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Abstract 

It is a long standing question as which genes define the characteristic facial features 

among different ethnic groups. In this study, we use Uyghurs, an ancient admixed 

population to query the genetic bases why Europeans and Han Chinese look different. 

Facial trait variations were analyzed based on high dense 3D facial images; numerous 

biometric spaces were examined for divergent facial features between European and 

Han Chinese, ranging from inner-landmarks to dense shape geometrics. A series of 

genome-wide association analyses were conducted on a discovery panel of Uyghurs. 

Six significant loci were identified and four of which, rs1868752, rs118078182, 

rs60159418 at or near UBASH3B, COL23A1, PCDH7 and rs17868256 were replicated 

in two independent cohorts of Uyghurs or Southern Han Chinese. We further 
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developed a quantitative model to predict 3D faces based on 277 top GWAS SNPs. In 

hypothetic forensic scenarios, this model was found to significantly enhance the rate 

of suspect verification, suggesting a practical potential of related research. 

 

Introduction 

Human face plays a pivotal role in daily life. Communication, mutual 

identification, intersexual attraction, etc. all strongly depends on face. It has been long 

noted that face bears characteristic features that may surrogate one’s ancestry, even in 

highly admixed populations
1
. Our recent investigation

2
 also revealed strong 

morphological divergence on multiple facial features, including nose, brow ridges, 

cheeks and jaw, between Europeans and Han Chinese, suggesting that facial shapes 

have been strongly shaped by natural selection after sub-populations split from the 

common ancestor. It is therefore a fundamental and intriguing question to ask: Which 

genetic variants contribute to the substantial morphological differences among 

continental populations?  

Normal facial shape is known to be highly heritable
3, 4, 5

. However, until recently, 

very little was known about the genetic basis of common variation of facial 

morphology. In the last few years, several genome-wide association studies (GWAS) 

were carried out and multiple face shape associated loci were identified
6, 7, 8

. These 

studies all based their phenotyping on conventional scalar measurements involving 

limited number of landmarks. On the other hand, efforts have been paid to use dense 

3D face model (3dDFM) as a novel high-dimensional data to fully represent the 

complex facial shape phenome
2, 9, 10

. Peng et al. first applied 3dDFM to identify the 

association between common mouth shape variation and a cleft-lips related genetic 

locus
11

. Claes et al. showed that numerous genes are associated with complex normal 

facial shape variation based on 3dDFM
12

, and proposed the potential of modeling the 

3D face based on genotype and its use in forensic practice
12, 13

.  

In this study, we aimed at identifying loci on a genome-wide scale that 

contributed to the divergent facial morphological features between Europeans and 

Han Chinese. In brief, GWAS were conducted on the polarized face phenotypes along 

the European-Han dimensions, and Uyghur was used as the study cohort to dissect the 

genotype-phenotype association. Uyghur was a minority group living in Xinjiang 

province in China, and was found to have arisen from ancient admixtures between 

East-Asian and European ancestries at a roughly equal ratio, followed by a long 

period of isolation
14, 15, 16

. Furthermore, Uyghur facial traits demonstrated a wide 

range of shape gradients between the characteristic Europeans and Han-Chinese 

faces
2
. These properties made Uyghur an ideal group to study the genetic variants of 

divergent facial features across Eurasia. We performed GWAS in 694 Uyghurs using 

both landmark based and 3dDFM based phenotypes. Significant loci were replicated 

in an independent Uyghur sample and a Han Chinese cohort. Next, we investigated 

whether 3D faces could be predicted to certain degree by using the top associated 

SNPs. A quantitative model was established to summarize the phenotypic effects of 

multiple loci and to simulate realistic 3D face models. The predicted faces were 
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compared to the actual data to test the performance. In the end, the 3D face prediction 

approach was formally tested in hypothetic forensic scenarios to evaluate its practical 

potential.   

 

Results 

The studied cohorts included two independent Uyghur panels (694 and 171 

individuals as UIG-D and UIG-R respectively) from Xinjiang China, and 1504 Han 

Chinese from Chenzhou China (HAN-CZ) (Table 1). Furthermore, a Han Chinese 

cohort from Taizhou China (HAN-TZ, 929) and 86 Shanghai residents of European 

ancestry (EUR) were used as the phenotype reference groups (Table 1). The 

participants were peer group with 20.02 +/- 2.16 (SD) years old. We collected their 

three-dimensional facial images and mapped to a common 32,251 points’ spatial 

dense mesh automatically
10

. Based on these, we first defined the candidate 

phenotypes of study. Briefly, the face images were jointly analyzed among EUR, 

UIG-D and HAN-TZ, where complex face data was decomposed to various 

phenotype measurements (see Methods). Candidate phenotypes were chosen if EUR 

and HAN-TZ exhibited strong divergence and UIG-D covered a wide range 

in-between (Fig. 1). Three types of phenotypes were used: First, ten inter-landmark 

distances were selected for the substantial Eurasian divergence based on fifteen salient 

landmarks (Supplementary Fig. 1a). The other two types of phenotypes were based on 

decomposing the high dimensional 3dDFM data. Specifically, we first extracted six 

facial features, namely, brow ridge, eyes, side faces, cheeks, nose and mouth, grossly 

based on the reported among-population differentiation
2
 (Supplementary Fig. 1b). The 

corresponding 3dDFM data was decomposed by either partial least square (PLS) or 

principle component (PC) analysis, and the PLS model (sPLS) and PC model (sPC) 

that defined the strongest segregation between EUR and HAN-TZ were selected as 

candidate phenotypes in each feature (see Methods, Supplementary Fig. 2, 

Supplementary Table 1 and 2).  

 

 

 

Genome-wide association studies of facial shape. Given the candidate phenotypes, 

we carried out sex-stratified and sex-mixed GWAS in UYG-D on 847,046 SNPs after 

quality control (see Methods). In general, the Quantile-Quantile (Q-Q) plot
17

 analyses 

revealed little subpopulation stratification (Supplementary Fig. 3). Six independent  

Table 1 | Characteristics of study samples 

Location Abb. For Ethnic Total N Male N Mean Age Range (s.d.) 

Urumchi, China UIG-D discovery Uyghur 694 270 20.09 17-25 (1.24) 

Kashi, China UIG-R replication Uyghur 171 63 20.55 17-25 (1.42) 

ChenZhou, China HAN-CZ replication Han Chinese 1,504 424 19.69 17-32 (1.67) 

TaiZhou, China HAN-TZ discovery Han Chinese 929 363 19.81 17-25 (0.95) 

Europeans living Shanghai EUR discovery European 86 57 27.59 16-42 (5.59) 

N, sample size 
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Figure 1 | Overall scheme of the study design. In the top panel, the genetic structure of three Eurasian 

populations was analyzed by PCA based on the 1KG genome data of 97 CHB (red), 85 CEU (blue) and the 

whole-genome sequencing of 694 UYG-D (green). Clear clustering can be seen based on the ethnic backgrounds. 

In particular, UYG-D individuals clearly lie in the half way between CEU and CHB along PC1, all consisted of a 

roughly equal ratio of CHB and CEU ancestries. Compared to the genetic composition, Uyghur individuals exhibit 

broad gradients of admixture in the facial phenotypes. The middle panel shows the average face models for EUR, 

European-alike Uyghurs (EUR-alike UIG-D), UIG-D, Han-alike Uyghurs (HAN-alike UIG-D) and HAN-TZ from 

left to right. EUR-alike UIG-D and HAN-alike UIG-D were obtained by averaging over 20 UIG-D individuals 

visually accessed to resemble Europeans or Han Chinese. The bottom panel shows the distribution of sPLS in nose, 

revealing a distinct segregation between EUR and HAN-TZ and a wide spread of UIG-D stretching between EUR 

and HAN-TZ along this phenotype dimension. In this study, the highly divergent phenotypes as shown above were 

selected and tested for association loci genome-widely in UIG-D.  

 

SNPs met genome-wide significance
18

 (P<5 × 10
-8

) (Fig. 2, Table 2), including 

rs1868752 (at 11q24.1) associated with distance between external canthus and internal 

canthus (ExtCan-IntCan) in mixed genders, rs118078182 (on COL23A1 at 5q35.3) 

associated with distance of Nasion point-Pronasale-Subnasale (Nsn-Prn-Sbn) in 

mixed genders, rs60159418 (on PCDH7 at 4p15.1) associated with mouth sPC in 

males, rs17868256 (at 2p16.3) associated with cheek sPLS in females, rs3920540 

(near BMP2 at 20p12.3) associated with nasal sPLS in females, and rs61672954 (at 

3p12.2) associated with the sPLS of side-faces in mixed genders. In order to control 

for potential confounding effects from varying ancestry makeup, we inferred the 

ancestry proportions for each UIG-D individual (see Methods). The six signals 

remained after accounting for the inferred ancestry in the association model 

(Supplementary Table 3).  
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Figure 2 | Six genomic regions harboring SNPs of genome-wide significant associations with facial shape. (a) 

11q24, (b) 5q35, (c) 4q15, (d) 2q16, (e) 20q12, (f) 3q12. The LocusZoom plots are given for the 500kb flanking 

region centered by the most significant loci. 

 

Ideally, the effects of shape related loci should be directly visualized on facial 

images. We modeled the effects of candidate SNPs using heat plots as well as 

extrapolated faces
19

 (Fig. 3). As can be seen in Fig. 3a, the extrapolated face towards 

the effect of rs1868752T had narrower eyes (smaller ExtCan-IntCan distance) 

compared to G allele, resulting in a substantial displacement on the X axis; G also 

seemed to be associated with elevated nose ridge. SNP rs118078182 showed an 

obvious impact on the nasal shape along the Y and Z axes. Compared to 

rs118078182A, rs118078182G seemed to make the nose longer and more protrusive 

(taller) from face, consistent with the association with Nsn-Prn-Sbn distance (Fig. 3b). 

For rs60159418 in males (Fig. 3c), the main shape changed on mouth occurring along 

the Y axis, followed by Z axis. Allele G seemed to make the whole mouth area 

recessed from the face plane; in comparison, the mouth-chin curve bended convexly 

from the facial plane in the extrapolated face of A allele. Rs60159418 also seemed to 

influence other facial features: for G allele, nose and chin looked relatively protrusive 

outwards, and eye brow ridges seemed to elevate. The SNP rs17868256 mainly 

affected the shape of cheeks (Fig. 3d), with G allele associated to laterally expanded 

cheeks, making the face look wider on X axis. On the Y axis, rs17868256G also 

seemed to lift the cheek protrusion upwards. For SNP rs3920540 in females (Fig. 3e), 

G allele was mainly associated with repressed nasal bridge and nasal tip along Z axis 

compared to T allele; G allele also seemed to link to more protrusive chin on the 

extrapolated face. The most notable effect of rs61672954 occurred around the jaw 

lines (Fig. 3f), with the A allele associated with stronger jawlines and therefore 

comparatively wider lower face than the extrapolated face of G allele. 
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Table 2 | SNPs with GWAS signals and their narrow-sense replications 

     Ancestral Allele Frequency     Discovery in additive 

model
E
 

Replication in additive model Replication in dominant Model
F
  Meta-analysis 

UIG-D+UIG-R in 

additive model 

         aa+ab:bb aa:ab+bb 

         UYG-D UIG-R HAN-CZ UIG-R+HAN-CZ UIG-R HAN-C

Z 

UIG-R HAN-CZ 

SNP Chr. BP
A
 at or near 

Gene 

AA
B
 UIG

C
 CHB

D
 CEU

D
 Fst

G
 Ratio

H
 gender 

group 

Feature Beta P Beta P Beta P Beta P P P P P Beta P 

rs1868752 11 122391442 UBASH3B T 0.985 0.961 0.985 0.000238 0.954 mixed ExtCan-IntCan 3.804 1.22 × 10
-10

 -0.666 0.604 0.126 0.579 0.103 0.647 - 0.0449 0.604 0.752 3.19 7.70 × 10
-9

 

rs118078182 5 177922198 COL23A1 G 0.898 0.791 0.995 0.151 0.112 mixed Nsn-Prn-Sbn -2.06 8.19 × 10
-9 

 -2.3 0.00422 -0.33 0.0713 -0.4 0.0236 0.27 0.0167 0.00309 0.247 -2.07 2.64 × 10
-10

 

rs60159418 4 31120752 PCDH7 A 0.356 0.631 0.04 0.466 0.00297 male Mouth sPC -19.8 8.96 × 10
-11

 -5.73 0.363 -4.43 0.0854 -4.62 0.0523 0.683 0.124 0.195 0.175 -17 9.78 × 10
-10

 

rs17868256 2 52032773 - A 0.643 0.476 0.753 0.101 0.2 female Cheek sPLS 0.053 7.22 × 10
-9

 0.0492 0.0374 0.00299 0.537 0.005 0.282 0.0163 0.22 0.22 0.872 0.0522 1.07 × 10
-9

 

rs3920540 20 7067738 BMP2 T 0.848 0.883 0.859 1.71 × 10
-5

 0.988 female Nose sPLS 0.071 3.31 × 10
-8

 0.0255 0.432 -0.000669 0.872 -0。000822 0.852 - 0.386 0.432 0.649 0.0652 4.69 × 10
-8

 

rs61672954 3 82196528 - G 0.967 0.879 1 0.0816 0.253 mixed side-faces sPLS 0.119 2.00 × 10
-8

 -0.02 0.704 0.00157 0.823 0.001 0.86 - 0.392 0.704 0.992 0.101 2.61 × 10
-7

 

A
NCBI build 37                         

B
Ancestral allele                         

C
in meta-UIGhurs (UIG-D + UIG-R)         

D
1KG phase 3 database                        

E
in additive model, homozygote ancestral allele as 0, heterozygote as 1, homozygote derived allele as 2             

F
 a allele stands for ancestral allele                      

G
Fst calculated between CHB and CEU in 1KG phase1 release 2 database                

H
Ratio means Rank/809084                        

 

Table 3 | Broad-sense replications of SNPs with GWAS signals 

 PSD-based Permutation in HAN-CZ
A
 PLS-based Permutation 

SNP between genotypes HAN-CZ UYG-R HAN-CZ 

rs1868752 TG:TT 0.0283 0.681 - 

rs118078182 AA+GA:GG 0.0278 0.003 0.27 

rs60159418 AA:GG 0.188 0.194 <1 × 10
-3

 

rs17868256 AA:GG 0.0085 0.956 <1 × 10
-3

 

rs3920540 TG:TT 0.0139 0.717 0.03 

rs61672954 AA:GG 0.432 0.228 0.25 

A
replication only in HAN-CZ as sample sizes in different genotype groups are too small in UIG-R 
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Figure 3 | Heat plots and extrapolated faces of six significant SNPs affected on responding partial shape. (a) 

the association of rs1868752 with the distance between ExtCan and IntCan, (b) the association of rs118078182 

with the distance of Nsn-Prn-Sbn, (c) the association of rs60159418 with the sPC of mouth in males, (d) the 

association of rs17868256 with the sPLS of cheeks in females, (e) the association of rs3920540 with nasal sPLS in 

females, (f) the association of rs61672954 with the sPLS of side faces. For each SNP, the first face shows the 

general effect on the corresponding feature as the displacement of landmarks or meshes. The mid-panel of four 
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miniature faces gives the extrapolations towards the Han trend on the top, or the European trend on the bottom, 

with the associated allele labeled at the left side. The extrapolated faces were morphed by exemplifying the 

difference between the average faces of the opposite homozygotes if both are more than 10% frequent in UIG-D, 

or the major homozygote and the heterozygote if otherwise. The last three faces depict the signed displacement of 

the average faces of the fore-mentioned genotypes in X, Y and Z axes; obtained by subtracting the average face of 

European-trend from that of the Han-trend.  

 

Replication studies and meta-analysis. We replicated the six GWAS significant loci 

in an independent Uyghur cohort (UIG-R) and a Han Chinese cohort (HAN-CZ). The 

former has the same ethnic background with UIG-D
14, 15, 16

 and the latter represents a 

pool of Han Chinese ancestry from southern China
20

. Face is highly complex, and the 

effects of genetic variants on face can be subtle and strongly depend on other factors 

such as ethnicity and gender
12, 21, 22

. On the other hand, face related genetic loci may 

be pleiotropic, e.g., that a single variant may influence facial morphology on different 

parts and/or in different ways
6, 7, 12, 23, 24

. In view of this, we defined two types of 

association replications: the narrow-sense and broad-sense replications. Narrow-sense 

replication stood for the association signals replicated on exactly the same phenotypic 

measurement; whereas broad-sense replication required the candidate loci to show 

evidences of association with any shape changes in the same facial feature. In this 

study, both the narrow- and broad-sense replications were conditioned in the same 

gender group as for the discovery panel. As a result (Table 2), the association of 

rs1868752 with ExtCan-IntCan was replicated narrow-sensely (P=0.0449) in a 

dominant model in HAN-CZ. The SNP rs118078182 showed narrow-sense 

replications in the additive (P=0.00422) and a dominant model (P=0.00309) in UIG-R, 

in a dominant model (P=0.0167) in HAN-CZ, as well as in the additive model of 

UIG-R and HAN-CZ combined (P=0.0236). For rs60159418, the narrow-sense 

replication was tested by projecting the UIG-R and HAN-CZ 3dDFM data to the sPC 

of mouth where the GWAS signal was found in UIG-D males, and revealed marginal 

significance in HAN-CZ (P=0.0854) and combined group of UIG-R and HAN-CZ 

(P=0.0523). For rs17868256, the narrow-sense association in females was 

successfully replicated for cheek sPLS in UIG-R for both the additive model 

(P=0.0374) and a dominant model (P=0.0163). The other two candidate loci didn’t 

show evidences of narrow-sense replication.  

To systematically test the broad-sense replication, we carried out pair-wise shape 

distance (PSD) permutation as previous proposed
11

 and PLS-based permutation for 

the 3dDFM data (see Methods). Table 3 summarized the results of broad-sense 

replications. In general, these tests confirmed the results of narrow-sense replications, 

showing that rs1868752, rs118078182, rs60159418 and rs17868256 affect the overall 

shapes of the corresponding features. Furthermore, rs3920540, the nose related locus 

that failed to replicate in the narrow-sense test, turned out to significantly affect the 

overall nasal shape in PSD permutation test (P=0.0139) and PLS-based permutation 

test (P=0.03) in HAN-CZ.  

Visualization in UIG-R and HAN-CZ revealed highly consistent effects of the 

candidate variants as in UIG-D
19

 (Fig. 4), despite the distinct ethnicity of HAN-CZ.  
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Figure 4 | Visualization in UIG-R and HAN-CZ revealed largely consistent effects of the candidate variants 

as in UIG-D. For the four significant loci, (a) rs1868752, (b) rs118078182, (c) rs60159418 and (d) rs17868256, 

we compared the extrapolated faces in UIG-D, UIG-R and HAN-CZ from left to right. For each locus, the top 

faces in the trend of Han Chinese and the bottom ones are in European trend for the corresponding feature. 
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Intriguingly in UIG-R, the effects of some SNPs were strongly persistent not only 

within the facial features of GWAS signals, but also across the whole face. In 

HAN-CZ, similar influence on the whole face could also be observed. In particular, 

rs1868752T was involved in recessive eye-sockets and repressed nasal bridge in all 

the three cohorts (Fig. 4a); rs118078182A seemed to make the whole face more flat 

and round in addition to its effects on nasal shape (Fig. 4b); Other than affecting the 

mouth shape (Fig. 4c), rs60159418G was also associated with stronger brow ridges 

and more protrusive chin among the three groups. These indicated that the identified 

association signals were authentic, and the candidate variants were in general highly 

pleiotropic. 

 

Replication of reported variants of facial variation. We explored whether the 

candidate SNPs that previously reported to affect normal facial variation
6, 7, 8

 also 

showed signals of association in our combined Uyghur cohort (UIG-D + UIG-R). 

Replications were carried out either on the original or related measurements for 12 

SNPs (Supplementary Table 4). Notably, numerous candidate loci were re-validated to 

varying degrees. Briefly, rs4648379 in PRDM16, rs7559271 in PAX3, rs2045323 in 

DCHS2, rs17640804 in GLI3, rs805722 in COL17A1 and rs927833 in PAX1 reported 

to affect nasal phenotypes in different ethnic groups
6, 7, 8

, were found to also modulate 

normal nasal shape in Uyghurs (Supplementary Table 4). The SNPs rs3827760 in 

EDAR and rs6184 in GHR that were previously linked to mandibular shape variation 

turned out to be significant or marginally significant in our study
8, 24, 25

 

(Supplementary Table 4). Interestingly, the SNP rs642961 in IRF6, previously found 

to be associated with the mouth shape in Han Chinese females
11, 26

, also showed 

marginal significance (P=0.05197) in Uyghur females but not in males or mixed 

gender group, implying that the dependence of the genetic effect of rs642961 on 

gender was shared among different populations.  

 

3D face prediction based on genome-wide SNPs. Hypothetically, if a quantitative 

trait is highly heritable, a proper model featuring major genetic factors should lead to 

true prediction
27, 28, 29

. We assumed in advance that SNPs reaching a suggestive 

genome-wide threshold of P value < 1 × 10
-6

 were enriched for facial shape related 

loci. GWA SNPs on autosomes in UIG-D that passed such threshold in any 

ancestry-divergent phenotypes and within-Uyghur variation phenotypes (see Methods) 

were combined into a panel of 277 top SNPs (Supplementary Table 5). Based on these 

top SNPs, a simple quantitative model was constructed using UIG-D. Briefly, for each 

SNP, a residual face was obtained for each genotype by subtracting the genotype 

average face by the global average. To compose a predicted face, the 277 residual 

faces were scaled by a global “effect coefficient” α (see Methods), and then added to 

the base face (the average face stratified by gender) according to the specific 

genotypes of the individual of interest. The coefficient α was a scaling factor that 

minimized the Euclidean distance between predicted and actual faces in the discovery 

panel (see Methods). The coefficient was determined to be 0.312 in females (αf) and 

0.252 in males (αm) (Supplementary Fig. 4). 
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Figure 5 | Test of the prediction model. (a) cases of visualization of actual face (left column), the predicted face 

(middle column) and the displacement between the pair in heat plot (right column). (b) The average PSD (left 

column) and SSA (right column) determined for the cohorts (in red) were compared to the random distributions 

under null hypothesis (in blue). P values are the probability of predicted statistic distributed on the relative random 

normal distribution calculated like normal one-side P value. 

 

The prediction model was applied to Uyghur individuals from the discovery panel 

(UIG-D) as well as the independent replication panel (UIG-R). The similarity between 

predicted and actual faces for individuals in UIG-D was visually obvious, but 

ambiguous in UIG-R (Fig. 5a). To formally access the resemblance between predicted 

and actual faces we applied two similarity statistics: the PSD distance was the squared 

average Euclidean distance for the 3D vertex points, whereas the shape space angle 

(SSA) was defined as the angle between two shapes in the 3dDFM data space (see 

Methods). PSD and SSA would both achieve 0 if the two shapes were the same. It was 

easy to understand that SSA was independent from α, but was determined by the 

differentiation of “trends” along which two faces transformed from the base face. A 

SSA of 90 degree stood for statistical independence, whereas a SSA greater than 90 

indicated that two faces deviated from the mean face in reverse directions. Tests of 

shape similarity were carried out in UIG-D and UIG-R separately stratified by gender. 

In each test, the similarity score was calculated for the pair of prediction/observation 

of each individual and averaged across all individuals. The average score was 

compared to that of 1000 iterations using randomly generated faces as prediction (see 

Methods). In UIG-D, the similarity scores for prediction data were greatly lower than 

that of the random datasets (Fig. 5b). The average PSD scores were approximately 
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half of that for the random data (P<1 × 10
-100

 in females and males), whereas the 

average SSA were 44.85 (P<1 × 10
-100

) and 38.59 (P<1 × 10
-100

) in females and males 

respectively, compared to average SSA of around 90 in the random data. Most 

importantly in the independent panel of UIG-R (Fig. 5b), the average PSD of 

prediction were significantly lower than the null expectation in both females (P=8.27 

× 10
-5

) and males (P=1.02 × 10
-7

); the average SSA of prediction (SSAavg=89.07) was 

not different (P=0.705) from the null expectation in females, but was slightly and 

significantly lower (SSAavg=83.97, P=0.0440) than the null expectation in males. To 

account for the potential linkage disequilibrium (LD) within the top SNPs, we further 

trimmed the top SNPs set either by pairwise LD (r
2
<0.8, 240 top SNPs set) or 

inter-marker physical distance (<400kb, 209 top SNPs set), the prediction became 

slightly better and the general trends remained unchanged (Supplementary Fig. 4 and 

5). 

Intriguingly, face prediction based on genotypes would promote the suspect 

identification in pragmatic forensic scenarios. We simulated toy forensic scenarios 

where a single true suspect should be picked up from a group of N (N=2, 3, 5, 8, 10) 

candidates (Fig. 6a). We supposed that the 3D facial data and genotypes could be 

obtained from each candidate to allow mathematical comparison between the 

observed and predicted faces. In all cases with UIG-D individuals, the power of 

correct identification ranged from 69%~97%, much higher than null expectations 

regardless of the similarity statistic or gender (Fig. 6b, Supplementary Fig. 6). When 

UIG-R was used, male consistently showed a highly significant power increase of 

4.02% to 5.86% for PSD (P<1 × 10
-48

) and 4.74% to 7.26% for SAA (P<1 × 10
-73

), 

compared to the random expectations; in females, the prediction did not substantially 

enhance the power of identification, with scenario of N = 10 showing a mild 

enhancement (PSD: +0.23%, P=0.268, SSA: +1.36%, P=1.45 × 10
-10

) (Fig. 6b, 

Supplementary Fig. 6). After trimmed the top SNPs set, the power of correct 

identification from N (N=2, 3, 5, 8, 10) candidates was still much higher (72%~98%) 

than null expectations in UIG-D females and males (Supplementary Fig. 7 and 8). In 

UIG-R males, PSD indicated slightly higher correction power (P<1 × 10
-5

) than 

random and became mediocre when N (N=8, 10) increased and top SNPs decreased, 

whereas SSA revealed higher correction power (P<1 × 10
-17

) all along. Meanwhile, 

both similarity statistics brought the amplitude down slightly (PSD: 0.12%~6.51%, 

SSA: 2.86%~6.41%) compared with 277-SNP model in UIG-R males. 
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Figure 6 | Evaluation of the face prediction in a hypothetic forensic scenario. (a) the overall scheme of the 

forensic test. As can be seen, a number of candidates were given and one true suspect is to be selected. A predicted 

face is determined based on the DNA information and compared to the actual 3dDFM data of the candidates and 

PSD and SSA are calculated. The face with minimum PSD/SSA is called as the true suspect. (b) PSD and SSA as 

accuracy statistics are evaluated in UIG-D females, UIG-D males, UIG-R females and UIG-R males from top row 

to bottom. The accuracy rate based on PSD (left column) and SSA (right column) were determined by examining 

how many cases of successful identification were achieved in 100 iterations. This process was repeated 200 times 

to obtain a distribution of accuracy rate (in red) and compared to the expected value of accuracy (in blue) under 

null hypothesis. P values are the probability that whether the number of correct identification using face prediction 

model is significantly different from the random accuracy expectation (1/N) via Chi-squared test. P values in black 

indicate that the prediction perform significantly better than random draws. 

 

Discussion 

To our knowledge, this was the first GWAS targeting to identify genetic loci 

associated with normal facial variations based on complex 3dDFM data; it also 

revealed multiple genetic determinants underlying the European-East Asian facial trait 

divergence. The genome-wide significant loci were located on independent regions 

and respectively associated with shape of eyes, nose, mouth, cheeks and side faces. 

We successfully replicated four loci, rs1868752, rs118078182, rs60159418 and 

rs17868256 in independent cohorts on the same phenotype measurements. In addition, 

the association signal of rs3920540 was replicated in broad-sense.  

SNP rs1868752 is not located in any gene region. The nearest protein coding gene 

is the ubiquitin associated and SH3 domain containing B (UBASH3B) about 140kb 
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distal, which regulates epidermal growth factor receptor (EGFR) and platelet-derived 

growth factor receptor (PDGFRA). The longer eye length, affine to European traits is 

associated with the derived allele rs1868752G. However, rs1868752G has a low 

global frequency (< 10%), and the population frequency in CEU is even lower (~1.5%) 

than in CHB (~4%), suggesting that this SNP does not play a major role in the 

Eurasian face differentiation. The SNP rs118078182 has the most consistent 

association signals across different sample panels and test models. This SNP is an 

intronic variant in collagen type 23 alpha 1 (COL23A1). COL23A1 codes a 

non-abundant trans-membrane collagen, primarily found in head, skin, tendon, and 

kidney
30

. A possible role of spatial/temporal regulation in facial morphogenesis was 

noted for COL23A1
31

. Interestingly the G allele of rs118078182, associated with the 

European trait of longer and taller nose is almost fixed (99.5%) in CEU compared to 

the sequentially lower frequencies of ~90% in Uyghur and ~79% in CHB, suggesting 

that rs118078182 plays a major role in the nasal shape divergence across Eurasia. The 

other nasal shape related SNP, rs3920540 is approximately 300kb away from the 

nearest protein coding gene BMP2, which is a member of the bone morphogenetic 

proteins involved in the development of bone and cartilage
32, 33, 34, 35

. The T allele of 

rs3920540 pertaining to the European trait of taller nose does not seem to differ in 

frequency (0.86, 0.85 and 0.88 in CEU, UIG and CHB respectively) among the three 

populations, suggesting that this SNP mainly contribute to the within-group variation 

of nasal shape. The mouth shape related SNP rs60159418 is situated in an intron of 

the protocadherin 7 gene (PCDH7). PCDH7 codes an integral membrane protein 

functioning in cell-cell recognition and adhesion. Previous studies showed that 

PCDH7 played a key role in osteoclastogenesis
36

, and its homologue gene is a pivotal 

regulator in the head formation of the mouse embryo
37

. Consistently, the derived G 

allele that co-occurs with the concaved European mouth shape is almost fixed in CEU 

(0.96, Table 2), much lower (0.644) in UIG, whereas in CHB the ancestral A allele is 

the major allele (allele frequency 0.631). These suggest that rs60159418 contributes to 

the mouth shape differentiation across Eurasia. Notably, rs60159418 is among the 

most divergent SNPs between CEU and CHB (FstCEU-CHB=0.446), suggesting an 

involvement of local adaptations in this region. For the SNP rs17868256, the derived 

G allele is associated with the Han Chinese trait of higher zygomatic arches and more 

cambered outwards and backwards zygomatics, and the corresponding allele 

frequency is also the highest in CHB (0.524), followed by UIG (0.357) and CEU 

(0.247), as indicates that rs17868256 is involved in the phenotypic divergence in 

cheeks between Europeans and Han Chinese. The SNP rs61672954, associated with 

side face shapes was not replicated statistically in HAN-CZ (sample sizes for AA, GA 

genotypes were too small to analysis in UIG-R), but had the same facial variation 

patterns among different genotypes as in the discovery UIG-D cohort (Supplementary 

Fig. 9). So we cannot remove their potential effect on facial shape.  

One evident limitation of this study is the relative small sample sizes for the UIG 

cohorts, which determined that the overall test power is constrained and the 

association signals would not be highly significant (e.g. all GWAS P values>1 × 10
-10

). 

On the other hand, given the limited sample sizes we were still able to detect 6 
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genome-wide association signals, among which five were replicated to various 

degrees. This may be attributed mainly to the specific study designs: first, as the 

Uyghur was examined on the phenotypic dimensions where the ancestral groups EUR 

and HAN differ the most, the search was thus focused on genetic variants of large 

effect size, rendering higher test power for a given sample size. Second, the 3dDFM 

data densely annotates each face by over 30,000 vertices, resulting in virtually face 

phenome data. Based on this, the association signals were scanned both 

phenome-widely and genome-widely, as would greatly enhance the power of 

detecting the phenotype-genotype associations.  

Several trends are notable involving the genetic architecture of facial morphology. 

First, no GWAS loci of “major effects” were identified that account for a large portion 

of phenotypic variance in spite of the strong overall divergence, e.g., in nasal shape 

across Eurasia
2
. This is in contrast to the case of skin pigmentation whose major 

genetic factors explain substantial phenotypic variance
38, 39, 40

. This suggests that the 

human face should be best described by a typical polygenic model of complex trait, 

characterized by a large number of variants of small effects. Second, most facial shape 

related variants seem to be pleiotropic. All the candidate loci in our study seem to be 

associated to the complex shape changes of whole face, not limited to the features of 

GWAS signals, in similar trends across the three sample cohorts, implying that such 

dispersive facial changes were induced by genetic variants rather than stochasticity 

(Fig. 3, Fig. 4). At the individual gene level, PCDH7 was also known for its versatile 

functions, related to not only mouth shape but also musical aptitude
41

, waist-to-hip 

ratio
42

 and many diseases
36, 37, 43, 44, 45

. Another SNP rs3827760 in EDAR, replicated in 

this study was also known for its broad effects in hair morphology, incisor shape and 

sweat gland density
23, 24, 46, 47

. Third, the genetic effects of face related loci seem to be 

shared among different ethnicities
48, 49, 50

. This is evident given that the association 

signals and facial patterns are in general consistent between Uyghur and Han Chinese 

(Table 2 and 3, Fig. 4). It may be thus hypothesized that the stereotypic faces of 

ethnicities are merely result of population stratification of the face-related allele 

frequencies. For example, a European nose is “big” probably due to the 

co-segregation of a higher proportion of “big” nose alleles compared to that of an 

average Han Chinese. Indeed, four (rs118078182, rs60159418, rs61672954 and 

rs17868256) out of the six candidate SNPs in this study have moderate 

(FstCEU-CHB>0.08) to strong (for rs60159418, FstCEU-CHB=0.466, top 0.003% 

genome-widely) population differentiation, each of which seems to contribute a 

gradient to the continuous transition from European to Han Chinese faces. 

In the end, we showed that an additive genetic model of whole face shape, based 

on a set of SNPs of top association signals, would lead to measurable predictive 

power. In the discovery panel, the prediction is surprisingly accurate: PSD and SSA 

distances were folds lower than random expectations, and the evaluation in the 

simulated forensic test rendered accuracy rates of close to 100% (Fig. 5 and 6, 

Supplementary Fig. 6). It should be noted that this is not a true prediction as the 

samples used for model construction were again used for test. Nonetheless, it is 

obvious that our model was able to account for the vast majority of the facial shape 
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variance which included the ancestry-divergent traits and within-Uyghur variation in 

the discovery panel. Most importantly, we showed that for independent individuals 

(UIG-R), the prediction model can also construct realistic 3D faces significantly 

closer to the actual face than random expectation (Fig. 5); tests in the hypothetic 

forensic scenarios also revealed a robust enhancement of the identification rate (about 

4~7%) in males, which is an un-negligible ~0.5 fold increase (6.36%) than random 

draw (12.5%) for the case of 8 suspects (Supplementary Fig. 6c). To the best of our 

knowledge, this was the first study that achieved true face predictive power based on 

pure genetic information
13

. There may be redundant markers within the 277 top SNPs, 

as the SNP sets filtered for strong LD gave very similar performance (Supplementary 

Fig. 5 for prediction, Supplementary Fig. 7 and 8 for forensic). Fundamentally, it can 

be argued that this prediction model is not really additive, as the best-fitting effect 

coefficient α is far lower than 1 (Supplementary Fig. 4), even for the SNP set (209) 

well controlled for the physical LD (Supplementary Fig. 4c). This may implicate 

epi-static interactions between the causal SNPs, or is probably mainly due to a 

proportion of false-positive signals in the top SNPs set. Further studies specifically 

designed for examination of the genetic architecture is needed to address this question. 

Furthermore, we noticed that increasing the number of top SNPs in the prediction 

model (either for P value < 1 × 10
-5

 or whole genome SNPs) could not improve the 

predictive power (data not shown). Such saturation analysis suggests a finite number 

of loci affecting the normal facial shape. After all, this study clearly demonstrates that 

face prediction based on DNA is possible.  

 

Methods 

Study cohorts. EUR was a resident cohort living in Shanghai with self-reported 

European ancestry between 16 and 42 years old. The HAN-TZ participants were 

self-reported Han Chinese samples collected from Taizhou, Jiangsu province. College 

students of self-reported Han ethnicity from Xiangnan University in Chenzhou, 

Hunan province were collected as HAN-CZ. The UIG-D and UIG-R were composed 

of college students of self-reported Uyghurs collected from Xinjiang Medical 

University in Urumchi, Xinjiang province. The self-reported ancestry information was 

requested for the last three generations, and individuals with mixed ancestry or 

missing information were excluded from further analyses. For EUR, a participant was 

used only if his/her ancestries of the last three generations were all from EU countries 

(as for 2015) plus Switzerland, Norway and Iceland. Individuals with obvious health 

problems or any history of facial surgery were ruled out. All sample collection used in 

this study was carried out with approval of the ethics committee of the Shanghai 

Institutes for Biological Science and in accordance with standards of the Declaration 

of Helsinki. Written informed consent of each participant was obtained.  

 

High-density 3D facial images alignment. The 3dMDface® system 

(www.3dmd.com/3dMDface) was used to collect high-resolution 3D facial images. 

We first established dense anatomical correspondence across dense surfaces of 3D 
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facial images automatically as described previously
10

. Briefly, 15 salient facial 

landmarks were annotated automatically based on the principal component analysis 

(PCA) projection of texture and shape information. A reference face was selected for 

high image quality and smooth surface, and its mesh was resampled to achieve an 

even density of one vertex in each 1mm × 1mm grid. There were 32,251 vertices in 

total for the reference mesh. Afterwards, the reference face was warped to register to 

each objective face to ensure the complete overlapping of the 15 landmarks via a 

thin-plate spline (TPS) transformation. The vertices on the reference face then found 

their closest projections on the sample face to define the samples’ new vertices, 

resulting in a point-to-point correspondence. At last, the Generalized Procrustes 

analysis (GPA) was used to align the sample grids into a common coordinate system. 

As a result, we obtained a set of 32,251 3D points to represent each participant’s face. 

Samples with defective images were removed from the study.   

 

Genotyping, quality control and imputation. Genomic DNA extracted from blood 

samples of UIG-D and UIG-R were genotyped respectively on Illumina Omni 

ZhongHua-8 and Affymetrix Genome-Wide Human SNP Array 6.0. Quality control 

were performed using PLINK v1.07
51

. Furthermore, 92 individuals from UIG-D were 

whole genome sequenced at high-coverage (30×). We didn’t consider SNPs on 

mitochondria. SNPs with MAF <0.01, genotyping rate <90%, or rejection in the 

Hardy-Weinberg Equilibrium test with P<1 × 10
-6

 were omitted from the study. 

Genomic ancestry was detected using EIGENSTRAT 5.0.2
52, 53

 with CHB and CEU 

from 1000 Genomes Project
54

 (1KG phase1 release v2) to remove samples who were 

not Uyghurs ancestry. Samples with genotype missing rate >0.1 were removed. Data 

were further examined by pairwise IBD estimation, inbreeding coefficients and sex 

status to remove individuals of close genetic relationships or wrong sex information. 

After quality control, a total of 847,046 SNPs were confirmed in 694 UIG-D and 

758,453 SNPs were confirmed in the 171 UIG-R. Genotypes in UIG-R were 

pre-phased with SHAPEIT v2.r790
55

. Imputation of UIG-D and UIG-R were then 

carried out by combining the UIG-D and UIG-R genotype data as well as all 1,092 

individuals from 1000 Genomes Projects
54

 and the 90 sequencing samples from 

UIG-D using IMPUTE2
56

. Genomic DNA of HAN-CZ was extracted from saliva 

referring to a modified Phenol-chloroform protocol
57

. Targeted genotyping for 

genome-wide significant SNPs were performed by SNaPshot multiplex system on an 

ABI3130xl genetic analyzer by Genesky Biotech, Shanghai, China. 

 

Extraction of candidate Phenotypes. We carried out principle component analysis 

(PCA) based and partial least square (PLS) based dimension reduction in 

sex-stratified groups. The 3dDFM data from EUR, UIG-D and HAN-TZ cohorts was 

decomposed into perpendicular dimensions using PCA. It was straight-forward to 

extract the PCs that maximized the segregation between EUR and HAN-TZ by 

Student’s test, which were then named as the segregating PC (sPC) for different facial 

features. On the other hand, PLS was used to generate a regression model that 

maximized the covariance between facial shape and ancestry
58, 59, 60, 61

. Briefly, in the 
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PLS equation we labeled the individuals from EUR as 1 and Han-TZ as 2 in the 

response. The predictor featured the 3 × n matrix of the 3dDFM data, where n stood 

for the number of vertices in the corresponding facial feature. Cross-validation (CV) 

was used to determine how many of the top PLS components should be used in the 

PLS regression model. The PLS regression model achieved the highest prediction 

when the root mean squared error of prediction (RMSEP) showed the turning point in 

CV. We step-wisely increased the number c of PLS components until the adjusted 

RMSEP reached the inflexion. The segregating PLS model (sPLS) was then fixed 

with cadjcv components that corresponded to the turning adjusted RMSEP. The PCA 

and PLS analyses were carried out using the prcomp
62

 and plsr functions
63

 in R 

packages.  

 

Replications. For narrow-sense replication, the 3dDFM data from UIG-R and 

HAN-CZ were either projected to the sPC spaces or input to the sPLS models defined 

in UIG-D, to obtain the corresponding phenotype scores in narrow-sense replication.  

Significant SNPs were also tested for broad-sense replication. For PLS-based 

permutation, genotypes (0, 1, 2 in additive model and 0, 1 in dominant model) of each 

SNP were taken as response. Principle components (PCs) that explained 99% of the 

total variance of each facial feature were adopted as predictor. A scheme of Leave 

One Out (LOO) was used in which N-1 individuals were used as training and the 

left-out was used as test. This was repeated until every individual was used as a test 

sample. The training set was used to build a PLS regression model whose optimal 

number of components was determined by RMSEP under cross-validation, as 

described before. Based on this model, a predicted genotype was given to the test 

sample. By such analogy, every sample obtained a predicted genotype. Afterwards, 

the correlation between actual genotype and predicted genotype can be calculated. 

Next, we performed a permutation procedure to control the supervised effect of PLS
58, 

59, 60, 61
. Briefly, the genotypes were reshuffled randomly among the samples for 1,000 

times, followed by the same procedure as above to calculate correlations between the 

actual and predicted genotypes. The null distribution of correlations can be thus 

established based on the permutation sets. The corrected PLS-based permutation P 

value was generated by ranking the empirical raw correlation against the null 

distribution.  

For the pair-wise shape distance (PSD) permutation among genotypes
11

, we 

calculated the Euclidean distances between the mean shapes of any two genotype 

groups. The mean shape can be denoted as a vector, 

𝑠 = [𝑥1, 𝑦1, 𝑧1, … , 𝑥𝑛, 𝑦𝑛, 𝑧𝑛]          (1) 

where 𝑥𝑖 , 𝑦𝑖, 𝑧𝑖 was the X, Y, Z coordinate values of the 𝑖th points, 𝑛 was the 

number of points.  

For each two genotypes mean shape 𝑠 and 𝑠′, the PSD was defined as 

𝑃𝑆𝐷 =  
∑  𝑑𝑖

2𝑛
𝑖=1

3𝑛
                   (2) 

where 𝑑𝑖
2 = (𝑥𝑖 − 𝑥𝑖

′)2 + (𝑦𝑖 − 𝑦𝑖
′)2 + (𝑧𝑖 − 𝑧𝑖

′)2.  

We also randomly permuted the genotypes among the samples and then 
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calculated the PSD between the peudo-genotype groups. The PSD scores resulted 

from permutation formed the null distribution. The one-side P value was calculated by 

the proportion of permuted PSD smaller than or equal to the observed PSD. 

 

Statistic analysis of prediction 

Predicted face composition  For each of the top SNPs, we divided the 3dDFM 

images into three genotype groups, and the within-group mean shapes were obtained 

as 𝜇𝑔
′ where g is the genotype. A residual face can be obtained for each genotype by 

subtracting the genotype mean by the global cohort mean shape as, 

𝑟𝑔 = 𝜇𝑔
′ − 𝜇          (3) 

where μ was the global mean. We superimposed all the re-scaled residual faces of 

each SNP according to the observed genotypes, onto the global mean to construct a 

face of prediction: 

𝑓 = 𝜇 + 𝛼 ∑ 𝑟𝑔(𝑖)        (4) 

where α was the effect coefficient and i is the SNP index. The coefficient α was 

proposed to maximize the similarity of the predicted and actual faces. Briefly, a 

predicted face was calculated for every individual in the discovery panel as described 

by equation 4, where α varies. PSD was used to calculate the distance between the 

predicted face and actual face for each individual. The value of α was determined 

when the minimum average PSD was achieved within a gender group. This same α 

was also used for the independent cohort as well as the randomly simulated faces. 

To generate a random face, the genotypes were randomly sampled from the 

known frequencies of genotypes in the combined UIG cohort, the predicted face was 

then obtained as indicated by equation 4, using the randomly generated genotype set.  

Evaluation of the face prediction   For each sample, we described the degrees of 

similarity between prediction and actual face in the respects of PSD and shape space 

angle (SSA). PSD described the squared average Euclidean distance for 32,251 

vertices from the predicted face to actual face. The SSA was the angle between the 

predicted and actual faces in the 3 × 32,251 face-space. For a group of N individuals, 

the average PSD score (PSDavg) and average SSA score (SSAavg) was calculated and 

used as the test statistic. To test whether the face prediction within this group was 

significantly better than random, we generated the same number (N) of random faces 

as described above and calculated the corresponding PSDavg and SSAavg. This was 

repeated 1,000 times and the distributions of PSDavg and SSAavg under the null 

hypothesis were compared to the observed PSDavg and SSAavg. Assuming normality of 

the null distributions, the probability of the observed statistics was either given as the 

percentage of random cases scored higher than the observed if any, or the standard 

difference of the observation from the null expectation 𝑡 = (𝑠 − 𝑚)/𝜎 was queried 

against the normal distribution function (pnorm function in the R statistic package) to 

give the estimated P value, where s was the observed value, and m and σ were the 

mean and standard deviation of the null distribution. 

Forensic scenarios simulation  In a simulative forensic scenario, we randomly 

set N (sample size) individuals as the hypothetical candidates, one of them being the 
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true suspect. The PSD and SSA scores were obtained between the actual and predicted 

faces for each individual as depicted in Fig. 6a. If the true suspect happened to have 

the lowest PSD or SSA score among the N candidates, the identification was called 

successful, otherwise failure. We repeated such test 20,000 times, each assuming N 

individuals by random. The prediction accuracy rate can be summarized as the 

proportion of successful identification. Assuming no predictive power, it’s 

unambiguous that the rate of picking up the correct suspect purely by chance was 1/N. 

The observed accuracy rate among the 20,000 cases was formally tested against the 

expected value of 1/N by Chi-squared test and the corresponding P value was given.  

 

Supplementary information 

Supplementary Information includes nine figures and five tables. 
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