution coe�icient measurements and standard errors. Estimates of log distribution functions and
their associated standard errors are described for parametric bootstrap (Section II D 1), nonparametric bootstrap

(Section II D 2), and arithmetic mean and corrected sample variance (Section II D 3).

Uncertainty analysis method
Bootstrap Arithmetic mean

Compound ID Parametric Nonparametric Standard error
SAMPL5_002 1.5 ± 0.3 1.5 ± 0.2 1.4 ± 0.1
SAMPL5_003 1.9 ± 0.6 1.9 ± 0.5 1.94± 0.04
SAMPL5_004 2.2 ± 0.3 2.2 ± 0.1 2.2 ± 0.1
SAMPL5_005 −0.9 ± 0.7 −0.9 ± 0.7 −0.86± 0.03
SAMPL5_006 −1.0 ± 0.7 −1.0 ± 0.6 −1.02± 0.03
SAMPL5_007 1.4 ± 0.3 1.39± 0.08 1.38± 0.09
SAMPL5_010 −1.7 ± 0.6 −1.7 ± 0.5 −1.7 ± 0.1
SAMPL5_011 −3.0 ± 0.9 −3.0 ± 0.9 −2.96± 0.03
SAMPL5_013 −1.3 ± 0.6 −1.3 ± 0.5 −1.5 ± 0.1
SAMPL5_015 −2.3 ± 0.3 −2.3 ± 0.2 −2.25± 0.09
SAMPL5_017 2.6 ± 0.3 2.6 ± 0.2 2.5 ± 0.1
SAMPL5_019 1.4 ± 0.7 1.4 ± 0.7 1.2 ± 0.1
SAMPL5_020 1.7 ± 0.3 1.7 ± 0.1 1.6 ± 0.1
SAMPL5_021 1.2 ± 0.3 1.18± 0.07 1.2 ± 0.1
SAMPL5_024 1.0 ± 0.4 1.0 ± 0.4 1.0 ± 0.1
SAMPL5_026 −2.6 ± 0.3 −2.6 ± 0.1 −2.58± 0.04
SAMPL5_027 −1.9 ± 0.8 −1.9 ± 0.7 −1.87± 0.02
SAMPL5_033 1.8 ± 0.3 1.82± 0.07 1.80± 0.08
SAMPL5_037 −1.5 ± 0.3 −1.54± 0.07 −1.53± 0.03
SAMPL5_042 −1.1 ± 0.2 −1.13± 0.04 −1.1 ± 0.1
SAMPL5_044 1.1 ± 0.4 1.1 ± 0.3 1.0 ± 0.1
SAMPL5_045 −2.1 ± 0.3 −2.09± 0.04 −2.09± 0.08
SAMPL5_046 0.2 ± 0.3 0.19± 0.09 0.20± 0.09
SAMPL5_047 −0.4 ± 0.2 −0.37± 0.07 −0.37± 0.09
SAMPL5_048 1.0 ± 0.3 1.0 ± 0.2 0.9 ± 0.1
SAMPL5_049 1.3 ± 0.5 1.3 ± 0.5 1.28± 0.04
SAMPL5_050 −3.4 ± 0.5 −3.4 ± 0.5 −3.2 ± 0.2
SAMPL5_055 −1.5 ± 0.7 −1.5 ± 0.7 −1.48± 0.04
SAMPL5_056 −2.5 ± 0.3 −2.46± 0.05 −2.46± 0.05
SAMPL5_058 0.8 ± 0.6 0.8 ± 0.5 0.82± 0.03
SAMPL5_059 −1.3 ± 0.3 −1.34± 0.03 −1.33± 0.09
SAMPL5_060 −3.9 ± 0.4 −3.9 ± 0.3 −3.87± 0.08
SAMPL5_061 −1.5 ± 0.9 −1.5 ± 0.9 −1.45± 0.03
SAMPL5_063 −3.1 ± 0.4 −3.2 ± 0.4 −3.0 ± 0.1
SAMPL5_065 0.7 ± 0.3 0.7 ± 0.1 0.69± 0.07
SAMPL5_067 −1.3 ± 0.3 −1.3 ± 0.2 −1.3 ± 0.1
SAMPL5_068 1.4 ± 0.3 1.4 ± 0.2 1.41± 0.09
SAMPL5_069 −1.3 ± 0.4 −1.2 ± 0.3 −1.3 ± 0.1
SAMPL5_070 1.6 ± 0.3 1.6 ± 0.2 1.61± 0.09
SAMPL5_071 −0.0 ± 0.4 −0.0 ± 0.4 −0.1 ± 0.2
SAMPL5_072 0.6 ± 0.3 0.6 ± 0.2 0.6 ± 0.1
SAMPL5_074 −1.9 ± 0.3 −1.9 ± 0.2 −1.9 ± 0.1
SAMPL5_075 −2.8 ± 0.3 −2.8 ± 0.1 −2.77± 0.09
SAMPL5_080 −2.2 ± 0.3 −2.2 ± 0.1 −2.18± 0.07
SAMPL5_081 −2.2 ± 0.3 −2.2 ± 0.1 −2.19± 0.09
SAMPL5_082 2.5 ± 0.3 2.5 ± 0.2 2.5 ± 0.1
SAMPL5_083 −2.0 ± 0.3 −2.0 ± 0.2 −1.9 ± 0.1
SAMPL5_084 −0.0 ± 0.3 −0.02± 0.05 −0.02± 0.08
SAMPL5_085 −2.3 ± 0.3 −2.3 ± 0.2 −2.2 ± 0.1
SAMPL5_086 0.7 ± 0.3 0.7 ± 0.1 0.70± 0.06
SAMPL5_088 −1.9 ± 0.3 −1.9 ± 0.2 −1.9 ± 0.1
SAMPL5_090 0.7 ± 0.2 0.75± 0.06 0.76± 0.08
SAMPL5_092 −0.4 ± 0.3 −0.41± 0.09 −0.39± 0.09
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(a) Parametric bootstrap (Section II D 1). Standard error estimates
calculated by using a parametric bootstrap (circles) and a kernel

density estimate (contours) of the entire set.
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(b) Nonparametric bootstrap (Section II D 2). Standard error
estimates calculated using a nonparametric bootstrap (circles), and

a kernel density estimate (contours) of the entire set.
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FIG. 3: Joint kernel density estimates of log distribution coe�icient (log D) measurements andmeasurement error
estimates. logDmeasurements are plotted with their corresponding estimated standard errors (circles) for the three
analysis approaches described in Section II D. A kernel density estimate (contours, described in Section II E) is shown to

highlight the di�erences in error estimates for the di�erent methods.
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X. SUPPLEMENTARY INFORMATION852

A. Compound identifiers853

TABLE S1: All of the compounds that were selected, and for which logDwas obtained.

Molecule ID Canonical Isomeric SMILES eMolecules ID (if available)

SAMPL5_002 CCOC(=O)c1c(c2c(c(c(nc2s1)C)C)C)N 1254130
SAMPL5_003 c1ccc2c(c1)c(=O)oc(n2)c3ccccc3F 1231787
SAMPL5_004 CCOc1ccc(cc1)Nc2cc(c3ccccc3n2)C 1221528
SAMPL5_005 Cn1ccnc1SCC(=O)Nc2ccc3c(c2)OCO3 1363085
SAMPL5_006 C=C(Cn1c2ccccc2nc1CO)Br 2118862
SAMPL5_007 c1ccc(cc1)CCNc2c3cc(ccc3ncn2)Br 1373587
SAMPL5_010 c1cc(cc(c1)NCc2ccncc2)C(=O)O 1491855
SAMPL5_011 Cc1cc(nc(n1)Nc2ccccc2C(=O)O)C 542592
SAMPL5_013 Cc1ccc(cc1)c2nc(c3c(n2)n(c(=O)[nH]3)c4ccccc4)C(=O)N 16095985
SAMPL5_015 Cc1ccc2c(c1)c(ncn2)NCC(=O)O 1355949
SAMPL5_017 c1ccc2c(c1)c(nc(n2)c3ccccc3O)NC4CCCC4 2425478
SAMPL5_019 Cc1ccc(cc1)Nc2ccnc(n2)Nc3ccc(cc3)C 43423819
SAMPL5_020 CCCC(=O)Nc1nc2ccc(cc2s1)C(C)C 5522978
SAMPL5_021 Cc1nn2cc(nc2s1)c3cccc(c3)OC 31467689
SAMPL5_024 Cc1ccc2c(c1)cc3cc(sc3n2)C(=O)Nc4ccc(c(c4)C)C 16329490
SAMPL5_026 Cc1cc(c2c(c1)c(c([nH]2)C)CC(=O)O)C 703690
SAMPL5_027 c1ccc(cc1)CNc2ncnc(n2)N 2483781
SAMPL5_033 Cc1ccc(cc1NC(=O)N2CCCCC[C@@H]2c3cccs3)Cl 16363773
SAMPL5_037 CN(C)S(=O)(=O)N1CCNCC1 833953
SAMPL5_042 c1ccc(cc1)c2ccccc2NC(=O)c3ccc(=O)[nH]n3 1552842
SAMPL5_044 c1ccc2c(c1)cc(c(=O)o2)C(=O)Nc3ccc4c(c3)scn4 4987019
SAMPL5_045 CCC(=O)Nc1ccc2c(c1)ncs2 12474692
SAMPL5_046 CSc1ccc(cc1)CC(=O)Nc2c3ccsc3ncn2 12046880
SAMPL5_047 c1cnoc1C(=O)Nc2c(c3c(s2)CCCC3)C#N 5627778
SAMPL5_048 c1ccc2c(c1)nc(s2)c3cccc(c3)NC(=O)c4ccno4 5627798
SAMPL5_049 c1cc(c(c(c1)Cl)Cl)NC(=O)c2ccno2 5627856
SAMPL5_050 Cc1ccc2c(n1)nn3c2nc(cc3O)C 5663556
SAMPL5_055 c1ccc2c(c1)ncc(n2)C(=O)N 3800934
SAMPL5_056 CC(C)[C@@H]1Cc2c(cc(c(n2)O)C#N)CO1
SAMPL5_058 c1ccc(cc1)n2c(=O)c3ccccc3cn2 3730323
SAMPL5_059 c1ccc(cc1)c2nc(sn2)N 711981
SAMPL5_060 c1ccc2c(c1)c3cc(ncc3[nH]2)C(=O)O 42618372
SAMPL5_061 Cc1nccc(n1)[C@@]2(CNCCO2)C 43241882
SAMPL5_063 C1C[C@H](CNC1)N2CCC(CC2)C(=O)N 38498425
SAMPL5_065 COc1ccc2c(c1)[nH]c3c2CC[N@]4[C@@H]3C[C@H]5[C@@H](C4)C[C@H]([C@@H]([C@H]5C(=O)OC)OC)OC(=O)c6cc(c(c(c6)OC)OC)OC
SAMPL5_067 CC(C)NC[C@@H](COc1cccc2c1cccc2)O
SAMPL5_068 c1ccc(cc1)c2c(nnc(n2)c3ccccn3)c4ccccc4
SAMPL5_069 C[N@]1CCc2cc(c(c-3c2[C@@H]1Cc4c3cc(c(c4)O)OC)OC)O
SAMPL5_070 CN(C)CCC=C1c2ccccc2CCc3c1cccc3
SAMPL5_071 CCOc1cc(c(cc1N2CCOCC2)OCC)N
SAMPL5_072 CN(C)CCOC(c1ccccc1)c2ccccc2
SAMPL5_074 c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3)CO)O)O)N
SAMPL5_075 CC(C)NC[C@@H](COc1ccc(cc1)CCOC)O
SAMPL5_083 C[C@H]1/C=C/C=C(\C(=O)NC\2=C(C3=C(C(=C4C(=C3C(=O)/C2=C/NN5CCN(CC5)C)C(=O)[C@](O4)(O/C=C/[C@@H]([C@H]([C@H]([C@@H]([C@@H]([C@@H]([C@H]1O)C)O)C)OC(=O)C)C)OC)C)C)O)O)/C
SAMPL5_080 Cn1cnc2c1c(=O)n(c(=O)n2C)C
SAMPL5_081 CC(C)NC[C@H](COc1ccc(cc1)CC(=O)N)O
SAMPL5_082 CC/C(=C(\c1ccccc1)/c2ccc(cc2)OCCN(C)C)/c3ccccc3
SAMPL5_084 c1cc(ccc1C(=O)CCCN2CCC(CC2)(c3ccc(cc3)Cl)O)F
SAMPL5_085 c1ccc(cc1)C2(C(=O)NC(=O)N2)c3ccccc3
SAMPL5_086 CCCCOc1cc(c2ccccc2n1)C(=O)NCCN(CC)CC
SAMPL5_088 CCN(Cc1ccncc1)C(=O)[C@H](CO)c2ccccc2
SAMPL5_090 Cc1cc2c(cc1C)nc(c(n2)c3ccccn3)c4ccccn4
SAMPL5_092 CC(=O)N1CCN(CC1)c2ccc(cc2)OC[C@H]3CO[C@](O3)(Cn4ccnc4)c5ccc(cc5Cl)Cl
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