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Abstract 
 
Despite advances in cancer diagnosis and treatment strategies, robust prognostic 

signatures remain elusive in most cancers. Cell proliferation has long been recognized 

as a prognostic marker in cancer, but it has not been thoroughly investigated across 

multiple cancers. Here we explore the role of cell proliferation across 19 cancers 

(n=6,581 patients) using tissue-based RNA sequencing from The Cancer Genome Atlas 

project by employing a ‘proliferative index’ derived from gene expression associated 

with PCNA expression. This proliferative index is significantly associated with patient 

survival (Cox, p-value<0.05) in 7/19 cancers, which we have defined as ‘proliferation-

informative cancers’ (PICs). In PICs the proliferative index is strongly correlated with 

tumor stage and nodal invasion. PICs paradoxically demonstrate reduced baseline 

expression of proliferation machinery relative to non-PICs suggesting that non-PICs 

saturate their proliferative capacity early in tumor development and allow other factors 

to dictate prognostic outcomes. We also identify chemotherapies whose efficacy is 

correlated with proliferation index and highlight drugs capable of inhibiting proliferation 

associated expression. Additionally, we find that proliferative index is significantly 

associated with gross somatic mutation burden (Spearman, p=1.76x10-23) as well 

mutations in individual driver genes. This analysis provides a comprehensive 

characterization of tumor proliferation rates and their association with disease 

progression and prognosis across cancer types and highlights specific cancers that may 

be particularly susceptible to improved targeting of this classic cancer hallmark. 

Introduction 
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A fundamental characteristic of cancer cells is their ability to maintain the capacity to 

proliferate, bypassing the homeostatic signaling network controlling cell division in 

normal tissue. The capacity to “sustain proliferative signaling,” “enable replicative 

immortality,” and “evade growth suppressors” represent 3 of the original 6 hallmarks of 

cancer, and histological techniques examining the number of mitotic cells present in 

tumor biopsies have been used clinically to assess tumor grade for several decades 

[1,2]. Although proliferation is a clear hallmark of cancer, tumor evolutionary tradeoffs 

may exist in certain tumor types or stages that prioritize resources for other survival 

phenotypes like metastasis [3,4], angiogenesis [5–7], immune system evasion [8,9], 

drug efflux [10,11], DNA repair [12,13], drug resistance [14], or reactive oxygen species 

(ROS) regulation [15]. Characterizing these tradeoffs is critical for a complete 

understanding tumor progression and the development of appropriate therapies [16]. 

 

Early studies comparing tumor with adjacent normal tissue identified expression 

changes in genes controlling cell proliferation as some of the largest and most 

consistent cancer alterations and further associated proliferation signatures with poor 

patient prognosis and advanced tumor grade[17–22]. Recent large-scale sequencing 

efforts have described driver mutations that hijack normal proliferation machinery. For 

example, approximately 40% of melanomas possess activating BRAF mutations that 

modulate proliferation by constitutively activating the downstream mitogen activated 

protein kinase (MAPK) pathway[23]. Multiple tumor types also harbor activating 

mutations in phosphoinositide 3-kinase (PI3K) that hyperactivate AKT/mTOR signaling 

and several other pathways important for regulating proliferation[24]. Accordingly, a 

majority of cytotoxic chemotherapies seek to preferentially target the increased 

proliferation rate of cancer cells by damaging DNA in dividing cells or impairing vital 

replication machinery[25,26].  

 

Venet, et al. recently derived a general marker of proliferation, ‘metaPCNA’, by 

identifying the top 1% of genes most positively correlated with the proliferation marker 

PCNA across 36 tissue types and demonstrated that it significantly outperformed a 

majority of prognostic signatures developed for breast cancer[27,28]. Further 
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highlighting the importance of proliferation rate, the authors determined a majority of 

variation in breast cancer transcriptomes is correlated with proliferation and most 

random gene sets are significantly associated with breast cancer outcome due to their 

inherent relationship with a broad underlying proliferation signature [27,28]. In this study 

we examine the relative importance of proliferation to disease progression and patient 

prognosis across cancers using RNA-sequencing (RNA-seq) profiles from 19 cancers in 

6,581 patients catalogued in The Cancer Genome Atlas (TCGA). We contrast these 

with 30 normal tissues from 8,553 patients from the Genotype-Tissue Expression 

(GTEx) project to investigate proliferation rates across tissues types and disease 

stages. We also describe chemotherapies whose efficacy is associated with cellular 

proliferation rates and highlight drugs that appear significantly alter proliferation at the 

transcription level. We demonstrate a strong relationship between tumor proliferation 

signatures and somatic mutation burden and identify single nucleotide variants 

associated with proliferative phenotype across cancers. The relative prognostic power 

of the metaPCNA proliferation index (PI), common clinical annotations, optimized 

survival models, and random transcript sets are compared within and across each 

cancer. Finally, we provide on open-source R package for future studies which 

calculates and analyzes PI across a user’s dataset and compares a user’s model with 

PI.   

 

Methods 

 

TCGA and GTEx Data acquisition 

RNA-seq and associated patient clinical data was obtained from the TCGA data portal 

(tcga-data.nci.nih.gov) in June 2015. (Supplemental Table 1) Level 3 RNASeqV2 raw 

count data was used for downstream analysis. Relevant clinical information for each 

patient was obtained from the associated “clinical_patient” and “clinical_follow_up” files, 

with survival time calculated as the maximum “days_to_death” or 

“days_to_last_followup” column value from the “clinical_patient” file or any 

“clinical_follow_up” file. All staging information was obtained from the “pathologic_T”, 

“pathologic_N”, and “pathologic_M” columns in the “clinical_patient” file.  GTEx 
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(gtexportal.org) V6 RNA-seq data for all available tissues was obtained in January 2016 

(Supplemental Table 2).  

 

All analysis was performed using R [29] (Version 3.2.1) with RStudio [30] (Version 

0.99.891). 

 

Data normalization and PI calculation 

The PI was calculated as previously described by Venet et. al. Briefly, a sample’s PI 

was defined as the median expression value of the original 131 genes found to be most 

associated with PCNA expression across 36 tissue types. For cross-cancer or cross-

tissue comparisons, raw count reads were normalized to counts-per-million (CPM) prior 

to PI calculation. For intra-cancer analyses, raw counts were variance stabilized using 

the ‘DESeq2’[31] (Version 1.8.2) package function “varianceStabilizingTransformation” 

prior to PI calculation or survival analysis. 

 

PI comparisons and survival association analysis 

All cross-sample PI comparisons were conducted with two-sided wilcox tests via the 

base ‘stats’[29] (version 3.2.1) package wilcox.test function. PI-survival associations 

were determined using survival[32,33] (version 2.38-3) and survcomp[34,35] (version 

1.18.0) packages. Cox regressions were performed with the coxph function to regress 

overall patient survival on PI and Wald test p-values were reported. Kaplan-Meier 

curves were generated for tumors in the top and bottom quartiles of PI using the survfit 

function and significant differences between survival curves were assessed with the 

survdiff function.  Dendrograms of cancer clustering based on negative log10 Cox 

regression p-values were constructed with the hclust function using Ward clustering. A 

heatmap of cross-cancer survival associated genes (uncorrected p-value<0.05 for at 

least 9/19 cancers) was generated on negative log10 Cox regression p-values 

generated for each transcript measured in TCGA Level 3 data. Models that failed to 

converge were assigned a p-value of 1. The heatmap was generated with the R 

gplots[36] (version 2.17.0) heatmap.2 function using Euclidean distance measurement 

and Ward clustering. 
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Pathway analysis 

Pathway analysis was conducted on the 162 cross-cancer survival associated genes 

with uncorrected Cox p-values<0.05 across all PICs using the Database for Annotation, 

Visualization and Integrated Discovery (DAVID, v6.7)[37,38] pathway analysis with 

default settings. All unique gene names available in the TCGA Level 3 count data were 

used as a background for analysis.  Gene ontology enrichment analysis of expression-

survival associations in each cancer was conducted with GOrilla (http://cbl-

gorilla.cs.technion.ac.il) in “single ranked list of genes” mode. GO terms were 

condensed into broader categories for visualization with REVIGO (http://revigo.irb.hr).  

 

Cross-cancer survival model 

Variance stabilized transcript count data was scaled within each cancer prior to 

combining cohorts for all cross-cancer survival model generation. For each cancer, the 

18 shortest surviving patients who succumbed to disease and the 18 longest surviving 

patients were identified for initial analyses. Only 18 patients were selected because this 

represented the top and bottom quartiles of the mesothelioma cohort, the smallest 

cohort included in this study. Patients were indexed as “1” if they were in the 

shortest/longest overall survival analysis and “0” if they were not. We then generated 

two models: the first included all 19 cancers and the second included only PIC cancers 

(KIRC, ACC, LGG, KIRP, MESO, PAAD, and LUAD). PICs were defined as cancers 

with Bonferroni-corrected PI Cox regression p-value of less than 0.05 and also as the 

cancers who clustered together when considering only the cross-cancer significant 

survival transcripts as described above. Prior to model training, the ‘caret’[39] (version 

6.0-64) createDataPartition function was used to split the full cross-cancer and PIC-only 

data sets into a training cohort containing 70% of patients and a testing cohort 

containing 30% of patients, while conserving a roughly equivalent number of shortest 

and longest overall survival patients within each partition.   

 

LASSO 
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A LASSO regression model was trained on the full cross-cancer and PIC and non-PIC 

only training cohorts using the glmnet[40] (version 2.0-2) cv.glmnet function with 

regression family set to “binomial” and nfolds set at 5. This generated a binomial 

regression model, which used a lambda penalty optimized using 5-fold cross validation 

within the training cohort. The optimal lambda penalty was defined as the smallest 

model with a cross validation mean squared error within one standard deviation from 

the minimum value.  

 

Ridge 

A ridge regression model was also trained with the cv.glmnet function with identical 

parameters as the LASSO model described above, except the alpha parameter was set 

to 0. 

 

Random Forest 

A random forest model was trained on the full cross-cancer and PIC only cohorts using 

the randomForest[41] (version 4.6-12) package. Models were generated with the 

randomForest function using default settings except mtry was limited to 1000.   

 

SVM 

A linear support vector machine model was trained on the full cross-cancer and PIC 

only cohorts using the e1071[42] (version 1.6-7) package. The model was trained using 

the svm function with kernel set to “linear” and “cross” set to 5. The cost parameter was 

optimized for each cohort by finding the value that minimized the 5-fold cross validation 

squared error within the training cohort after trying a series of values ranging from 

0.00001 to 10000.  

 

Model Evaluation 

Performance was evaluated for each model by test set ROC curve AUC generated by 

predictions made on the testing cohort using the predict function and the ROCR[43] 

package (version 1.0-7). 
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Permutation 

The significance of model performance in the PIC only cohort for each machine learning 

approach was assessed by randomly sampling seven cancers, dichotomizing the 

cohorts, training each model in an identical manner as described above for the PIC only 

cohort, and comparing ROC AUC curves for each resulting random sample.  

 

Full Cohort Performance Assessment 

The LASSO model derived from the PIC-only cohort was applied to the full patient 

cohorts of each individual PIC to assess performance in a non-dichotomized setting. 

LGG, KIRC, and LUAD had greater than 25 uncensored patients remaining after 

removing the 18 poorest outcome patients for model training, so for these cancers the 

model was applied only on patients that were not used to train the original model. 

Because KIRP, PAAD, MESO, and ACC had a limited number of remaining patients, 

the PIC LASSO model was applied to the full cohort including patients that were used to 

train the original model. The top and bottom quartiles of predicted survival were 

compared using Kaplan-Meier curves as described above. 

 

Intra-cancer survival modeling 

To assess the relative prognostic ability of tumor PI, random gene signatures, and 

LASSO optimized signatures, each cancer cohort was split into equivalently sized 

training and test cohorts 100 different ways with the caret createDataPartition function 

to ensure an equivalent number of censored events between each group. On each 

training cohort, a multivariate Cox regression model with LASSO for feature selection 

was trained with the L1 penalty, lambda was selected by 3-fold cross validation by the 

glmnet package’s cv.glmnet function with family set to “cox” and “nfolds” set to 3. A 

random number of genes equivalent in size to the LASSO model generated for each 

training cohort was selected and used to train a Cox regression with the survival 

package coxph function. Lastly, a Cox regression model was trained on the tumor PIs of 

each training cohort using the coxph function. The relative performance of the LASSO, 

Random and PI models was assessed by concordance index in the test cohort using 

the R survcomp (version 1.18.0) package concordance.index function with method set 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 10, 2016. ; https://doi.org/10.1101/063057doi: bioRxiv preprint 

https://doi.org/10.1101/063057
http://creativecommons.org/licenses/by-nc-nd/4.0/


to “noether”. Relative concordance indices were compared across all 100 splits for each 

cancer using paired Wilcox tests.  

 

Drug associations with proliferation index 

To correlate sample PI with drug efficacy, EC50 values for 24 drugs and normalized 

microarray expression data for 486 cancer cell lines was obtained from the Cancer Cell 

Line Encyclopedia [44]. The specific files used for analysis were 

“CCLE_NP24.2009_Drug_data_2015.02.24.csv” and “CCLE_Expression_2012009-

29.res” (downloaded in June 2016). Proliferation index was calculated in a similar 

manner as described above by taking the median normalized expression value for each 

probe set mapping to a gene contained within the proliferation index. To measure 

impact of drug treatment on PI, expression profile data of MCF7 cells treated with 1309 

drugs and their corresponding vehicle controls was obtained from the Connectivity Map 

data set [45]. The “rankMatrix.txt” file (downloaded in June 2016) was used for 

downstream analysis.  This file consists of a probe set by treatment matrix with each 

probe set given a ranking (from 1 to the total number of probes – 22,777) corresponding 

to the magnitude of differential expression of that probe set after treatment with a drug 

relative to its vehicle control with a ranking of 1 assigned to the highest positive change 

in expression and 22,777 assigned to the lowest negative change in expression. The 

relative impact on PI of different treatments was compared by calculating a median 

ranking for all probe sets mapping to genes used in the calculation of PI for each 

treatment and subsequently ranking drugs according to the percentage of drugs with a 

higher PI ranking. Cumulative distribution functions of all PI-probe set rankings for drugs 

of interest were also compared. 

 

Breast cancer subtyping 

Subtype assignments for patients in the BRCA cohort were obtained from a previous 

TCGA analysis of breast cancer [46]. The “PAM50 mRNA” column in Supplemental 

Table 1 was used for those patients who met our criteria for analysis. Principle 

component analysis was performed using the prcomp function on the BRCA cohort on 

all variance stabilized transcript data.  
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SNV-point mutation analysis 

Somatic mutations were obtained from Kandoth, et al.[47] for 12 TCGA ‘Pan-Cancer’ 

datasets.  We found 2,336 patients overlapped from 9 cancers with the TCGA gene 

expression dataset and obtained somatic mutations for those patients from Kandoth, et 

al.’s Supplementary Table 2 where the authors used common, stringent filters to ‘ensure 

high quality mutation calls’ across those samples. Correlations between tumor PI and 

somatic mutation burden were conducted by log normalizing the sum of all mutations 

identified for each patient and performing Spearman correlations with patient PI both 

across and within each cancer type. To identify genes with mutation status associated 

with PI, we performed Wilcoxon rank tests of PI between tumors containing a missense 

or nonsense mutation and tumors containing synonymous or no mutation for each gene 

with at least 5 mutations present in each cancer. This analysis was not performed on 

cancers with less than 100 genes meeting these criteria (n=3). To identify significant 

cross-cancer trends, we used Fisher’s combined p-value method on each gene mutated 

at least 5 times in at least 2 cancers.  

 

Results 

 

Proliferation index varies across tissues, cancer types and tumor pathology 

RNA-seq and associated clinical annotation data were compiled for 6,581 patients 

across 19 cancers. To be included in this study, clinical and RNA-seq data for a given 

cancer must have been available for at least 50 patients and at least 25 patients must 

have died from the disease to provide uncensored survival information. Examination of 

the PI within and across tumor types revealed a continuum of index values within each 

cancer and notable differences between cancers (Figure 1A).  A similar analysis of 

healthy GTEx tissues revealed low PI values in post-mitotic tissues such as skeletal 

muscle and brain tissue and higher values in EBV-transformed lymphocytes or tissues 

with high rates of cell turnover such as esophageal mucosa, vaginal epithelium and skin 

(Supplemental Figure 1). For every cancer with adjacent normal tissue available from 

TCGA (n=12), the PI was higher in tumor tissue compared to adjacent normal tissue 
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(Wilcoxon, p<0.05). This was also true when comparing tumor tissue collected by TCGA 

to normal tissue from the same organs and collected by the GTEx consortium (n=9), 

demonstrating tumorigenesis is accompanied by a characteristic increase in 

proliferation-related gene expression (Figure 1B).  

 

Because it was the largest dataset and to follow up the Venet et al. study, we focused 

additional analysis on breast cancer.  Within breast cancer subtypes, PI values were 

highest among aggressive basal-like tumors and lowest among the less aggressive 

luminal A and normal-like subtypes (Figure 1C). Principle component analysis (PCA) of 

all gene expression values in breast cancer confirmed the first principle component 

(PC1) stratified subtypes (Figure 1D). Interestingly, PC1 was also strongly correlated 

with tumor PI (rho=0.56) indicating a large proportion of variance within breast cancer 

gene expression, including subtype delineations, are strongly associated with 

proliferation (Figure 1E). Moreover, examining PI across all cancers revealed strong 

correlations with early principle components in a majority of cancers, supporting 

previous observations that a large portion of variance across tumor transcriptomes is 

correlated with relative proliferation rates (Figure 1F). However, tumor PI was 

associated with pathologically assessed tumor stage, nodal invasion, and metastasis in 

only a subset of tumors analyzed, suggesting the importance of proliferation in tumor 

progression may vary considerably across cancers (Figure 2A-C). PI values are plotted 

across each pathological grading characteristic for clear cell renal carcinoma (KIRC), a 

representative cancer for which PI is significantly associated with pathological stage, 

and stomach adenocarcinoma (STAD), a representative cancer for which PI is not 

associated with pathological stage (2D-F).  

 

Cell proliferation is associated with overall survival in a subset of cancers 

Next we assessed the relationship between tumor PI and patient survival. Cox 

proportional hazards models and Kaplan-Meier curve analysis revealed tumor PI was 

significantly associated with survival in a subset of cancers similar to those implicated in 

Figure 2 above (Figure 3A, Supplemental Figure 2). Strikingly, the association of a 

cancer’s PI with survival appears to be inversely correlated with its median PI level 
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relative to other cancer types  (Figure 3B). This may indicate that in cancers with the 

highest proliferation rates, other tumor characteristics dictate patient survival. We tested 

this hypothesis by performing Cox proportional hazards regression on all transcripts in 

each cancer. Pathway analysis of transcripts significantly associated with survival 

confirmed an enrichment for proliferation-related gene ontology (GO) terms such as cell 

cycle, DNA replication, and cell division in cancers whose proliferation rate was 

associated with survival whereas other cancers showed a relative paucity of 

proliferation related enrichment and favored cell metabolism, transport, ROS response, 

angiogenesis and immune related terms (Supplemental Table 3, Supplemental Figure 

3).  

 

No transcripts were associated with survival in all cancers, however 84 transcripts 

associated with survival (Cox p-value < 0.05) in at least 9 out of 19 cancers. Pathway 

analysis on these transcripts revealed enrichment for proliferation-related processes 

including mitosis, cell and nuclear division, and spindle formation (Supplemental Table 

4). Clustering cancers by their respective Cox regression p-values for each of these 84 

transcripts revealed two distinct clusters (Figure 3C). The first cluster, representing 

12/19 cancers is relatively depleted for low p-values indicating that survival patterns are 

relatively unique to each of these cancer types. The second cluster, consisting of the 

remaining 7 cancers, shows a much stronger enrichment for low p-values indicating a 

common, proliferation-related, survival phenotype. The second cluster of cancers, from 

here on referred to as proliferation-informative cancers (PICs), is identical to the subset 

of cancers for which the tumor PI was significantly associated with survival and is not 

enriched for any clinical or demographic parameter. Relaxing the threshold for the 

number of significant cancers required for transcript inclusion did not significantly alter 

this clustering pattern (Supplemental Figure 4). Clustering individual patients based on 

the expression levels of the top 250 most variable transcripts across all cancers reveals 

that patients with the same cancer type tend to cluster together and indicates that PIC 

clustering is not driven by underlying baseline tissue expression patterns (Supplemental 

Figure 5). 
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To further investigate cross-cancer survival patterns, we selected an equivalent number 

of the shortest surviving and longest surviving patients from each cancer and randomly 

partitioned all samples into training and testing cohorts for prognostic model 

development and evaluation (Figure 4A). A multivariate Cox regression model with L1-

penalized log partial likelihood (LASSO) for feature selection had relatively poor 

performance (AUC=0.651) when trained on the full set of cancers, however when 

limited to just PICs, performance improved dramatically (AUC=0.856). This again 

demonstrates PICs share a common survival phenotype (Figure 4B, Supplemental 

Table 5). To assess the uniqueness of PICs’ model performance, we randomly selected 

1000 sets of 7 cancers for model training and none demonstrated the performance 

achieved by the PIC-only model (Figure 4C). In fact, model performance across our 

permutations was strongly correlated with the number of PICs incorporated into each 

model (Figure 4D). This trend was also observed using a variety of other predictive 

modeling approaches (Supplemental Figure 6). To assess whether our PIC model could 

perform well as a continuous metric of survival outside of our pre-dichotomized cohort, 

we applied it to the full patient cohorts for each PIC. In all PICs, model prediction values 

were successful in prognostically stratifying patients (Supplemental Figure 7). 

 

We next examined intra-cancer survival patterns by comparing the relative prognostic 

performance of patient PI, LASSO optimized transcript models, and randomly selected 

transcript models (Figure 5A). In all cancers except for mesothelioma, optimized 

transcript models had the best prognostic performance. However in PICs, patient PI and 

random transcript models were more highly associated with survival than non-PICs 

(Figure 5B-C, Supplemental Table 6). To facilitate PI exploration, we have developed an 

R package (https://github.com/blasseigne/ProliferativeIndex), ‘ProliferativeIndex’, which 

calculates and analyzes PI across a user’s dataset and compares a user’s model with 

PI.   

 

Proliferation Index Corresponds to Drug Sensitivity 

Because several widely used chemotherapies target proliferation-associated processes, 

we hypothesized that sensitivity to several drugs may be strongly correlated with PI. To 
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test this hypothesis we obtained drug sensitivity (EC50) and expression information 

from the Cancer Cell Line Encyclopedia [44]. As suspected, sensitivity to two inhibitors 

of topoisomerase, an enzyme that controls the unwinding of DNA during replication and 

transcription, as well as Paclitaxel, a drug that disrupts microtubule function during 

mitosis, was significantly correlated to cell PI (Bonferroni-adjusted p-value < 0.05, 

Figure 6A) [48,49]. The EC50 of a histone deacetylase inhibitor, Panobinostat, was also 

significantly inversely correlated with PI (rho = -0.25, p-value 6.83x10-7) and no drug 

EC50 values were significantly positively correlated with PI. We next investigated 

whether HDAC and topoisomerase inhibitors were capable of inhibiting proliferation at 

the transcription level using treatment-induced differential expression data provided for 

over 1000 compounds by the Connectivity Map (CMap) [45]. We focused on MCF7, a 

breast cancer cell line for which the most treatment data was available. As a positive 

control, we examined the effect of estradiol (a ligand previously reported to increase the 

proliferation rate of estrogen receptor positive MCF7 cells [50]) on PI.  We confirmed 

that nearly all estradiol treatment replicates and concentrations resulted in an increase 

in PI and found that median PI probe set rank was in the top 20% of all treatments 

investigated. Conversely, treatment with both HDAC inhibitors present in the CMap 

database (vorinostat and trichostatin A1) showed the opposite effect with median PI 

probe set ranking in the bottom 10th percentile of all drugs tested (Figure 6B).  

Additionally, the cumulative distribution function of PI probe rankings for HDAC 

inhibitors was significantly lower than estradiol, indicating HDAC-inhibitors down-

regulate expression proliferation associated gene expression (Figure 6C). Two 

topoisomerase inhibitors, etoposide and irinotecan, also fell in the bottom 10th 

percentile, and etoposide was the most potent inhibitor of proliferation-associated 

expression of all CMap drugs (Supplemental Table 7). However, several other 

topoisomerase inhibitors did not follow this trend, suggesting only a subset of drugs in 

this class are capable of inhibiting proliferation at the transcription level (Supplemental 

Figure 8). Paclitaxel also did not confer a decrease in PI. It was in the top half of chemo-

induced PI increases, a trend consistent with drug activity at the level of microtubule 

stability rather than transcription. It is possible there is a slight feedback response 

involving an increase in proliferation-associated expression with paclitaxel. 
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Proliferation and somatic mutation burden 

Increased rates of cell division, particularly in cancer cells whose repair mechanisms 

are diminished, might be expected to correlate with mutation burden. We assessed the 

relationship between tumor proliferation (PI) and somatic mutation burden in tumor 

exomes generated by TCGA and previously analyzed by Kandoth et al.[47]. We found a 

strong correlation between tumor PI and the number of somatic mutations both across 

and within each cancer (Supplemental Table 8). Notably, total mutation burden and PI 

were most strongly associated in breast cancer (rho=0.45, Figure 7A). Correlations 

were also strong within each breast cancer subtype (rho>0.3) except for Her2-Enriched 

tumors (rho<0.025). We next examined single nucleotide variations (SNVs) most 

strongly associated with proliferation and found three well-established cancer driver 

genes enriched for proliferation association mutations (TP53, RB1, and PI3K) 

consistently implicated across cancers (FDR<0.1, Supplemental Figure 9 and 

Supplemental Table 9). Apart from these top driver genes, mutations associated with 

proliferation were tumor-specific. One particular gene of interest, Reelin, was among the 

top 5 genes in breast cancer ranked by protein altering mutations associated with 

increased PI values in each subtype (Figure 7B). Breast cancer patients within the 

basal-like subtype tended to have shorter survival times if their tumors harbored protein 

altering mutations or were low expressers of Reelin compared to patients with tumors 

expressing Reelin at high levels (p=0.08, Figure 7C).  

 

Discussion 

 

We have described an RNA-seq based analysis of cell proliferation across 19 cancers 

in 6,581 patients. We show a high degree of variability in the relative expression of 

proliferation-associated genes both within and across cancers. Interestingly, cancers 

with relatively low expression of proliferation-associated genes tended to be those for 

which PI was strongly associated with pathology-based markers of tumor staging and 

survival. This suggests that some cancer types may saturate their capacity for 

proliferation at early stages, allowing other factors such as invasion, immune 
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suppression, and drug transport to dictate prognosis. Proliferation may play a more 

prominent role in dictating prognosis in cancers that avoid maximal rates of cell division 

during early tumorigenesis and possess relatively lower absolute levels of proliferation-

associated expression. Future studies investigating evolutionary histories of tumors 

could investigate this phenomenon in more detail as there may be considerable 

heterogeneity between cancers in the genes important to predicting patient survival and 

it is possible the most effective targeted therapy would target pathways most relevant to 

patient outcome. We have demonstrated that PI is significantly correlated with the 

sensitivity to a subset of drugs in vitro and have highlighted several drugs capable of 

reducing the expression of proliferation-associated transcripts, however future studies 

are necessary to confirm the relevance of these observations at physiologically 

constrained doses in vivo.  

 

Additionally, we demonstrated survival-associated gene expression patterns were not 

common across all cancers. However a subset of cancers, PICs, share an overlapping 

signature enriched for proliferation-associated genes. We were able to develop a 

common prognostic signature that accurately predicts patient survival across all seven 

PICs. This survival signature contains several genes previously implicated in cancer 

prognosis. For example, CKS2 is a regulatory protein that binds the catalytic subunit of 

cyclin-dependant kinases and is essential for kinase function in regulating the cell 

cycle[51,52]. CRYL1 has been shown to regulate G2-M phase transition and expression 

has been linked to patient prognosis [53]. DNA2 is a DNA helicase that plays an 

important role in processing Okazaki fragments during DNA replication and DNA2 

expression has been correlated to patient survival [54]. HJURP is a histone chaperone 

shown to play a role in the progression of gliomas and breast tumors [55,56]. SUOX had 

the largest absolute coefficient in our model, however its role in cancer progression is 

less clear. It is a mitochondrial enzyme that catalyzes the conversion of sulfite to sulfate 

and has been described in one study as a prognostic immunohistochemical marker for 

hepatocellular carcinoma [57], yet its functional importance in cancer remains unclear. 

Notably, a significant number of random transcript models generated for PICs were able 

to significantly predict patient survival indicating that a large portion of the transcriptome 
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is likely correlated with survival in these cancers. Future prognostic modeling within 

PICs or cross-cancer modeling including PICs should consider the significant role of 

tumor proliferation-associated expression before interpreting biological mechanisms for 

prognostic-associated genes. Additionally, newly developed prognostic models in PICs 

should outperform general transcriptome associations with survival before mechanistic 

interpretations are made.  

 

Proliferating tumors, which must constantly replicate their genomes, are prone to 

increased mutation rates, therefore it follows logically that tumor PI is strongly correlated 

with somatic mutation burden both within and across cancers. This may provide a 

potential mechanism by which increased proliferation rates associate with poor 

outcomes as increasing the mutational heterogeneity of a tumor may lead to avenues of 

escape from targeted drug therapies [58]. Correlation of gene mutation burden with 

tumor PI revealed three well known tumor suppressor genes (TP53, RB1, and PI3K) to 

be significantly associated with proliferation across multiple cancers, confirming large 

bodies of previous work. For example, a large analysis of TP53 levels in node-negative 

breast cancer revealed decreases in TP53 were strongly associated with a concurrent 

increase in both tumor proliferation and poorer patient outcomes[59]. Moreover, an 

extensive body of literature exists examining PI3K’s ability to upregulate proliferation 

machinery through downstream activation of the AKT/mTOR pathway[24]. Focusing on 

breast cancer, the largest cancer cohort available, we found one relatively less 

investigated gene, Reelin, among the top PI associated genes. We found that protein-

altering mutations in Reelin were associated with increased tumor PI in each breast 

cancer subtype, and that low levels of Reelin expression were associated with poor 

prognosis within the basal subtype. Reelin could hold particular interest in breast cancer 

as its expression in the hippocampus has been shown to be downregulated in response 

to corticosteroids often given to breast cancer patients in an effort to mitigate the 

negative effects of chemotherapy. Reelin expression has also been shown to be linked 

to dopamine signaling and may help explain recent successes in targeting dopamine 

receptor-1 in vitro and increased cancer risks in patients receiving antipsychotic 

dopamine antagonists [60–62]. Although a majority of investigation has been carried out 
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in brain tissue, there may be intriguing roles for Reelin in the progression of breast 

cancer. In sum, this analysis provides a comprehensive characterization of tumor 

proliferation rates and their association with disease progression and prognosis across 

cancer types and highlights specific cancers that may be particularly susceptible to 

improved targeting of this classic cancer hallmark. 

 

Figure Legends 
 
Figure 1  
(a) Tumor proliferation index distributions across TCGA cancers. (b) Proliferation index 

values in healthy GTEx samples (blue), TCGA tumor-adjacent normal tissue (red) and 

TCGA tumor tissue (green). (c) Tumor proliferation index values across breast cancer 

PAM50 subtypes.  (d) PCA of TCGA breast cancer samples stratifies tumors based on 

PAM50 subtypes. (e) The first principle component of the TCGA breast cancer data set 

correlates with tumor proliferation index. (f) Heatmap of principle component-tumor 

proliferation index correlations across cancers. 

 

Figure 2 

(a-c) Wilcox test negative log p-values of tumor proliferation comparisons between (a) 

tumor T stages 1 and 4, (b) tumor N stages 0 and 1 (nodal invasion), and tumor M 

stages 0 and 1 (metastasis)(c). (d-f) Distribution of tumor proliferation index across 

tumor T (d), N (e) and M stages for TCGA renal cell carcinoma and stomach 

adenocarcinoma. 

 

Figure 3 

(a) Tumor proliferation index Cox regression negative log p-values plotted by cancer 

with the first seven cancers showing significant association with patient outcome. (b) 

Tumor proliferation index Cox regression negative log p-values are anti-correlated with 

median tumor proliferation index.  (c) Heatmap of negative log Cox regression p-values 

of genes significant (p<0.05, n=84) in at least 9 of 19 cancers identifies PICs (right). 

 

Figure 4 
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(a) Workflow for cross-cancer survival model generation. (b) ROC curve for multivariate 

Cox regression with LASSO for variable selection on all 19 cancers (blue), PICs only 

(green) and non-PICs only (orange). (c) Histogram showing the distribution of ROC 

curve AUC values for survival models generated on 100 randomly sampled sets of 

cancers equivalent in number to the PICs. (d) The ROC curve AUC values are directly 

proportional to the number of PICs included in random sample sets. 

 

Figure 5 

(a) Workflow for generating intra-cancer survival models. (b) Concordance index values 

for LASSO (red), proliferation index (blue), and random gene (green) models across all 

TCGA cancers. (c) Percentage of significant random gene survival models based on 

concordance index across all TCGA cancers. 

 

Figure 6 

(a) Spearman correlation of EC50 values and PI for 24 compounds across 486 cancer 

cell lines in the Cancer Cell Line Encyclopedia. Red stars indicate compounds whose 

correlation is significant (p-value < 0.05) after Bonferonni correction.  (b) Treatment 

induced changes in PI for compounds of interest. CMap rank corresponds to the relative 

magnitude of differential expression of a probset after treatment with a compound of 

interest compared to a vehicle control with high rank corresponding to up-regulated 

genes and low ranks corresponding to down-regulated genes. PI rank was defined as 

the median rank of probe sets corresponding to PI genes. PI ranks are plotted as 

percentage of drugs (n=1309) possessing a higher PI rank or decrease in PI after 

treatment. Mean and standard deviation bars are plotted for Trichostatin A1 (c) 

Cumulative distribution plots for CMap rankings of probe sets corresponding to PI 

genes. 

 

Figure 7 

(a) Tumor proliferation index is correlated with TCGA breast cancer somatic mutation 

burden. (b) TCGA breast tumors containing non-synonymous mutations in Reelin have 

higher proliferation index compared to wild-type. (c) Kaplan-Meier survival plot shows 
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reduced expression or protein altering mutations in RELN are markers of poor 

prognosis in patients with basal breast cancer. 

 

Supplemental Figure Legends 

 

Supplemental Figure 1 

Proliferation index distributions across GTEx healthy tissues. 

 

Supplemental Figure 2 

Kaplan-Meier curves for the top and bottom quartiles of tumor proliferation index across 

TCGA cancers. 

 

Supplemental Figure 3 

Gene ontology enrichment analysis on survival associated genes in each TCGA cancer. 

Cell proliferation and division associated modules are colored in red.  Module size is 

proportional to the number of significant genes contained within the module. 

 

Supplemental Figure 4 

Dendrograms showing cancer clustering based on survival associated p-values using a 

sliding cutoff for inclusion of genes. Gene inclusion cutoff ranged from requiring genes 

to be significant (Cox p<0.05) in at least 2 cancers to at least 10 cancers. The PIC 

clustering pattern in Figure 3 is maintained across cutoffs.  

 

Supplemental Figure 5 

Tumor sample clustering based on expression levels of the top 250 most variable genes 

across all TCGA samples included in our analysis.  Patients with the same cancers tend 

to cluster together despite PIC status. 

 

Supplemental Figure 6 

Cross-cancer survival model performance generated on all cancers (blue) and PICs 

(green) with random forest (a), ridge regression (b), and support vector machines (c).  
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(d-f) ROC curve AUC values from survival models generated on random sets of cancers 

equivalent in number to PICs are directly correlated with the number of PICs included in 

the random sample for each survival modeling approach.  

 

Supplemental Figure 7 

PIC LASSO based cross-cancer survival model performance on the full cohorts for each 

PIC. Kaplan-Meier curves represent the top and bottom quartiles of patients in terms of 

predicted prognosis. PAAD, ACC, MESO, and KIRP had an insufficient (<25) number of 

patients remaining after removing patients used to train the model, thus those Kaplan 

Meier curves include patients used in the initial training set.  

 

Supplemental Figure 8 

PI ranks, plotted as percentage of drugs (n=1309) possessing a higher PI rank or 

greater increase in PI after treatment, for all drugs of classes implicated in Figure 6A 

and estradiol. Mean and standard deviation bars are plotted for Trichostatin A1 

 

Supplemental Figure 9 

Q-Q plot of p-values derived from gene mutation burden-proliferation index 

associations.  
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