
BIOINFORMATICS Vol. 00 no. 00 2016
Pages 1–8

VarMatch: robust matching of small variant datasets
using flexible scoring schemes
Chen Sun 1 and Paul Medvedev 1,2,3

1Department of Computer Science and Engineering, The Pennsylvania State University, USA
2Department of Biochemistry and Molecular Biology, The Pennsylvania State University, USA
3Genome Sciences Institute at the Huck, The Pennsylvania State University, USA
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: Small variant calling is an important component of

many analyses, and, in many instances, it is important to deter-
mine the set of variants which appear in multiple callsets. Variant
matching is complicated by variants that have multiple equivalent
representations. Normalization and decomposition algorithms have
been proposed, but are not robust to different representation of com-
plex variants. Variant matching is also usually done to maximize the
number of matches, as opposed to other optimization criteria.

Results: We present the VarMatch algorithm for the variant match-
ing problem. Our algorithm is based on a theoretical result which
allows us to partition the input into smaller subproblems without
sacrificing accuracy. VarMatch is robust to different representation
of complex variants and is particularly effective in low complexity
regions or those dense in variants. It also implements different opti-
mization criteria, such as edit distance, that can lead to different
results and affect conclusions about algorithm performance. Finally,
the VarMatch software provides summary statistics, annotations, and
visualizations that are useful for understanding callers’ performance.

Availability: VarMatch is freely available at:
https://github.com/medvedevgroup/varmatch

Contact: chensun@cse.psu.edu

1 INTRODUCTION
In recent years, next-generation sequencing data has been
used in medical and genetic research to identify how genome
mutations are related to phenotypes of interest (1000 Geno-
mes Project Consortium et al., 2012). In most of the studies,
small variant calling, including the detection of single nucle-
otide variants (SNVs), multiple nucleotide variants (several
SNVs occuring next to each other), or small indels (usually
less than 30bp), plays a significant role. Small variant calling
is a mature area, with several state-of-the-art tools, such as
FreeBayes (Garrison and Marth, 2012), GATK (McKenna
et al., 2010), SAMtools (Li et al., 2009), SNVer (Wei et al.,
2011), Platypus (Rimmer et al., 2014), VarScan (Koboldt
et al., 2009), and Isaac (Raczy et al., 2013). Detected variants
are represented using the VCF file format (Danecek et al.,
2011).

An important starting point of many downstream analyses
is to compare two VCF files to each other, to find matching

variants. This is important for measuring the similarity and
population structure of several genomes (1000 Genomes Pro-
ject Consortium et al., 2010), checking that the new variants
added to a database do not already exist there (Assmus et al.,
2013; Tan et al., 2015), generating a high-confidence variant
set by taking the intersection of the results of different variant
callers (Zook et al., 2014), evaluating their relative accu-
racy (Baes et al., 2014), and understanding the source of their
errors (Li, 2014). There have been several studies comparing
datasets on the same genome generated by different aligners
and variant callers (Cheng et al., 2014; Baes et al., 2014; Li,
2014; Hwang et al., 2015; Cornish and Guda, 2015; Highnam
et al., 2015), and there is various software available to iden-
tify matching variants in two VCF files (vcftools, rtgtools,
bcftools, vt, bcbio, SMaSH (Talwalkar et al., 2014)).

Unfortunately, identifying matching variants in two VCF
files is not as simple as may first seem, because applying two
different VCF entries to a genome may result in the exact
same donor sequence (they are equivalent). A VCF entry
gives an allele sequence, its position on the reference, one
or more alternate allele sequences of the donor, and, possi-
bly, the donor genotype. The straightforward strict matching
algorithm matches VCF entries which are identical, i.e. two
entries that have the same position and the same refere-
nce and alternate alleles. However, this algorithm fails to
match equivalent entries which are not identical. For exam-
ple, Fig. 1(a) illustrates how the same 2 bp deletion can be
represented by four different VCF entries.

One way to address this problem is normalization. Tan
et al. (2015) showed that there is a canonical way to repre-
sent VCF entries such that two entries are equivalent if and
only if their canonical representations are identical. The nor-
malization algorithm is to first normalize every entry and
then run the strict matching algorithm. Normalization gua-
rantees to identify equivalent pairs of VCF entries. However,
a single variant can be represented by different non-singleton
sets of VCF entries. Figure 1(b) illustrates three possible
ways to represent the same variant. Each individual entry is
normalized, but the three VCF entry sets are not identical
even though they are equivalent. These entries will not be
matched by the normalization algorithm. Such variants are
called complex.

c© Oxford University Press 2016. 1

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 8, 2016. ; https://doi.org/10.1101/062943doi: bioRxiv preprint

https://doi.org/10.1101/062943
http://creativecommons.org/licenses/by-nc-nd/4.0/

C.Sun and P.Medvedev

(a) (b)

Fig. 1: Examples of how the same variants can be represented
by different VCF entries. VCF entries are represented by boxes
but are grouped together into entry sets A-G. Panel (a) illustra-
tes a variant which is a deletion of an AT from a short tandem
repeat. VCF entry sets A-D are all singletons which are equivalent
and represent this deletion. Panel (b) illustrates a complex variant
which replaces the reference sequence GCCG with CCGA in the
donor. This variant is represented by three equivalent but non-
identical VCF entry sets (E-G). E is a singleton, F is composed of
three entries, and G is composed of two entries. F is the normali-
zed decomposition of E, and G is already normalized and cannot
be decomposed further. The normalization algorithm would not
detect any match, while the decomposition algorithm would not
match G to E or F.

The vcflib package provides a way to partially address
this problem through the decomposition of complex variants.
It uses the alignment of the alternate allele to the reference
allele to break-up, or decompose, a complex VCF entry into
multiple shorter ones. The decomposition algorithm propo-
sed in (Li, 2014; Zook et al., 2014) is to first decompose
all entries, then normalize them, and then run the strict
matching algorithm. Decomposition can help match some
VCF entry sets, however, it still does not work in some cases
(see example in Figure 1(b)) Moreover, the decomposition
varies based on the alignment, which is sometimes not uni-
que or is not provided (e.g. in Platypus). Decomposition also
allows fractional matches of a variant, which is difficult to
interpret biologically. For example, a complex variant can be
decomposed into three smaller variants of which only one is
matched.

An alternate approach, which we also take in this paper,
avoids strict matching altogether. To check if two sets of
entries are equivalent, we just apply them to the reference
and check if the resulting donor sequence is the same. Match-
ing two variant datasets can then be formulated as finding
two equivalent subsets, as large as possible. While such an
approach is more computationally taxing, it avoids some of
the problems with the normalization or decomposition algo-
rithms. This approach is taken in RTG Tools, described in
a pre-print of Cleary et al. (2015). Their tool implements an
exponential time exact algorithm, but uses clever bounding
strategies to prune the search space and make the run-time
feasible. To avoid blow-ups in run-time, it employs a cutoff
strategy when the search space is too large to skip the match-
ing of some variants. However, RTG Tools suffers from large

RAM usage and can still fail to match variants in very dense
regions, when the cut-off is activated.

Other related work includes Krawitz et al. (2010) and
Assmus et al. (2013), which gives methods to check if two
indels are equivalent, however, their analysis does not extend
to matching non-singleton entry sets. Mäkinen and Rahkola
(2013) and Mäkinen and Valenzuela (2014) describe a global
approach for comparing two variant sets: create two donor
genomes by inserting the respective variant sets, and measure
the edit distance between them. Their approach is notable
because it uses edit distance as an optimization criteria, as
opposed to the number of matched variants; however, it has
not been applied to mammalian sized genomes. Wittler et al.
(2015) also studied the problem of matching variants that
are large deletions (≥ 20bp), which is complementary to our
study of small variants of different types.

In this paper, we present a divide-and-conquer algorithm
for the variant matching problem. It is based on a theoretical
result which shows how to partition the set of variants into
small clusters which can be matched independently and in
parallel. The partitioning step is linear in the number of vari-
ants, and, while the run-time is still exponential within each
cluster, the size of each cluster is small in practice. VarMatch
is more robust to different representation of complex variants
and is able to detect more matches then the normalization
algorithm. It is also faster and uses an order-of-magnitude
less memory then RTG Tools. We show that it is particularly
useful in low complexity regions or those dense in variants.

Our theoretical result also allow VarMatch to seamlessly
support different optimization criteria. VarMatch can maxi-
mize the number of variants matched, but can also maximize
the sum of matched edit distances, which can lead to different
results and affect conclusions about algorithm performa-
nce. VarMatch can also support matching of VCF files that
include genotype information to one that does not distin-
guish between hetero- and homozygous calls. Finally, the
VarMatch software provides summary statistics, annotations,
and visualizations that are useful for understanding callers’
performance.

2 DEFINITIONS
Let x be a sequence of elements (possibly a string). We use
x[i] or xi to denote the element at position i, for 0 ≤ i < |x|,
and we use x[i, j] to denote the sub-sequence xi, . . . xj , for
0 ≤ i ≤ j < |x|. For two sequences x and y, we use the
notation x · y or just xy to be the sequence obtained by their
concatenation. A tandem repeat is a string (x1x2)mx1, where
x1 and x2 are strings, x2 is non-empty, and m > 1 is an
integer. We refer to x1x2 as the repeat unit.

Let R be a string, which we call the reference genome. A
variant is a triple (p, r,a), where p is an index into R, r is
a string and a is a pair of strings a0 and a1, with r, a0, a1
possibly empty. We refer to r as the reference allele and to a
as the alternate alleles, and require that r = R[p, p+ |r| − 1].

We refer to a variant with a0 = a1 as homozygous and
as heterozygous otherwise. For the purposes of this paper, we
assume the genome is diploid, but note that a haploid genome

2

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 8, 2016. ; https://doi.org/10.1101/062943doi: bioRxiv preprint

https://doi.org/10.1101/062943
http://creativecommons.org/licenses/by-nc-nd/4.0/

Variant Matching

can be represented in our framework by setting a1 = a0 for
all variants.

We say that a variant affects the substring R[p, p+ |r| − 1]
of the reference genome. A sequence of variants V affects a
given region of the reference if V contains at least one variant
that affects that region. Let v = (p, r,a) and v′ = (p′, r′,a′)
be two variants and assume without loss of generality that
p ≤ p′. We say that v and v′ are independent if the intervals
[p, p+ |r|) and [p′, p′+ |r′|) do not overlap. In other words, v
and v′ affect different regions of the reference genome.

We can apply a variant v = (p, r,a) to obtain two donor
strings, as follows. There are three possible ways to incorpo-
rate a variant into the donor: it can be excluded or it can
be included using one of two different ordering of the alleles.
Let c ∈ {−1, 0, 1} be a selection value and let j ∈ {0, 1}. We
define the selection function s(v, c, j) as s(v) = r if c = 0,
s(v) = aj if c = 1, and s(v) = a1−j if c = −1. Applying v
using c then gives two strings d0 and d1, where dj is obtained
by replacing R[p, p+ |r| − 1] with s(v, c, j).

Let V be a sequence of variants, and let ΦV = {0, 1,−1}|V |
be a selection sequence. A selection sequence is used to repre-
sent the selection for each variant in V . Suppose that for all
i 6= j, if |Φ[i]| = |Φ[j]| = 1, then V [i] and V [j] are indepen-
dent. Then, we can apply the sequence of variants V using ΦV

as follows. Let ∆(R, V,Φ, j) represent the string obtained by
applying all the variants in parallel, where the ith variant is
applied using the selection function s(V [i],ΦV [i], j). Because
of the independence condition, the variants can be applied
in parallel and the obtained string is unambiguous. Appl-
ying V using ΦV then gives us two strings: ∆(R, V,ΦV , 0)
and ∆(R, V,ΦV , 1).

Consider two sequences of variants, V and W , and
their corresponding selection sequences ΦV ,ΦW . We say
that (V,ΦV) and (W,ΦW) are genotype equivalent if
∆(R, V,ΦV , j) = ∆(R,W,ΦW , j) for all j ∈ {0, 1}. Some
variant callers do not call genotypes, but instead only deter-
mine that a variant is present. The VCF entries that such
callers generate must be treated differently — each of the
alternate alleles represents a possible variant, and two vari-
ants are considered matched iff they each have one alternative
allele that matches. This can be represented by using the first
of the two donor sequences to choose the allele, and ignoring
the second donor sequence. Formally, (V,ΦV) and (W,ΦW)
are variant equivalent if ∆(R, V,ΦV , 0) = ∆(R,W,ΦW , 0).

Given a variant v = (p, r,a) and a selection value c, the
score of v in the unit cost model is |c|. In the edit distance
cost model, its score is |c|(D(r, a0) + D(r, a1)), where D(·)
is the edit distance function. For a variant sequence and a
selection sequence, the score is the sum of the scores for
each variant. Suppose we have two variant sequences V,W
and their selection sequences ΦV ,ΦW . Under the baseline
scoring scheme, their score is the score of W , while in the
total scoring scheme, their score is the score of V plus the
score of W . Note that we can compute the score even if
(V,ΦV) and (W,ΦW) are not equivalent.

In sum, we can define four different scoring functions
F (V,W,ΦV ,ΦW). These correspond to a choice of the unit
vs. edit distance cost model and the baseline vs. total scoring
schemes. The baseline scoring scheme is appropriate when

comparing multiple datasets against one ground truth, while
the total scoring scheme is more appropriate for a two-way
comparison of different tools when a ground truth is not avai-
lable. The unit distance cost model is traditionally used,
but, unlike the edit distance cost model, is not robust to
the decomposition of complex variants. For example, a sin-
gle complex variant counts the same as an equivalent entry
set of three SNVs (Figure 1(b)). We believe that matching
using both models can make any resulting conclusions more
robust to diversity in variant representation and/or highlight
important differences.

Given a reference genome R, two variant sequences V
and W , a type of equivalence (either genotype or variant),
and a scoring function F , the variant matching problem
VarMatch(R, V,W) is to find two corresponding selection
sequences (ΦV ,ΦW) such that (V,ΦV) and (W,ΦW) are equi-
valent and have the highest score amongst all equivalent
pairs.

3 METHODS
In this section, we develop an algorithm for the VarMa-
tch problem. First, we prove Theorem 1, which allows
a divide-and-conquer strategy to be applied (Section 3.1).
Then, we describe our algorithm to partition a problem
into smaller sub-problems using the LinearClustering algo-
rithm (Section 3.2). Finally, we solve each subproblem using
an exact branch and bound algorithm (Section 3.3), based
on Cleary et al. (2015). This is done over multiple thre-
ads, with each thread solving its own subproblem. The
computational complexity of VarMatch remains open.

3.1 Partitioning theorem
In this section, we derive our main theorem which forms
the basis of the VarMatch algorithm. First, we prove the
following two lemmas about strings.

Lemma 1. Given non-empty strings a, b, and c, if ab = bc,
then d = abc is a tandem repeat with repeat unit a.

Proof. In the case that |b| = |a|, then a = b = c and
d = a3 is a tandem repeat with a is a repeat unit.

Now consider the case that |b| < |a|. Then, b is a prefix of
a, and we can write a = bb0, for some non-empty string b0.
Then, bc = ab = bb0b, and c = b0b. Then d = abc = bb0bb0b
is a tandem repeat with repeat unit bb0 = a.

Now consider the case that |b| > |a|. We prove this case
by induction on the length of d. The base case of |d| = 3
is trivial. In the general case, since ab = bc, then |a| = |c|.
Moreover, b’s prefix of length |b| − |c| is equal to its suffix of
length |b| − |a|. Denote this string as b1. We can then write
b = ab1 and b = b1c. We now apply the Lemma inductively
to the equality of ab1 = b1c and get that ab1c is a tandem
repeat with repeat unit a. Then, d = abc = aab1c is also a
tandem repeat with repeat unit a.

Lemma 2. Given strings s1 = x1yz1 and s2 = x2yz2, if
x1 6= x2 or z1 6= z2, y is not a tandem repeat and |y| >
2 ·min(abs(|x1| − |x2|), abs(|z1| − |z2|)), then s1 6= s2.

3

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 8, 2016. ; https://doi.org/10.1101/062943doi: bioRxiv preprint

https://doi.org/10.1101/062943
http://creativecommons.org/licenses/by-nc-nd/4.0/

C.Sun and P.Medvedev

Proof. First, observe that if either |x1| = |x2| or |z1| =
|z2|, then it is trivial to show that s1 6= s2. Therefore, we can
assume that |x1| 6= |x2| and |z1| 6= |z2|. Also assume, without
loss of generality, that |x1| > |x2|.

Assume for the sake of contradiction that s1 = s2. Then,
since |s1| = |s2|, we have that |x1| − |x2| = |z2| − |z1|.
Therefore, |y| > 2 · max(abs(|x1| − |x2|), abs(|z1| − |z2|)) =
2(|x1| − |x2|). We can then divide y into three non-empty
parts y = y1y2y3, such that |y1| = |y3| = |x1| − |x2|. Because
s1 = s2, we have that x1y1y2y3z1 = x2y1y2y3z2. Using what
we know about the lengths of these strings, we have that
y1y2 = s1[|x1|, |s1|−|z1|−|y3|−1]] = s1[|x1|, |s1|−|z2|−1]] =
s2[|x1|, |s2| − |z2| − 1]] = s2[|x2|+ |y1|, |s2| − |z2| − 1]] = y2y3.
Applying Lemma 1 to the equality y1y2 = y2y3, we get
that y = y1y2y3 must be a tandem repeat, contradicting
the conditions on y.

Let X and Y be two variant sequences. We define the max
change in length of X and Y , denoted by MCL(X,Y), as

max
ΦX ,ΦY ,dX ,dY ∈{0,1}

abs(|∆(R,X,ΦX , dX)|−|∆(R, Y,ΦY , dY)|)

Intuitively, MCL(X,Y) is the maximum difference in the
size of the donor sequences that can be obtained for any
selection sequences over X and Y .

Theorem 1. Consider an interval of the reference, [b, e],
for 0 ≤ b ≤ e < |R|. Consider four variant sequences, Vi,j ,
for i ∈ {0, 1} and j ∈ {0, 1}, satisfying

1. V0,0 and V1,0 only affect R0 = R[0, b− 1],
2. V0,1 and V1,1 only affect R1 = R[e+ 1, |R| − 1].
3. R[b, e] is not a tandem repeat
4. |R[b, e]| > 2 ·minj(MCL(V0,j , V1,j))

For all j, let (Φ0,j ,Φ1,j) be an optimal solution for
VarMatch(Rj , V0,j , V1,j). Let Vi = Vi,0 · Vi,1 and Φi =
Φi,0 · Φi,1, for all i. Then, (Φ0,Φ1) is an optimal solution
for VarMatch(R, V0, V1).

Proof. Let (Φ∗0,Φ∗1) be an optimal solution for
VarMatch(R, V0, V1), and suppose for the sake of contra-
dition that it is better than (Φ0,Φ1).

Let Φ∗i,0 = Φ∗i [0, |Vi,0| − 1] and Φ∗i,1 = Φ∗i [|Vi,0|, |Φ∗i | −
1]. For the score functions we consider in this paper,∑

j∈{0,1} F (V0,j , V1,j ,Φ∗0,j ,Φ∗1,j) = F (V0, V1,Φ∗0,Φ∗1) >

F (V0, V1,Φ0,Φ1) =
∑

j∈{0,1} F (V0,j , V1,j ,Φ0,j ,Φ1,j). Then,
there must exist a j such that F (V0,j , V1,j ,Φ∗0,j ,Φ∗1,j) >
F (V0,j), V1,j ,Φ0,j ,Φ1,j). We can assume without loss of
generality that j = 0.

Intuitively, this means that the optimal solution to
VarMatch(R, V0, V1), projected onto the “left” variants (i.e.
V0,0 and V1,0), has a higher score then the optimal solutions
of the “left” problem alone, i.e. VarMatch(R0, V0,0, V1,0).
This can only be possible because this projection is not a
feasible solution to the “left” problem, i.e. the donor seque-
nces are not identical. Thus, there exist d ∈ {0, 1} such that
∆(R0, V0,0,Φ∗0,0, d) 6= ∆(R0, V1,0,Φ∗1,0, d).

Let ti,j = ∆(Rj , Vi,j ,Φ∗i,j , d) and ti = ∆(R, Vi,Φ∗i , d), for
all i and j, We will apply Lemma 2 to the strings t1 and t2.
To see that the conditions of Lemma 2 apply, observe that

• ∀i, ti = ti,0 ·R[b, e] · ti,1
• t0,0 6= t1,0

• R[b, e] is not a tandem repeat.
• |R[b, e]| > 2·minj(MCL(V0,j , V1,j)) ≥ 2·minj abs(|t0,j |−
|t1,j |)

Then, Lemma 2 implies that t0 6= t1. However, this contradi-
cts that (Φ∗0,Φ∗1) is a solution for VarMatch(R, V0, V1).

3.2 Clustering algorithm
Theorem 1 can be applied to the VarMatch problem to
divide the input into subproblems that can be solved sepa-
rately. In particular, we can identify separator regions —
long-enough regions of the reference that are not affected
by any variants and are not tandem repeats. We can then
divide our variants into two clusters — those on the left and
on the right of the separator region. Each cluster can be
solved independently, and the solutions can then be trivially
combined.

Many clustering strategies are possible, based on how these
separator regions are identified. Some strategies may be bet-
ter than others at reducing the problem size by creating more
clusters. However, we found a simple greedy strategy works
well in practice. We make a linear scan through all the vari-
ants, and for each new variant, we check if the reference
region between it and the previous variant is a separator. If
it is, then we start a new cluster and add the current vari-
ant to it. If not, we simply add the current variant to the
current cluster. The pseudocode for the algorithm, called
LinearClustering, is provided below.

In order to check if a region is long-enough to be a separa-
tor, we check if its length is > 2γ, where γ = MCL(V ′0 , V ′1)
and V ′0 and V ′1 are the variants in the current cluster.
This ignores the MCL of the variants to the right of the
separator, which are not yet known due to the greedy
nature of our algorithm. In terms of Theorem 1, instead
of finding minj MCL(V0,j , V1,j), our algorithm just calcula-
tes MCL(V0,0, V1,0). Theorem 1 still applies, since |R[b, e]| >
2 ·MCL(V0,0, V1,0) ≥ minj MCL(V0,j , V1,j).

To maintain the current value of γ, our algorithm main-
tains four counters. The running total of the maximum
possible decrease (respectively, increase) of the reference
length for the variants V ′0 and V ′1 is maintained by α0
and α1 (respectively, β0 and β1). Then, we can compute
γ = max(β0 + α1, β1 + α0). To check if a potential separa-
tor is tandem repeat, we use a simple algorithm described in
Fungtammasan et al. (2015).

3.3 Exact branch and bound algorithm
In this subsection, we present an exact branch and bound
algorithm for the VarMatch problem. It takes as input two
variant sequences V , W and reference genome R. For 0 ≤ i ≤
|V |, 0 ≤ j ≤ |W |, a (i, j)-partial solution is a pair of selection

4

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 8, 2016. ; https://doi.org/10.1101/062943doi: bioRxiv preprint

https://doi.org/10.1101/062943
http://creativecommons.org/licenses/by-nc-nd/4.0/

Variant Matching

Algorithm LinearClustering
Input: Variant sequences V0, V1, reference sequence R
Output: A partitioning of the variants into clusters.
1: α0, α1, β0, β1 ← 0 . accumulated MCL counters
2: c← 0 . cluster id
3: b, e← 0 . positions in R
4: for all variants v ∈ V0 ∪V1, in increasing order of v.p do
5: if v is not the first variant considered then
6: e← v.p− 1
7: if b < e then
8: γ ← max(β0 + α1, β1 + α0) . set MCL
9: if e− b+ 1 > 2 · γ and R[b, e] is not a tandem

repeat then
10: c← c+ 1 . separate cluster
11: β0, β1, α0, α1 ← 0 . Reset MCL counters
12: end if
13: end if
14: end if
15: b← max(b, v.p+ |v.r|)
16: Assign v to cluster c
17: Let j ∈ {0, 1} such that v ∈ Vj

18: αj ← αj + max(0, |v.r| − |v.a0|, |v.r| − |v.a1|)
19: βj ← βj + max(0, |v.a0| − |v.r|, |v.a1| − |v.r|)
20: end for

sequences ΦV and ΦW , such that ΦV has all the positions
after the ith one set to 0 and ΦW has all the positions after
the jth one set to 0. Our algorithm maintains a queue Q
of partial solutions, initialized with a (0, 0)-partial solution.
The main body of our algorithm is a loop where in each
step, we pop a partial solution s from Q, pick from V or
W the closest variant v that is not in s, and create and
push onto Q three new partial solutions corresponding to the
three selection options for v. The loop stops when Q contains
only (|V |, |W |)-partial solutions, and we output the highest
scoring one.

We employ two main strategies to prune the search space.
First, consider an (i, j)-partial solution (ΦV ,ΦW) and the
shortest genome sequence R′ that is affected by the first i
variants of V and the first j variants of W . We can apply
the partial solution to R′ to get two pairs of donor sequences
v0, v1 and w0, w1. We call these partial donors corresponding
to the partial solution. We can safely discard this partial
solution if there exists an i ∈ {0, 1} such that vi is not the
prefix of wi, and wi is not the prefix of vi. In such cases, no
matter how the partial solution is extended, the donor strings
will never be identical. For the second pruning strategy, fix
i and j and consider a set of (i, j)-partial solutions with the
same partial donor sequences lengths. We can discard all
partial solutions in such a set except for one with the highest
score.

The algorithm’s running time and memory usage is
Ω(3|V |+|W |), since this is the number of possible solutions.
However, the pruning strategies make the algorithm fast in
practice, since it is applied only on small subproblems gene-
rated by the LinearClustering algorithm. Our algorithm is
based on and similar to the algorithm of Cleary et al. (2015).

The novelty here is to properly formalize it into a branch
and bound framework, to branch the search tree on vari-
ants instead of on nucleotides, and to optimize the pruning
operations.

4 RESULTS
We implemented the VarMatch Toolkit, which takes multiple
query VCF files and matches them separately to one baseline
VCF file. Based on the various scoring functions and equi-
valence definitions given in Section 2, our software runs in
different modes. The cost model can be either unit (deno-
ted by U) or edit distance (E), the equivalence mode can be
either genotype (G) or variant (V), and the scoring scheme
can be either baseline (B), query (Q), or the total (T). Con-
sidering all combinations there are 12 possible modes, each
denoted by a three letter abbreviation (e.g. UGT for unit
cost, genotype equivalence, and total scoring scheme).

For each query pair, VarMatch automatically matches it to
the baseline simultaneously using all the modes and outputs
files containing annotations of matched variants and recall
and precision statistics and plots. Since different matching
criteria is performed inside each small cluster, the total run-
ning time and memory usage do not significantly increase. It
also identifies and outputs visualizations of variants that are
matched in one mode but not in another (as in Figure 4).
VarMatch can also create Precision-Recall curves by varying
the minimum quality cutoff for the VCF file.

4.1 Datasets
To evaluate the performance of VarMatch, we selected
five state-of-the-art variant calling methods: Platypus(pt),
Freebayes(fb), GATK HaplotypeCaller(hc), GATK Unified-
Genotyper(ug) and SAMtools(st). The algorithms of these
tools vary; resulting in potentially different representations of
variants. For example, pt performs local assembly, pt/hc/ug
perform local realignment, and pt/fb try to phase haplotypes
and thus tend to merge nearby variants into longer complex
variants.

For evaluation, we use the variant call sets provided by Li
(2014). The CHM1 dataset comes from 65x Illumina sequ-
encing of the haploid CHM1hTERT cell line, mapped to
GRCh37 using bowtie2, and small variants called separately
by fb/hc. The CHM1 dataset has less variants, due to the
haploid nature of the CHM1hTERT cell line. The NA12878
dataset comes from 55x Illumina sequencing of the NA12878
diploid cell line, mapped to GRCh37 using bowtie2, and
small variants called separately by fb/ug/pt/st. It also inclu-
des Freebayes run on mappings generated by BWA-MEM,
which we will refer to as bwa-fb. Samtools was not run in
genotype mode, and only the presence of alternate alleles,
and not the corresponding genotype, was reported.

4.2 Evaluating VarMatch’s accuracy and resources
We compared VarMatch against the normalization algorithm
(running vt (Tan et al., 2015) followed by strict matching)

5

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 8, 2016. ; https://doi.org/10.1101/062943doi: bioRxiv preprint

https://doi.org/10.1101/062943
http://creativecommons.org/licenses/by-nc-nd/4.0/

C.Sun and P.Medvedev

and RTG Tools (Cleary et al., 2015) (with paramaters ’–
all-records’ and ’–ref-overlap’). All experiments were run on
an Intel Xeon CPU with 32 cores at 2.76GHz and 512 GB
of RAM. VarMatch and RTG Tools are multi-threaded and
were allowed to use all threads, while vt is single threaded.
VarMatch was run in UGT mode. Table 1 shows the results of
comparing CHM1 fb to CHM1 hc datasets. RTG Tools and
VarMatch match the same set of variants. Both RTG Tools
and VarMatch match more entries than vt at the cost of
more resources, but VarMatch uses less running time and an
order of magnitude less memory than RTG Tools.

Method # Matched Entries RAM
(Gb)

Time
(s)

fb hc

vt 2,778,372 2,778,372 0.004 216
RTG Tools 2,843,396 2,912,641 48 456
VarMatch 2,843,396 2,912,641 5 302

Table 1. Comparison of VarMatch to CHM1 fb and hc datasets.

Table 2 shows the results of comparing NA12878 fb and
ug datasets. In this dataset, RTG Tools reported skipping
23 genome regions because it reached the search space upper
bound, discarding all the variants in these regions. As a
result, VarMatch matches more entries then RTG Tools.
Though the number of variants of these variants is small, they
are located in regions dense with variants which are often of
particular interests to researchers. Again, both RTG Tools
and VarMatch match more VCF entries than vt at the cost
of more resources, but VarMatch uses less running time and
an order of magnitude less memory than RTG Tools.

Method # Matched Entries RAM
(Gb)

Time
(s)

fb ug

vt 4,092,161 4,092,161 0.004 406
RTG Tools 4,197,070 4,321,997 73 661
VarMatch 4,197,138 4,322,083 7 451

Table 2. Comparison of VarMatch to NA12878 fb and ug.

We also evaluated the effectiveness of our clustering algo-
rithm. Figure 2 shows the distribution of the sizes of each
subproblem. VarMatch partitions 6,438,208 initial small vari-
ants into 3,272,206 subproblems, 99.9% of which have less
than nine variants in them.

To test VarMatch’s ability to match between datasets
with and without genotype information, we compared the
NA12878 fb and st datasets using UVT mode. We could
match 4,185,276 fb calls with 4,090,609 st calls, while
RTG Tools could not process the st dataset due to lack of
genotype calls.

Fig. 2: Distribution of number of variants in subproblems for
experiment in Table 1.

4.3 Comparison of different modes
We evaluate the difference in results when different scoring
schemes and equivalence modes are used. Table 3 illustra-
tes the results on the NA12878 fb and ug datasets. Observe
that on this dataset, ug outperforms fb in most modes, but
there is a discrepancy when variant equivalence is used —
the edit distance score favors fb while the number of variants
matched favors ug. This could indicate that, in this dataset,
fb is better at detecting the presence of variants then it is
at genotyping them. Observe also that fb has more matches
when the scoring scheme maximizes the number of fb matches
(e.g. UGB) then when the total number of matches in both fb
and ug are maximized (e.g. UGT). VarMatch flags variants
that are matched in one mode but not in the other, making
it possible for a researcher to further investigate the source of
such discrepancies. These may uncover bugs, quirks, or featu-
res of a variant caller. Figure 3 and Figure 4 show examples,
simplified from real data, that illustrate why the number of
matched variants varies under different criteria. We recom-
mend users to run VarMatch simultaneously in all modes
(the default option), and using the graphs, tables, and visu-
alizations provided in the output to detect and understand
any anomalies in the datasets.

4.4 Matching variants in hard regions
To illustrate the power of VarMatch to detect matches, we
focus on genomic regions where variants are particularly hard
to match. Zook et al. (2014) released a high quality bench-
mark containing variant calls for NA12878, which provides
a natural baseline against which different variant callers can
be compared. However, in a recent evaluation study, High-
nam et al. (2015) excluded any 10bp regions that contain an
INDEL and another variant in the benchmark, due to the
difficulty of matching variants in those regions. In Table 4,
we measured the accuracy of fb and pt in detecting precisely
the variants in these dense regions. On the whole benchmark,
fb has higher recall than pt, but pt has higher recall in dense
regions. The use of VarMatch can allow studies such as High-
nam et al. (2015) to measure accuracy in these important
regions as well.

We also downloaded co-ordinates of low complexity regi-
ons (Li, 2014), covering about 2% of the autosomal genome.

6

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 8, 2016. ; https://doi.org/10.1101/062943doi: bioRxiv preprint

https://doi.org/10.1101/062943
http://creativecommons.org/licenses/by-nc-nd/4.0/

Variant Matching

Mode # Matched Entries Edit Distance Score
fb ug fb ug

UGT 4,197,138 4,322,083 5,184,864 5,169,151
UGB 4,197,146 4,322,051 5,184,895 5,169,139
UGQ 4,197,107 4,322,089 5,184,749 5,169,115
UVT 4,266,505 4,411,621 7,042,027 7,046,191
UVB 4,266,538 4,410,696 7,041,085 7,044,553
UVQ 4,266,421 4,411,636 7,041,861 7,046,161
EGT 4,197,146 4,322,068 5,184,899 5,169,166
EGB 4,197,146 4,322,048 5,184,907 5,169,129
EGQ 4,197,132 4,322,074 5,184,879 5,169,169
EVT 4,266,497 4,410,846 7,127,275 7,131,471
EVB 4,266,501 4,410,623 7,127,409 7,130,557
EVQ 4,266,435 4,410,881 7,126,871 7,131,537

Table 3. Number of matched variants and the edit distance score
from the NA12878 fb and ug datasets, under different modes of
VarMatch. Baseline is arbitrarily chosen to be fb, and the query
to be ug.

Fig. 3: An example where different numbers of matches are made
in the total scoring scheme then in the baseline scoring scheme.
VCF entries are represented by boxes but are grouped together
into entry sets from fb as baseline and ug as query. We put dashes
into the reference (Seq) to space it out for the purposes of illu-
strating insertions. Under the total scoring scheme, the fb entry
represented by a black box (with GAGA as the reference allele)
matches the four ug entries in red boxes (all SNVs). The total
number of variants in this match is five but only one is from the
baseline. At the same time, all the three fb variants match the two
green ug variants (indels). The total number of variants is five but
there are three from the baseline.

Alignment and variant calling is particularly challenging in
these regions, often leading to different representations, and
we evaluated how VarMatch performs there. Figure 5 shows
the comparison of NA12878 ug, pt, and bwa-fb datasets,
restricted to variants in the low complexity regions and using
ug as a baseline. VarMatch is able to detect 14% more
matches than the normalization algorithm.

5 DISCUSSION
In this paper, we presented VarMatch, an open-source paral-
lel tool for matching equivalent genetic variants. VarMatch
is robust to different representations of complex variants and
supports flexible scoring schemes. We demonstrated that it
can detect more matches than the normalization algorithm

Fig. 4: An example where different matches are made in unit vs.
edit distance cost model (UGT vs. EGT). The fb entry represented
by a black box (on the left) matches the ug entries in red and
orange boxes (the right three), giving a match with four total
variants and an edit distance of seven. At the same time, all the
fb entries match the ug entries represented by green and orange
boxes, giving a match with four total variants and an edit distance
of eight.

Matched Benchmark Entries
fb pt

genome-wide 2,896,841 2,891,849
dense regions 24,188 24,522

Table 4. The number of benchmark variants matched by fb and
pt (in UGB mode), from the whole genome (first row) and just
the dense regions (second row).

(a) (b)

Fig. 5: Number of variants matched in low complexity regions,
using the normalization algorithm (a) and VarMatch (b). The
datasets are the NA12878 bwa-fb (in red, left), pt (green, right),
and brown (middle) is their intersection.

and is faster and uses an order-of-magnitude less memory
than RTG Tools. It is important to note that, for evaluating
a variant caller, VarMatch should be used in conjunction with
other validations (e.g. longer haplotypes are not reflected in
a higher match score but are a desirable feature).

One weakness of VarMatch is that it is still exponential
time in the worst case. There are theoretical cases when the
run-time would become infeasible, when there is large num-
ber of similar variants within a long tandem repeat region
(e.g. 100 SNVs within a 500bp poly-A region). In such a
case, our clustering algorithm would fail to divide the input
and the branch and bound algorithm would also fail to prune
the search space. We did not observe such extreme conditions

7

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 8, 2016. ; https://doi.org/10.1101/062943doi: bioRxiv preprint

https://doi.org/10.1101/062943
http://creativecommons.org/licenses/by-nc-nd/4.0/

C.Sun and P.Medvedev

in our experiments, however, to handle this contingency, we
monitor our search space and when it reaches a fixed upper
bound, we apply the strict matching algorithm to the cluster.

Finally, the power of Theorem 1 is not fully explored in our
linear clustering algorithm. For instance, it might be possible
that while the region bounded by two variants is not a sepa-
rator, a smaller sub-region is. Additionally, we only calculate
MCL(V0,0, V1,0), but computing minj MCL(V0,j , V1,j) may
detect new separators. Our current linear clustering algo-
rithm is sufficient for our experiments, but a more powerful
clustering algorithm is also theoretically possible.

Acknowledgements This work has been supported in part by
NSF awards DBI-1356529, CCF-1439057, IIS-1453527, and
IIS-1421908 to PM.

REFERENCES
1000 Genomes Project Consortium et al. (2010). A map of human

genome variation from population-scale sequencing. Nature,
467(7319), 1061–1073.

1000 Genomes Project Consortium et al. (2012). An integrated map of
genetic variation from 1,092 human genomes. Nature, 491(7422),
56–65.

Assmus, J., Kleffe, J., Schmitt, A. O., and Brockmann, G. A. (2013).
Equivalent indels–ambiguous functional classes and redundancy in
databases. PloS one, 8(5), e62803.

Baes, C. F., Dolezal, M. A., Koltes, J. E., Bapst, B., Fritz-Waters, E.,
Jansen, S., Flury, C., Signer-Hasler, H., Stricker, C., Fernando, R.,
et al. (2014). Evaluation of variant identification methods for whole
genome sequencing data in dairy cattle. BMC genomics, 15(1), 1.

Cheng, A. Y., Teo, Y.-Y., and Ong, R. T.-H. (2014). Assessing single
nucleotide variant detection and genotype calling on whole-genome
sequenced individuals. Bioinformatics, 30(12), 1707–1713.

Cleary, J. G., Braithwaite, R., Gaastra, K., Hilbush, B. S., Inglis, S.,
Irvine, S. A., Jackson, A., Littin, R., Rathod, M., Ware, D., et al.
(2015). Comparing variant call files for performance benchmarking
of next-generation sequencing variant calling pipelines. bioRxiv,
page 023754.

Cornish, A. and Guda, C. (2015). A comparison of variant calling
pipelines using genome in a bottle as a reference. BioMed research
international, 2015.

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E.,
DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T.,
Sherry, S. T., et al. (2011). The variant call format and VCFtools.
Bioinformatics, 27(15), 2156–2158.

Fungtammasan, A., Ananda, G., Hile, S. E., Su, M. S.-W., Sun,
C., Harris, R., Medvedev, P., Eckert, K., and Makova, K. D.
(2015). Accurate typing of short tandem repeats from genome-
wide sequencing data and its applications. Genome research, 25(5),
736–749.

Garrison, E. and Marth, G. (2012). Haplotype-based variant detection
from short-read sequencing. arXiv preprint arXiv:1207.3907 .

Highnam, G., Wang, J. J., Kusler, D., Zook, J., Vijayan, V., Lei-
bovich, N., and Mittelman, D. (2015). An analytical framework

for optimizing variant discovery from personal genomes. Nature
communications, 6.

Hwang, S., Kim, E., Lee, I., and Marcotte, E. M. (2015). Systematic
comparison of variant calling pipelines using gold standard personal
exome variants. Scientific reports, 5.

Koboldt, D. C., Chen, K., Wylie, T., Larson, D. E., McLellan, M. D.,
Mardis, E. R., Weinstock, G. M., Wilson, R. K., and Ding, L.
(2009). VarScan: variant detection in massively parallel sequencing
of individual and pooled samples. Bioinformatics, 25(17), 2283–
2285.

Krawitz, P., Rödelsperger, C., Jäger, M., Jostins, L., Bauer, S., and
Robinson, P. N. (2010). Microindel detection in short-read sequence
data. Bioinformatics, 26(6), 722–729.

Li, H. (2014). Towards better understanding of artifacts in variant
calling from high-coverage samples. Bioinformatics, 30(20), 2841–
2851.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer,
N., Marth, G., Abecasis, G., Durbin, R., et al. (2009). The seque-
nce alignment/map format and SAMtools. Bioinformatics, 25(16),
2078–2079.

Mäkinen, V. and Rahkola, J. (2013). Haploid to diploid alignment for
variation calling assessment. BMC bioinformatics, 14(Suppl 15),
S13.

Mäkinen, V. and Valenzuela, D. (2014). Recombination-aware ali-
gnment of diploid individuals. BMC genomics, 15(Suppl 6),
S15.

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K.,
Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M.,
et al. (2010). The Genome Analysis Toolkit: a MapReduce frame-
work for analyzing next-generation dna sequencing data. Genome
research, 20(9), 1297–1303.

Raczy, C., Petrovski, R., Saunders, C. T., Chorny, I., Kruglyak, S.,
Margulies, E. H., Chuang, H.-Y., Källberg, M., Kumar, S. A., Liao,
A., et al. (2013). Isaac: ultra-fast whole-genome secondary analysis
on illumina sequencing platforms. Bioinformatics, page btt314.

Rimmer, A., Phan, H., Mathieson, I., Iqbal, Z., Twigg, S. R., Wilkie,
A. O., McVean, G., Lunter, G., Consortium, W., et al. (2014). Inte-
grating mapping-, assembly-and haplotype-based approaches for
calling variants in clinical sequencing applications. Nature genetics,
46(8), 912–918.

Talwalkar, A., Liptrap, J., Newcomb, J., Hartl, C., Terhorst, J., Cur-
tis, K., Bresler, M., Song, Y. S., Jordan, M. I., and Patterson, D.
(2014). Smash: a benchmarking toolkit for human genome variant
calling. Bioinformatics, 30(19), 2787–2795.

Tan, A., Abecasis, G. R., and Kang, H. M. (2015). Unified
representation of genetic variants. Bioinformatics, page btv112.

Wei, Z., Wang, W., Hu, P., Lyon, G. J., and Hakonarson, H. (2011).
SNVer: a statistical tool for variant calling in analysis of pooled or
individual next-generation sequencing data. Nucleic acids research,
39(19), e132–e132.

Wittler, R., Marschall, T., Schönhuth, A., and Mäkinen, V. (2015).
Repeat-and error-aware comparison of deletions. Bioinformatics,
31(18), 2947–2954.

Zook, J. M., Chapman, B., Wang, J., Mittelman, D., Hofmann, O.,
Hide, W., and Salit, M. (2014). Integrating human sequence data
sets provides a resource of benchmark SNP and indel genotype calls.
Nature biotechnology, 32, 246–251.

8

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which was notthis version posted July 8, 2016. ; https://doi.org/10.1101/062943doi: bioRxiv preprint

https://doi.org/10.1101/062943
http://creativecommons.org/licenses/by-nc-nd/4.0/

