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ABSTRACT

Motivation: Small variant calling is an important component
of many analyses, and, in many instances, it is important to
determine the set of variants which appear in multiple callsets. Variant
matching is complicated by variants that have multiple equivalent
representations. Normalization and decomposition algorithms have
been proposed, but are not robust to different representation of
complex variants. Variant matching is also usually done to maximize
the number of matches, as opposed to other optimization criteria.

Results: We present the VarMatch algorithm for the variant
matching problem. Our algorithm is based on a theoretical result
which allows us to partition the input into smaller subproblems
without sacrificing accuracy. VarMatch is robust to different
representation of complex variants and is particularly effective in
low complexity regions or those dense in variants. VarMatch is
able to detect more matches than either the normalization or
decomposition algorithms on tested datasets. It also implements
different optimization criteria, such as edit distance, that can improve
robustness to different variant representations. Finally, the VarMatch
software provides summary statistics, annotations, and visualizations
that are useful for understanding callers’ performance.

Availability: VarMatch is freely available at:
https://github.com/medvedevgroup/varmatch

Contact: chensun@cse.psu.edu

1 INTRODUCTION

In recent years, next-generation sequencing data has been
used in medical and genetic research to identify how
genome mutations are related to phenotypes of interest
(1000 Genomes Project Consortium et al., 2012). In most
of the studies, small variant calling, including the detection
of single nucleotide variants (SNVs), multiple nucleotide
variants (several SN'Vs occuring next to each other), or small
indels (usually less than 30bp), plays a significant role. Small
variant calling is a mature area, with several state-of-the-
art tools, such as FreeBayes (Garrison and Marth, 2012),
GATK (McKenna et al., 2010), SAMtools (Li et al., 2009),
SNVer (Wei et al., 2011), Platypus (Rimmer et al., 2014),
VarScan (Koboldt et al., 2009), and Isaac (Raczy et al.,
2013). Detected variants are represented using the VCF file
format (Danecek et al., 2011).

An important starting point of many downstream analyses
is to compare two VCF files to each other, to find matching
variants. This is important for 1) measuring the similarity
and population structure of several genomes (1000 Genomes
Project Comnsortium et al., 2010), 2) checking that the
new variants added to a database do not already exist
there (Assmus et al., 2013; Tan et al., 2015), 3) generating a
high-confidence variant set by taking the intersection of the
results of different variant callers (Zook et al., 2014), and
4) evaluating the relative accuracy of different tools (Baes
et al., 2014) and understanding the source of their errors (Li,
2014). There have been several studies comparing datasets on
the same genome generated by different aligners and variant
callers (Cheng et al., 2014; Baes et al., 2014; Li, 2014; Hwang
et al., 2015; Cornish and Guda, 2015; Highnam et al., 2015),
and there is various software available to identify matching
variants in two VCF files (vcftools, rtgtools, bcftools,
vt, bcbio, SMaSH (Talwalkar et al., 2014)).

Unfortunately, identifying matching variants in two VCF
files is not as simple as may first seem, because applying
two different VCF entries to a genome may result in the
exact same donor sequence (they are equivalent). A VCF
entry gives an allele sequence, its position on the reference,
one or more alternate allele sequences of the donor, and,
possibly, the donor genotype. The straightforward strict
matching algorithm matches VCF entries which are identical,
i.e. two entries that have the same position and the same
reference and alternate alleles. However, this algorithm fails
to match equivalent entries which are not identical. For
example, Figure 1(a) illustrates how the same 2 bp deletion
can be represented by four different VCF entries.

One way to address this problem is normalization. Tan
et al. (2015) showed that there is a canonical way to represent
VCF entries such that two entries are equivalent if and
only if their canonical representations are identical. The
normalization algorithm is to first normalize every entry
and then run the strict matching algorithm. Normalization
guarantees to identify equivalent pairs of VCF entries.
However, a single variant can be represented by different non-
singleton sets of VCF entries. Figure 1(b) illustrates three
possible ways to represent the same variant. Each individual
entry is normalized, but the three VCF entry sets are not
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Fig. 1: Examples of how the same variants can be represented by
different VCF entries. VCF entries are represented by boxes but
are grouped together into entry sets A-G. Panel (a) illustrates a
variant which is a deletion of an AT from a short tandem repeat.
VCF entry sets A-D are all singletons which are equivalent and
represent this deletion. Panel (b) illustrates a complex variant
which replaces the reference sequence GCCG with CCGA in the
donor. This variant is represented by three equivalent but non-
identical VCF entry sets (E-G). E is a singleton, F is composed of
three entries, and G is composed of two entries. F is the normalized
decomposition of E, and G is already normalized and cannot
be decomposed further. The normalization algorithm would not
detect any match, while the decomposition algorithm would not
match G to E or F.

identical even though they are equivalent. These entries
will not be matched by the normalization algorithm. Such
variants are called complex.

The vcflib package provides a way to partially address
this problem through the decomposition of complex variants.
It uses alignment of alternate allele to reference allele to
break-up, or decompose, a complex VCF entry into multiple
shorter ones. The decomposition algorithm proposed in (Li,
2014; Zook et al., 2014) is to first decompose all entries, then
normalize them, and then run the strict matching algorithm.
Decomposition can help match some VCF entry sets, but it
still does not work in some cases (see example in Figure 1(b))
Moreover, the decomposition varies based on the alignment,
which is sometimes not unique or is not provided (e.g. in
Platypus). Decomposition also allows fractional matches of
a variant, which is difficult to interpret biologically. For
example, a complex variant can be decomposed into three
smaller variants of which only one is matched.

An alternate approach, which we also take in this paper,
avoids strict matching altogether. To check if two sets of
entries are equivalent, we just apply them to the reference
and check if the resulting donor sequence is the same.
Matching two variant datasets can then be formulated
as finding two equivalent subsets, as large as possible.
While such an approach is more computationally taxing,
it avoids some of the problems with the normalization
or decomposition algorithms. This approach is taken in
RTG Tools, described in a pre-print of Cleary et al. (2015).
Their tool implements an exponential time exact algorithm,
but uses clever bounding strategies to prune the search space
and make the run-time feasible. To avoid blow-ups in run-
time, it employs a cutoff strategy when the search space is
too large to skip the matching of some variants. However,

RTG Tools suffers from large RAM usage and can still fail
to match variants in very dense regions, when the cut-off is
activated.

Other related work includes Krawitz et al. (2010) and
Assmus et al. (2013), which gives methods to check if two
indels are equivalent, however, their analysis does not extend
to matching non-singleton entry sets. Mékinen and Rahkola
(2013) and Mékinen and Valenzuela (2014) describe a global
approach for comparing two variant sets: create two donor
genomes by inserting the respective variant sets, and measure
the edit distance between them. Their approach is notable
because it uses edit distance as an optimization criteria, as
opposed to the number of matched variants; however, it has
not been applied to mammalian sized genomes. Wittler et al.
(2015) also studied the problem of matching variants that
are large deletions (> 20bp), which is complementary to our
study of small variants of different types.

In this paper, we present a divide-and-conquer algorithm
for the variant matching problem. It is based on a theoretical
result which shows how to partition the set of variants into
small clusters which can be matched independently and
in parallel. The partitioning step is linear in the number
of variants, and, while the run-time is still exponential
within each cluster, the size of each cluster is small in
practice. VarMatch is more robust to different representation
of complex variants and is able to detect more matches
then the normalization or decomposition algorithms. It is
also faster and uses an order-of-magnitude less memory then
RTG Tools. We show that it is particularly useful in low
complexity regions or those dense in variants.

Our theoretical result also allow VarMatch to seamlessly
support different optimization criteria. VarMatch can
maximize the number of variants matched, but can also
maximize the sum of matched edit distances, which can
increase robustness to different variant representations.
Additional scoring schemes can also be easily integrated
as long as there is a brute force algorithm for computing
them—since partitioning divides the problem into small
instances, the asymptotic running times of computing scores
are rarely a factor. VarMatch can also support matching
of VCF files that include genotype information to one
that does not distinguish between hetero- and homozygous
calls. Finally, the VarMatch software provides summary
statistics, annotations, and visualizations that are useful for
understanding callers’ performance.

2 DEFINITIONS

Let = be a sequence of elements (possibly a string). We use
z[i] or x; to denote the element at position 4, for 0 < i < |z|,
and we use z[i, j] to denote the sub-sequence z;,...x;, for
0 < i < j < |z|. For two sequences = and y, we use the
notation x -y or just xy to be the sequence obtained by their
concatenation. A tandem repeat is a string (z122)™ 1, where
x1 and x2 are strings, zz is non-empty, and m > 1 is an
integer. We refer to x1z2 as the repeat unit.

Let R be a string, which we call the reference genome. A
variant is a triple (p,r,a), where p is an index into R, 7 is
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a string and a is a pair of strings ap and a1, with 7, ag, a1
possibly empty. We refer to r as the reference allele and to a
as the alternate alleles, and require that r = R[p,p+ |r| — 1].

We exclude the possibility that both alternate alleles are
the same as the reference allele, as this indicates no variation.
However, it is possible that one of the alternate alleles is the
same as the reference allele. It is also possible that neither
of the alternate alleles are the same as the reference allele,
meaning that the reference allele is not present in the donor.
We refer to a variant with ap = a1 as homozygous and as
heterozygous otherwise — note that this is irrespective of the
reference allele. In this paper, we assume the genome is
diploid, but note that a haploid genome can be represented
in our framework by setting a1 = ag for all variants.

We say that a variant affects the substring R[p,p+ |r| — 1]
of the reference genome. A sequence of variants V' affects a
given region of the reference if V' contains at least one variant
that affects that region. Let v = (p,r,a) and v’ = (p/,7’,a’)
be two variants and assume without loss of generality that
p < p’. We say that v and v’ are independent if the intervals
[p,p+|r|) and [p’,p’ + |7'|) do not overlap. In other words, v
and v’ affect different regions of the reference genome.

We can apply a variant v = (p,r,a) to obtain two
donor strings, as follows. There are three possible ways to
incorporate a variant into the donor: it can be excluded
or it can be included using one of two different ordering
of the alleles. Let ¢ € {—1,0,1} be a selection value and
let 7 € {0,1}. We define the selection function s(v,c, )
as s(v,0,j) = r, s(v,1,j) = aj, and s(v,—1,5) = ai—;.
Applying v using ¢ then gives two strings do and di, where
d; is obtained by replacing R[p,p + |r| — 1] with s(v, ¢, j).

Let V be a sequence of variants, and let & = {0, 1, —1}‘V‘
be a selection sequence. A selection sequence ®y is used to
represent the selection for each variant in V. Suppose that
for all i # k, if |®y[i]| = [Py [k]| = 1, then V[i] and V[k] are
independent. Then, we can apply the sequence of variants
V using @y as follows. Let D(R,V,®y,j) represent the
string obtained by applying all the variants simultaneously,
where the i*" variant is applied using the selection function
s(V'[i], ®v[i], ). Because of the independence condition, the
final donor sequence obtained is the same regardless of what
order the variants are applied in. Applying V using ®y then
gives us two strings: D(R,V, ®y,0) and D(R,V, Py, 1).

Consider two sequences of variants, V and W, and
their corresponding selection sequences @y, Py,. We say
that (V,®y) and (W,®y) are genotype equivalent if
D(R,V,®y,j) = D(R,W,®y,j) for all j € {0,1}. On the
other hand, some variant callers do not output genotype
information. In these cases, a VCF entry indicates that
the donor must contain at least one of the alternate
alleles. For handling these types of datasets, we introduce
the notion of variant equivalence. Variant equivalence is
similar to genotype equivalence, but two variants are
considered matched if they share at least one alternate allele.
Formally, (V,®y) and (W, Py ) are wvariant equivalent if
D(R,V,®y,0) = D(R,W, ®w,0).

Given a variant v = (p,r,a) and a selection value ¢, the
score of v in the unit cost model is |c|. In the edit distance

cost model, its score is |c|(E(r,a0) + E(r,a1)), where E(-)
is the edit distance function. For a variant sequence and a
selection sequence, the score is the sum of the scores for
each variant. Suppose we have two variant sequences V, W
and their selection sequences Py, Py,. Under the baseline
scoring scheme, their score is the score of W, while in the
total scoring scheme, their score is the score of V' plus the
score of W. Note that we can compute the score even if
(V,®y) and (W, @y ) are not equivalent.

In sum, we can define four different scoring functions
F(V,W,®y, ®y ). These correspond to a choice of the unit
vs. edit distance cost model and the baseline vs. total scoring
schemes. The baseline scoring scheme is appropriate when
comparing multiple datasets against one ground truth, while
the total scoring scheme is more appropriate for a two-
way comparison of different tools when a ground truth is
not available. The unit distance cost model is traditionally
used, but, unlike the edit distance cost model, is not robust
to the decomposition of complex variants. For example, a
single complex variant counts the same as an equivalent entry
set of three SNVs (Figure 1(b)). We believe that matching
using both models can make any resulting conclusions more
robust to diversity in variant representation and/or highlight
important differences.

Given a reference genome R, two variant sequences V'
and W, a type of equivalence (either genotype or variant),
and a scoring function F', the variant matching problem
VARMATCH(R, V, W) is to find two corresponding selection
sequences (®y, Py ) such that (V,®y) and (W, Py ) are
equivalent and have the highest score amongst all equivalent
pairs. Intuitively, in the unit cost model, maximizing the
score results in trying to match as many variants as possible.
In the edit distance cost model, maximizing the score results
in trying to match as many nucleotide differences with the
reference genome as possible.

3 METHODS

In this section, we develop an algorithm for the VARMATCH
problem. First, we prove Theorem 1, which allows a divide-
and-conquer strategy to be applied (Section 3.1). Then,
we describe our algorithm to partition a problem into
smaller sub-problems using the LinearClustering algorithm
(Section 3.2). Finally, we solve each subproblem using an
exact branch and bound algorithm, based on Cleary et al.
(2015). This is done over multiple threads, with each thread
solving its own subproblem. The computational complexity
of VARMATCH remains open.

3.1 Partitioning theorem

In this section, we derive our main theorem which forms
the basis of the VarMatch algorithm. First, we prove the
following two lemmas about strings.

LEMMA 1. Given non-empty strings a, b, and c, if ab = bc,
then d = abc is a tandem repeat with repeat unit a.

PRrROOF. We prove by induction on the length of d. The
base case of |d| = 3 is trivial. In the general case, consider
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three possibilities. In the case that |b] = |a|, then a = b = ¢
and d = a® is a tandem repeat with a is a repeat unit.

Now consider the case that |b] < |a|. Then, b is a prefix of
a, and we can write a = bbg, for some non-empty string bo.
Then, bc = ab = bbpb, and ¢ = bgb. Then d = abc = bbgbbob
is a tandem repeat with repeat unit bbg = a.

Now consider the case that |b| > |a|. Since ab = bc, then
la] = |c|. Moreover, b’s prefix of length |b| — |c| is equal to
its suffix of length |b| — |a|. Denote this string as bi. We can
then write b = ab; and b = bic. We now apply the Lemma
inductively to the equality of abi = bic and get that abic is
a tandem repeat with repeat unit a. Then, d = abc = aabic
is also a tandem repeat with repeat unit a. O

LEMMA 2. Given strings s1 = w1yz1 and S2 = x2yz2, if
T1 # m2 or 21 # 22, y s not a tandem repeat and |y| >
2 - min(abs(|z1]| — |z2|), abs(|z1| — |22])), then s1 # s2.

PROOF. First, observe that if either |x1| = |z2| or |z1] =
|z2|, then it is trivial to show that s1 # s2. Therefore, we can
assume that |z1| # |x2| and |z1| # |22]. Also assume, without
loss of generality, that |z1] > |z2].

Assume for the sake of contradiction that s; = s2. Then,

since |s1| = |s2|, we have that |zi| — |z2| = |22| — |21]-
Therefore, |y| > 2 - min(abs(|z1| — |z2|), abs(|z1| — |22])) =
2(|z1] — |xz2|). We can then divide y into three non-empty

parts y = y1y2ys, such that |y1| = |y3| = |z1| — |z2|. Because
s1 = s2, we have that x1y1y2y321 = T2y1y2y322. Using what
we know about the lengths of these strings, we have that
yiy2 = siflzal, [s1]—|z1] = |ys| = 1]] = saflzal, [s1]—[z2| —1]] =
saflw], [s2] — |z2| = 1]} = sallw2| + |y1], |s2] — |22| — 1]] = yays.
Applying Lemma 1 to the equality yi1y2 = yoy3, we get
that ¥y = yi1y2y3 must be a tandem repeat, contradicting
the conditions on y. O

Let X and Y be two variant sequences. We define the maz
change in length of X and Y, denoted by MCL(X,Y), as

max abs(|D(R, X, ®x,dx)|—|D(R,Y, ®y,dy)|)
P x,Py,dx,dy €{0,1}

Intuitively, MCL(X,Y") is the maximum difference in the
size of the donor sequences that can be obtained for any
selection sequences over X and Y.

THEOREM 1. Consider an interval of the reference, [b, €],
for 0 < b < e < |R|. Consider four variant sequences, V; j,
fori € {0,1} and j € {0, 1}, satisfying

1. Vo,0 and V10 only affect Ro = R[0,b — 1],

2. Vo1 and Vi1 only affect Ri = Rle + 1, |R| — 1].

3. RIb, €] is not a tandem repeat

4. |R[b,e]| > 2- minj(MC'L(Vb,’j, V17j))

For all j, let (®oy,P1,;) be an optimal solution for
VARl\{ATCH(RhVE),ﬁ‘/lJ). Let V; = i,0 * Vi71 and ®; =
D0 P;1, for all i. Then, (Po,P1) is an optimal solution
for VARMATCH(R, Vo, V7).

PRrROOF. Let (®3,®]) be an optimal solution for
VARMATCH(R, Vo, V1), and suppose for the sake of
contradition that it is better than (®g, ®1).

Let ®f, = [0, |Vio| — 1] and @f, = @f[[Viol, ]| —
1]. For the score functions we consider in this paper,
Zje{(),l} F(V0,j7VlA,j7¢'8,ja ij) = F(V()avlaq)&q)){) >
F(Vo, V1, (I’Q, @1) = ZjE{O,l} F(Vv()’j, Vlyj, <I)()J', (I)l;j)' Then,
there must exist a j such that F(Voj, Vi j, @5, @7 ,;) >
F(Vo,5), V1,5, ®o0,5,®1,5). We can assume without loss of
generality that j = 0.

Intuitively, this means that the optimal solution to
VARMATCH(R, Vo, V1), projected onto the “left” variants (i.e.
Vo,0 and Vi o), has a higher score then the optimal solutions
of the “left” problem alone, i.e. VARMATCH(Ro, V0,0, V1,0)-
This can only be possible because this projection is not
a feasible solution to the “left” problem, i.e. the donor
sequences are not identical. Thus, there exist d € {0,1} such
that D(Ro, V0,0, 90,0, d) # D(Ro, V1,0, ®7 o,d).

Let t;; = D(Rj,‘/id‘,q);]-,d) and t; = D(R,‘/i,q)?,d), for
all 7 and 7, We will apply Lemma 2 to the strings t; and ta.
To see that the conditions of Lemma 2 apply, observe that

o Vi t; = tio - R[b, 6} “tia
® 100 # t1,0
e RI[b, €] is not a tandem repeat.

o |R[b,e]| > 2-min;(MCL(Vy 4, V1,5)) > 2-min; abs(|to, ;| —
[t1,51)
Then, Lemma 2 implies that to # t1. However, this

contradicts that (®g, ®7) is a solution for VARMATCH(R, Vo, V1).

O

The following counterexample shows that Theorem 1 is not
true if R[b,e] is a tandem repeat. Let R = CCATATATGC
be the reference sequence, let b = 2 and e = 7, and let

e V5,0=1(0,CC,¢) and Vi = (0,CC, AT)

e Vo1 =(7,GC,AT) and Vi1 = (7,GC,¢)

Here, € denotes the empty string. Observe that all conditions
of the Theorem are satisfied, except that R[b,e] = ATATAT
is a tandem repeat. In particular, |R[b,e]| = 6 > 2 -
min; (MCL(Vp,j, Vi,5)) = 4. The optimal solutions for the
two corresponding VARMATCH subproblems do not select any
variants, and the Theorem implies that the optimal solution
to VARMATCH(R, Vp, V1) is also empty. However, the optimal
solution selects all variants since {Vo,0, Vo,1} and {V1,0,Vi,1}
are equivalent.

3.2 Clustering algorithm

Theorem 1 can be applied to the VARMATCH problem
to divide the input into subproblems that can be solved
separately. In particular, we can identify separator regions
— long-enough regions of the reference that are not affected
by any variants and are not tandem repeats. We can then
divide our variants into two clusters — those on the left and
on the right of the separator region. Each cluster can be
solved independently, and the solutions can then be trivially
combined.

Many clustering strategies are possible, based on how
these separator regions are identified. We found a simple
greedy strategy works well in practice. We make a linear scan
through all the variants, and for each new variant, we check
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if the reference region between it and the previous variant is
a separator. If it is, then we start a new cluster and add the
current variant to it. If not, we simply add the current variant
to the current cluster. The pseudocode for the algorithm,
called LinearClustering, is provided below.

Algorithm LinearClustering

Input: Variant sequences Vj, V1, reference sequence R
Output: A partitioning of the variants into clusters.
1: ao, a1, Po,P1 < 0 > accumulated MCL counters
2: ¢+ 0 > cluster id
3: bye+ 0 > positions in R
4: for all variants v € Vo U V1, in increasing order of v.p do
5: if v is not the first variant considered then
6: e+ v.p—1
7 if b < e then
8 ~ < max(fBo + a1, f1 + o) > set MCL
9 ife—b+1>2-v and R[b, ¢] is not a tandem
repeat then

10: c+—c+1 > separate cluster
11: Bo, B1, a0, a1 <+ 0 > Reset MCL counters
12: end if

13: end if

14: end if
15: b < max(b,v.p+ |v.r|)

16: Assign v to cluster ¢

17: Let j € {0,1} such that v € V}

18: aj < o + max(0, |v.r| — |v.aol, |v.r| — |v.a1])
19: Bi < Bj + max(0, [v.ag| — |v.r|, |v.a1| — |v.r])
20: end for

In order to check if a region is long-enough to be a
separator, we check if its length is > 2v, where v =
MCL(Vy, V{) and V§ and V; are the variants in the current
cluster. This ignores the MCL of the variants to the right of
the separator, which are not yet known due to the greedy
nature of our algorithm. In terms of Theorem 1, instead of
finding min; MCL(Vp,j, V1,5), our algorithm just calculates
MCL(Vo,0, V1,0). Theorem 1 still applies, since |R[b,e]| >
2 - MCL(Vo,0, V1,0) > minj MCL(Vp 5, V1 ;).

To maintain the current value of ~, our algorithm
maintains four counters. The running total of the maximum
possible decrease (respectively, increase) of the reference
length for the variants Vg and V{ is maintained by ao
and a1 (respectively, Bo and Bi1). Then, we can compute
~v = max(fo + a1, f1 + ao). To check if a potential separator
is tandem repeat, we use a simple algorithm described in
Fungtammasan et al. (2015).

Finally, we solve each subproblem using a variation of the
exact branch and bound algorithm of Cleary et al. (2015).
Due to its high similarity, we do not describe it here, but, for
the sake of completeness and clarity, we provide its details
in the Supplementary Text. The algorithm’s running time
and memory usage is Q(SWMW‘). However, the algorithm is
fast in practice, since it is applied only on small subproblems
generated by the LinearClustering algorithm and it employs
pruning strategies.

4 RESULTS

We implemented the VarMatch Toolkit, which takes multiple
query VCF files and matches them separately to one baseline
VCF file. The baseline could be a ground truth set, or,
if one is unavailable, any of the callsets. Based on the
various scoring functions and equivalence definitions given
in Section 2, our software runs in different modes. The cost
model of VarMatch can be either unit (denoted by U) or edit
distance (E). The equivalence mode can be either genotype
(G) or variant (V). Also, the scoring scheme can be either
baseline (B), query (Q), or the total (T). The query scoring
scheme is applicable when there is only one query file and
seeks to maximize the score of the query. It is like the baseline
scoring scheme defined in Section 2 but with the roles of
query and baseline reversed. Considering all combinations
of above, there are 12 possible modes, each denoted by a
three letter abbreviation (e.g. UGT for unit cost, genotype
equivalence, and total scoring scheme).

For each query, VarMatch automatically matches it to the
baseline, simultaneously using all the modes. VarMatch then
outputs files containing annotations of matched variants and
recall and precision statistics and plots. It also identifies and
outputs visualizations of variants that are matched in one
mode but not in another (as in Supplementary Figure 2).
VarMatch can also create Precision-Recall curves by varying
the minimum quality cutoff for the VCF file (not shown).

4.1 Datasets

To evaluate the performance of VarMatch, we selected
five state-of-the-art variant calling methods: Platypus(pt),
GATK HaplotypeCaller(hc), GATK UnifiedGenotyper(ug),
Freebayes(fb) and SAMtools(st). The algorithms of these
tools vary, resulting in potentially different representations of
variants. For example, pt performs local assembly, pt/hc/ug
perform local realignment, and pt/fb phase haplotypes and
thus tend to merge variants into longer complex variants.
For evaluation, we use the variant call sets provided
by Li (2014). The CHMI1 dataset comes from 65x Illumina
sequencing of the haploid CHM1hTERT cell line, mapped to
GRCh37 using bowtie2, and small variants called separately
by fb/hc. The CHMI1 dataset has less variants, due to the
haploid nature of the CHM1hTERT cell line. The NA12878
dataset comes from 55x Illumina sequencing of the NA12878
diploid cell line, mapped to GRCh37 using bowtie2, and
small variants called separately by fb/ug/pt/st. It also
includes Freebayes run on mappings generated by BWA-
MEM, which we will refer to as bwa-fb. Samtools was not
run in genotype mode, and only the presence of alternate
alleles, and not the corresponding genotype, was reported.

4.2 Evaluating VarMatch’s accuracy and resources

We compared VarMatch against the normalization algorithm
(running 'normalize’ function of vt(version v0.5) (Tan et al.,
2015) followed by strict matching), the decomposition
algorithm (running ’vefallelicprimitives’ function of veflib,
followed by normalization algorithm and strict matching)
and RTG Tools (Cleary et al., 2015) (version 3.6.2, running
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# Matches RAM Real CPU # Matches RAM Real CPU
Method (Gb) Time(s) Time(s) Method (Gb) Time(s) Time(s)

fb hc fb ug

norm 2,778,372 2,778,372 0.004 506 499 norm 4,092,161 4,092,161 0.004 858 849
decomp  +58,470 +122,676 0.004 1,686 1,678  decomp 492,592 +214,501 0.004 3,384 3,373
RTG +65,024 +134,269 48 447 997 RTG +104,909 +229,836 73 732 1,623
VarMatch 465,024  +134,269 5 342 867 VarMatch +104,977 +229,922 7 541 1,437

Table 1. Comparison of VarMatch to CHM1 fb and hc datasets.
Numbers of matches are shown as offsets to the baseline numbers
of the normalization algorithm. We measure both the real running
time and the total number of CPU-seconds that the process spent.
Normalization and decomposition are single threaded, so the real
time matches closely the CPU time.

'vefeval’ function with paramaters '—all-records’ and ’—ref-

overlap’). The decomposition algorithm changes the number
of variants in a VCF file and thus poses a challenge for
counting the number of matches. In this case, an original
query entry (the baseline case is symmetric) is said to be
partially matched if at least one of its decomposed child
variants is matched but either 1) one of its decomposed
children is not matched, or 2) one of its decomposed
children matches a baseline decomposed child which has
a decomposed non-matched sibling. Partial matches do
not reflect true matches and thus are not counted. All
experiments were run on an Intel Xeon CPU with 512 GB
of RAM and using 8 cores (at 2.67GHz). VarMatch and
RTG Tools are multi-threaded and were allowed to use all
threads, while vt and vcflib are single threaded. VarMatch
was run in UGT mode unless otherwise stated.

Tables 1 and 2 show the exact matching results of
comparing CHM1 fb to CHM1 hc datasets, and the NA12878
fb and ug datasets. Note that since we only consider
exact matches, the algorithm that can find the highest
number of matches is the best. The variants matched by
the decomposition algorithm were always a subset of the
variants matched by RTG Tools, which were in turn always
a subset of the variants matched by VarMatch. RTG Tools
and VarMatch match the same set of variants in Table 1,
but in Table 2, RTG Tools reported skipping 23 genome
regions because it reached the search space upper bound,
discarding all the variants in these regions. As a result,
VarMatch matches more entries then RTG Tools. Though
the number of these variants is small, they are located in
regions dense with variants which might be of particular
interests to researchers. Both RTG Tools and VarMatch
match more entries than the normalization or decomposition
algorithms, but VarMatch uses less running time and an
order of magnitude less memory than RTG Tools.

We also evaluated the effectiveness of our clustering
algorithm. Figure 2 shows the distribution of the sizes of
each subproblem. VarMatch partitions 6,438,208 initial small
variants into 3,272,206 subproblems, 99.9% of which have less
than nine variants in them.

Table 2. Comparison of VarMatch to NA12878 fb and ug.
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Fig. 2: Distribution of number of variants in subproblems for
experiment in Table 1.

4.3 Comparison of different modes

To test VarMatch’s ability to match between datasets with
and without genotype information, we use UVT mode to
compare the NA12878 fb and st datasets against the GIAB
benchmark (version 2.18) (Zook et al., 2014). We find that
fb has a precision of 49.85% and a recall of 99.64%, while st
has a precision of 63.90% and a recall of 98.96%. RTG Tools
could not process the st dataset due to lack of genotype calls.

We then evaluate the difference in results when different
scoring schemes and equivalence modes are used. Table 3
illustrates the results on the NA12878 fb and ug datasets.
Observe that on this dataset, ug outperforms fb in most
modes, but there is a discrepancy when variant equivalence
is used — the edit distance score favors fb while the number
of variants matched favors ug. This could indicate that, in
this dataset, fb is better at detecting the presence of variants
then it is at genotyping them. Observe also that fb has more
matches when the scoring scheme maximizes the number of fb
matches (e.g. UGB) then when the total number of matches
in both fb and ug are maximized (e.g. UGT). VarMatch flags
variants that are matched in one mode but not in the other,
making it possible for a researcher to further investigate
the source of such discrepancies. These may uncover bugs,
quirks, or features of a variant caller. Supplementary Figures
1 and 2 show examples, simplified from real data, that
illustrate why the number of matched variants varies under
different criteria. We recommend users to run VarMatch
simultaneously in all modes (the default option), and using
the graphs, tables, and visualizations provided in the output
to detect and understand any anomalies in the datasets.
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Variant Matching

# Matched Entries Edit Distance Score

Mode b ug b ug

UGT 4,197,138 4,322,083 5,184,864 5,169,151
UGB +8 -32 +31 -12

UGQ -21 +6 -115 -36

EGT +8 -15 +35 +15
EGB +8 -45 +43 -22

EGQ -6 -9 +15 +18
UvT 4,266,505 4,411,621 7,042,027 7,046,191
UvB +33 -913 -942 -1,646
uvQ -84 +15 -166 -30

EVT -8 =775 485248 485280
EVB -4 -998 485382 484366
EVQ -70 -740 484844 485346

Table 3. Number of matched variants and the edit distance score
from the NA12878 fb and ug datasets, under different modes of
VarMatch. Baseline is arbitrarily chosen to be fb, and the query to
be ug. The top half shows results in genotype equivalence modes
and the bottom half in variant equivalence modes. Numbers are
given as offsets to UGT in top half and to UVT in bottom half.

Finally, we evaluated the robustness of matching results to
the score model being used. We repeated several unit cost
model experiments from the paper in the edit distance cost
model (Supplementary Table 1). We found that there was
little difference in the results.

4.4 Matching variants in hard regions

To illustrate the power of VarMatch to detect matches, we
focus on genomic regions where variants are particularly hard
to match.

both bwa-fb only pt only
norm 318,591 44,437 140,107
decomp 347,324 43,602 175,458
RTG 361,781 40,251 166,651
VarMatch 362,357 39,677 167,716

Table 4. Number of baseline variants matched in low complexity
regions. VarMatch was run in UGB mode using ug as the baseline.
For each variant matching experiment, baseline variants are
categorized as being matched in both bwa-fb and pt datasets or
in just one of the two datasets.

We downloaded co-ordinates of low complexity regions (Li,
2014), covering about 2% of the autosomal genome.
Alignment and variant calling is particularly challenging
in these regions, often leading to different representations,
and we evaluated how VarMatch performs there. Table 4
shows the comparison of NA12878 ug, pt, and bwa-fb
datasets, restricted to variants in the low complexity regions.
Because no ground truth is available in these regions, we

arbitrarily used ug as a baseline. The goal is to identify
all the high-confidence variants, i.e. thost that occur in all
three datasets. VarMatch is able to detect 14% more high-
confidence variants than the normalization algorithm, and
4.8% more than the decomposition algorithm, and 576 more
(.16%) than RTG Tools. RTG Tools skipped some genome
regions because of its search space upper bound and was also
unable to process some of the genotype information from pt.

# Matched Benchmark Entries (Recall)
fb pt

2,896,841 (99.35%) 2,891,849 (99.18%)
24,188 (84.69%) 24,522 (85.86%)

genome-wide
dense regions

Table 5. The number and recall of benchmark variants matched
by fb and pt (in UGB mode), from the whole genome (first row)
and just the dense regions (second row).

A recent evaluation study of Highnam et al. (2015)
compared the results of different variant callers and aligners
against the GIAB benchmark (Zook et al., 2014), However,
they excluded dense regions — any 10bp regions that contain
an indel and another variant in the benchmark — due to the
difficulty of matching variants in those regions. However,
the accurate detection of variants in such dense regions is
particularly important in studying the mechanisms that give
rise to variation. For example, the presence of a cluster
of small events near structural variation breakpoints can
help differentiate microhomology-mediated break-induced
replication from non-homologous end joining (Hastings et al.,
2009; Mékinen and Rahkola, 2013). Meanwhile, some
variants in dense regions are disease related, e.g. 51 variants
from dense regions in the HLA region.

In Table 5, we measured the accuracy of fb and pt in
detecting specifically the variants in dense regions. On the
whole benchmark, fb has higher recall than pt, but pt has
higher recall in dense regions, using VarMatch (Table 5) and
RTG Tools (Supplementary Table 2). The use of VarMatch
or RTG Tools can therefore allow studies such as Highnam
et al. (2015) to measure accuracy in these important regions.

5 DISCUSSION

In this paper, we presented VarMatch, an open-source
parallel tool for matching equivalent genetic variants.
VarMatch is robust to different representations of complex
variants and supports flexible scoring schemes. We
demonstrated that it can detect more matches than the
normalization algorithm and is faster and uses an order-of-
magnitude less memory than RTG Tools. It is important to
note that, for evaluating a variant caller, VarMatch should
be used in conjunction with other validations (e.g. longer
haplotypes are not reflected in a higher match score but are
a desirable feature).

There are efforts underway to represent the reference as a
graph instead of as a string, led by the GA4GH coaliation.
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This would affect variant matching algorithms, which would
need to adopt to new reference formats; however, such
formats are not yet stabilized. For the time being, most
studies continue to use a string as a reference and require
accurate variant matching tools.

One weakness of VarMatch is its worst-case exponential
running time. There are theoretical cases when the run-
time would become infeasible, when there is large number
of similar variants within a long tandem repeat region (e.g.
100 SNVs within a 500bp poly-A region). In such a case,
our clustering algorithm would fail to divide the input and
the branch and bound algorithm would also fail to prune the
search space. We did not observe such extreme conditions
in our experiments, however, to handle this contingency,
we monitor our search space and when it reaches a fixed
upper bound, we apply the strict matching algorithm to
the cluster. For the same reason, VarMatch is limited
in processing population-scale call sets like dbSNP, where
variants are densely packed and our clusters become large.
In such situations, the decomposition algorithm can be used.

Finally, the power of Theorem 1 is not fully explored
in our linear -clustering algorithm. For instance, it
might be possible that while the region bounded by
two variants is not a separator, a smaller sub-region
is. Additionally, we only calculate MCL(Vp,0,Vi,0), but
computing min; MCL(V ;, V1,;) may detect new separators.
Our current linear clustering algorithm is sufficient for our
experiments, but a more powerful clustering algorithm is also
theoretically possible.
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