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ABSTRACT

In this paper we propose that translational rate is modulated by pairs of consecutive codons or bicodons. By a statistical
analysis of coding sequences, associated with low or with high abundant proteins, we found some bicodons with significant
preference usage for either of these sets. These usage preferences cannot be explained by the frequency usage of the single
codons. We compute a pause propensity measure of all bicodons in nine organisms, which reveals that in many cases bicodon
preference is shared between related organisms. We found that bicodons associated with sequences encoding low abundant
proteins are involved in translational attenuation reported in SufI protein in E. coli. Furthermore, we observe that the misfolding
in the drug-transport protein, encoded by MDR1 gene, is better explained by a big change in the pause propensity due to the
synonymous bicodon variant, rather than by a relatively small change in the codon usage. These findings suggest that bicodon
usage can be a more powerful framework to understand translational speed, protein folding efficiency, and to improve protocols
to optimize heterologous gene expression.

Introduction
The central dogma of the molecular biology establishes that the information that specifies which amino acid monomers will be
added next during protein synthesis is coded in one or more nucleotide triplets known as codons1. The genetic code establishes
a set of rules that associate the 20 amino acids and a stop signal with 64 codons. This code is almost universal with few
exceptions2. As there are more codons than encodable signals (amino acids and stop signal) the genetic code is considered
degenerated. However, it is well known that synonymous codons are not used with the same frequency. The biased codon
usage is a pervasive feature of the information encoded in genomes, but it is not universal because different species have
different associated preferences1. The existence of selective pressures to promote the codon usage bias highlights the complex
nature of synonymous codon choices3, 4. Early reports have pointed out that in prokaryotes the bias is towards codons with
high translation rates5, 6. In this sense, Guimares et al. established that elongation rate is affected by the specific amino acid
composition, as well as by codon bias, in E. coli7. On the other hand, the impact of codon usage on translational rates in
eukaryotes, where the mRNA processing can also affect the overall translational rate, is an active topic of research8–13. However,
the role of codon usage has gone beyond the translational rates because new experimental findings suggest that codons with
slow translation rates temporally separate the synthesis of defined protein portions and can synchronize the synthesis with
the concurrently folding process of the proteins domains14–17. It has been proven that translational pauses can schedule the
sequential folding schemes and can lead to different protein conformations17, and that the functionality of translated proteins
can be affected by replacing rare codons with more frequently used codons18–20. In addition to the use of rare codons associated
with scarce tRNA usage, there exist other mechanisms to modulate the speed of translation or to cause pauses. Among them,
we can mention the blocking of ribosomal transit due to secondary structure elements in mRNAs21, and interactions of basic
residues in the nascent polypeptides with the wall of the ribosomal exit tunnel22. Furthermore, Li et al. showed that translational
pauses in E. coli are coded by sequences similar to the Shine–Dalgarno sequence23.

However, in the last years emerging evidence has shown that the translational rate could be encoded by a sequence longer
than a triplet, in particular by pair of consecutive codons, hereafter, bicodons24. In this sense, a study on over 16 genomes
has revealed that bicodons formed by two rare codons are frequently found in prokaryotes but rarely used in eukaryotes25. In
addition bicodons such as NNUANN are universally underrepresented, whereas NNGCNN bicodons are mostly preferred26.
More recently, it was reported that rare arginine codons, followed by proline codons, were among the slowest translated
bicodons27. This evidence could be consequence of the codon co-occurrence bias mechanism28, 29 or the kinetics of the mRNA
translocation from the A-site to the P-site30. Codon pair bias was also observed in several viral genomes, which matched the
codon usage bias of the host31. This fact has been used to produce synthetic viruses with attenuated virulence as a new strategy
for vaccine development32.

Thus, coding sequences seem to carry further information than the information strictly needed for specifying the linear
sequence of amino acids in the protein. This additional information is linked with the overall rate of synthesis of the associated

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 8, 2016. ; https://doi.org/10.1101/062935doi: bioRxiv preprint 

https://doi.org/10.1101/062935
http://creativecommons.org/licenses/by-nc-nd/4.0/


protein and the pauses required for the acquisitions of its correct native structure. Despite the enormous impact that this
subliminal coding on biotechnology, there are few systems biology methods to associate nucleotide sequences with the rate
of protein synthesis13. Among them, we can mention the sequencing of ribosome-protected mRNA fragment or ribosome
profiling. This methodology has been used to correlate mRNA levels with codon decoding times33. In this paper, we present an
alternative manner to identify coding sequences that can modulate the ribosomal transit on the mRNA. In this comprehensive
survey we did a statistical analysis of bicodon usage frequencies over two sets of proteins, the low abundant and the high
abundant proteins, across nine organisms. Our main finding is that there is an important bias of the bicodon usage depending on
the protein abundance. In this sense, we determine which bicodons are statistically associated with low or high translational
rates, and in which cases such bias can be explained or not by the codon usage bias. Furthermore, we present suggesting
evidence for the role of bicodons in the coding translational rate in two well studied cases. In the first case, we show that there
exist clusters of bicodons related to low abundant proteins, associated with ribosomal pauses in the sufI synthesis in E. coli15.
In addition, we also found that the alteration in the structure and function of the MDR1 protein16 associated with a synonymous
single polymorphism can be better explained by a relatively big change (around 200%) in pause propensity than by a moderate
change in codon usage (around 30%).

Results
The preferences of the bicodons
The aim of this paper is to associate coding sequences with their relative translational speeds. We expect that this fact to be
reflected in differences in the frequency of both codons and codon pairs occurrence in coding sequences associated with proteins
with high and low abundance. To check this hypothesis, we select a set of 500 coding sequences associated with proteins
with highest abundance, and another 500 coding sequences associated with proteins with lowest abundance, in nine model
organisms from different kingdoms. Before showing the whole analysis across several organisms, we begin with an illustrative
example. Fig. 1A shows the histogram of the bicodons (red bars) which codifies for the amino acid pair KK, obtained from 500
sequences of S. cerevisiae with the lowest protein abundance (PA).

We can observe that bicodon usage is not uniform, i.e., it is biased; this fact could be the simple consequence of the known
bias observed at the codon level. However, the expected frequency associated with such bicodons (black bars, obtained by the
product of each codon frequency) shows that, although some bicodon frequencies can be explained by the bias in the codon
usage (for example, the bicodon AAAAAG), some other bicodons have an associated usage frequency that is underrepresented
(such as the bicodon AAAAAA), or overrepresented (as the bicodon AAGAAA). This means that two consecutive codons used
for coding a given amino acid pair can be correlated. A similar analysis can be performed with sequences associated with the
highest PA, as shown in Fig. 1B, and in all other amino acid pairs. Evidence for nonrandom associations between codon pairs,
even once codon bias and bias against specific amino acid pairings were subtracted, was previously reported in E. coli34, and
across many other genomes25.

However, what is a new remarkable fact in Fig. 1 is the strong difference between the histograms computed for the low and
high PA samples. Fisher’s exact test allows one to reject, with high significance level, the null hypothesis that bicodons are
equally used in sequences from the low and high PA samples. In the particular case of bicodon AAGAAG the p-value is 5.3 ×
10−93. It is important to point out that the two samples of sequences (500 coding sequences for the proteins with the lowest
and highest PA) can introduce an additional bias. In this sense, it is known that protein abundance correlates negatively with
coding-sequence length in yeast35. To go further in our analysis, we subtracted this bias by constructing two new samples of
low and high PA but with similar sequence length distribution, as indicated in the Method section. All subsequent analyses will
be made with these unbiased samples (the list of coding-sequence in these samples is given in Supplementary Tables S1 and
S2). Fig. 2 shows the histograms corresponding to both low (red bars) and high (orange bars) PA sequences from unbiased
samples. It can be seen that bicodon AAAAAA is more frequently used in sequences with low PA than in sequence with
high PA, while the frequency usage of bicodon AAGAAG has an inverse relationship. For example, in the last case we have
computed the p-value from the contingency tables of bicodon AAGAAG which is around 6.5 × 10−48, less significant than the
one obtained for the biased samples. Figure 2 only illustrates the particular case of KK pair in S. cerevisiae. In order to see a
broader coverage over amino acid pairs and bicodons we have devised two alternative heat maps: (i) the statistical distance
between the frequencies associated with bicodons that encodes a given amino acid pair, (like the histograms depicted in Fig. 2),
and (ii) the pause propensity π , related to the p-value of the Fisher’s exact test, see Method section for its definition.

The statistical distance and the pause propensity measures
As statistical distance between the frequency distributions associated with low and high PA samples, we computed the Kullback-
Leibler divergence DLH across all amino acid pairs and all studied organisms. Fig. 3 depicts a heat map (21 P-site codons ×
20 A-site codons), where each color pixel represents the quotient DLH/log(n) for a given amino acid pair, and n denotes the
number of synonymous bicodons for such dipeptide. A high value (red color) indicates a large discrepancy between the usage
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frequencies in both samples for a given amino acid pair. This figure shows that the discrepancy in the bicodon usages between
low and high PA samples is not the same across organisms, it is a particular feature like the codon bias. It can be seen that B.
subtilis and S. cerevisiae have many dipeptides with relatively large divergences, a feature that is also shared by M. aeruginosa,
A. thaliana and both invertebrates, D. melanogaster and C. elegans (see Supplementary Fig. S1). The studied mammalians
(H. sapiens and M. musculus) and E. coli are on the other side. Interestingly, it was in E. coli, where bicodon bias was first
reported34, however, it is clear that bicodon usage bias across the ORFeome does not imply a different usage preference between
highly and lowly expressed proteins. Another important feature of the heat maps in Fig. 3 is that they represent a nonsymmetric
matrix, i.e., the divergence DLH of dipeptide X1X2 is not necessarily equal to the divergence associated with X2X1. This fact
cannot be explained solely with codon usage bias, and reveals a complex correlation between two consecutive codons. Fig. 3
offers a general view of the 420 pairs. However, it can be observed that even when DLH can give a relatively small divergence,
like the one associated with KK pair in S. cerevisiae, there could exist one or more bicodons with high difference of occurrence
in both samples, such as bicodons AAAAAA and AAGAAG in Fig. 2. To appreciate the differences at a bicodon resolution,
the second heat is used. In it, the color of each cell is determined by the pause propensity π index, which establishes when the
bicodon has preference for sequences with low or with high PA, see Method section for this definition. Fig. 4 shows the heat
map associated with all organisms. In order to put in evidence some trends or rules across the studied organisms, the colors of
the cells were clustered by similarity using an agglomerative method. The pause propensity π of all bicodons and organisms is
listed in Supplementary Table S3.

From the heat maps of Fig. 4 it can be seen that some bicodons, indicated by blue cells on the top side of the grid, have a
clear preference for sequences associated with high PA. In some cases this feature is shared by several organisms such as: A.
thaliana, C. elegans, D. melanogaster, S. cerevisiae, and M. aeruginosa. On the other hand, there are other bicodons, indicated
by red cells at the bottom of the grid, which are more frequently used in sequences associated with low PA. Some bicodons
have different sequence preferences depending on the organism. For example, there are blue cells on the bottom side of the
yeast heat map, that have preference for sequences with low PA in the M. aeruginosa heat map. The bicodon preferences
are less apparent (less intense colors), and also less frequent, in H. sapiens, M. musculus and E. coli. The low preference of
bicodon usage observed in E. coli can be a consequence of the fact that there are not a clear distinction between the protein
abundance distributions of both samples in this particular case (see Methods). It can be also observed a couple of white rows in
all organisms. These cells correspond to bicodons which do not exhibit any preference or they are usually poorly used in both
sequence samples and have associated poor statistic.

The heat maps shown in Fig. 4 are very useful to see some common features among organisms, however they do not show
whether the bicodon preference is explained or not by the preference of the codon in the pair for sequences associated with low
or high PA. In order to study this, we have computed residual scores for each bicodon over sequences with low PA, χ2

L , and
over sequences high PA, χ2

H . When the residual score is high, the bicodon usage cannot be explained by the codon usage in the
same sample of sequences, and has been used previously25, 34. The value of these residuals, observed frequencies and pause
propensity values for all codon pairs and organisms are listed in Supplementary Table S3. In Fig. 5 it can be seen a raster plot
of these residual scores for all bicodons in B. subtilis, yeast, humans and E. coli (residual plots associated with the other five
organisms are displayed in Supplementary Fig. S2). As we have two sequence samples for each bicodon it is convenient to take
the quantity χ2 = χ2

L +χ2
H as a whole residual score. To be conservative, we have considered for all organisms that bicodons

with χ2 ≥ 5 are bicodons whose preference is not explained by the preference of the individual codons in the pair.

Thus, four types of bicodons on the raster plot of Fig. 5 can be distinguished: (i) codon pairs that are significantly more used
in sequences associated with low PA than in sequences associated with high PA (p-value ≥ 2), and whose preferences cannot
be explained by the codon usage bias (red dots); (ii) codon pairs which are significantly more used in sequences associated
with high PA than in sequences associated with low PA (p-value ≥ 2), and whose preferences cannot be explained by codon
usage bias (blue dots); (iii) codon pairs with a significantly different usage frequency in low and high PA samples, but whose
preferences can be explained by the codon usage bias, i.e., χ2 < 5 (green dots), and finally (iv) codon pairs whose usage
frequencies in low and high PA samples are not significantly different, i.e., p-value ≥ 2 (black dots).

These plots indicate that while there are many bicodons with evident preference for low and high PA sequences in B.
subtilis and S. cerevisiae, there are only few in H. sapiens at this significance level. As in humans, mouse and surprisingly
also E. coli have few bicodons with evident preference (Supplementary Fig. S2). However, in an example below we will see
that synonymous SNP associated with changes in the bicodon preference can explain documented protein misfolding and
pathological condition in humans. On the other hand, S. cerevisiae has more codon pairs than B. subtilis, with a significant
different usage frequency in low and high PA samples, but such bias is explained by the codon usage bias. The plots for C.
elegans and D. melanogaster (Supplementary Fig. S2) are similar to the raster plot obtained for yeast. In particular these
organisms share many bicodons with the same preference listed in Table 2.
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dipeptide bicodon χ2
L +χ2

H -log10(p-value)
elegans fly yeast elegans fly yeast

NA AATGCA 8.26623 7.0634 23.875 4.5709 24.5975 4.0672
NA AATGCG 12.6365 4.2896 13.832 3.1346 5.55667 4.1022
LR CTTCGA 44.9244 5.3305 5.69759 4.1911 5.24396 5.4465
KK AAAAAG 47.0125 4.9035 6.67079 8.2823 34.0884 6.1609
YK TATAAA 17.1832 4.0035 8.81229 5.2348 5.06749 6.0497
FF TTTTTT 8.103 13.5285 18.1809 3.7197 7.50482 12.1921
FQ TTTCAG 11.1061 7.903 7.37717 5.2912 5.7149 6.4614
IT ATAACA 11.1095 8.6769 6.45525 3.333 5.36998 11.9294
KI AAAATA 8.20946 21.1178 56.1534 4.691 12.958 26.2017
IM ATAATG 14.6726 7.9497 6.75161 7.0112 5.42947 4.3485

Table 1. Shared bicodons in C. elegans, D. melanogaster and S. cerevisiae that have high preference for low PA or high PA
sequences (p-value ≥ 3), but such preference cannot be explained by the codon usage bias (χ2 >5).

Supporting evidence for translational attenuation
The statistical analysis above is able to determine which bicodons are associated with low or high abundant proteins. We
hypothesized that bicodons associated with low abundant proteins could have a key role in programming translation pauses
of the ribosomal machinery. As a proof of principle, we have identified two examples previously reported that can illustrate
how bicodons are able to affect translation rates. The first case is the protein sufI in E. coli, which does not interact with
chaperones, but needs translational pauses for co-translational folding. Zhang et al. show that this protein has several transient
intermediates15. The first multicopper oxidase domain of this protein ends at residue 143. If we consider that the ribosomal exit
tunnel can accommodate around 30 residues, the nucleotide sequences responsible for a putative speed attenuation would be
downstream, at codons which codify residues 160-180 (Fig. 6A). Fig. 6B depicts the ribosome density profile corresponding to
sufI translation, which reveals a high density region around 160-180, i.e., after most of the N-domain has been released from the
ribosomal exit tunnel. In addition, around in this position (residue 166) is the highest peak of the degree of folding acquisition
measure, ∆Q, proposed by Tanaka (Figure 5A of36). A naive sequence analysis in this region reveals three Shine-Dalgarno
(SD) sequences indicated with asterisks in Fig. 6B. In particular, among nucleotides 486-491 (residues 162-163) there is the
hexanucleotide GGTGGA, which has a predicted affinity with the anti-SD sequence of -6.5 kcal mol−1 (Fig. 4 of23). In addition
to this SD sequence, we have found in this region a cluster of bicodons with high pause propensity, i.e., statistically associated
with low PA sequences. These bicodons are listed in Fig. 6C. This speed attenuation is not apparent in rate of translation
pattern based on the concentration of the tRNA or codon usage, Fig. 6B (bottom panel). Another translational attenuation
experimentally tested is one linked to the intermediate 25-28 kDa (around 214-240 residues)15. In this case, we have found the
same SD sequence that was mentioned above, located 40 residues downstream (more precisely nucleotides 846-851). Again,
this hexanucleotide acts together with a small cluster of three bicodons, with high pause propensity, between residues 259 and
276. At this position is also the second highest peak of the folding degree measure (Figure 5A of36). These results suggest that
bicodons listed in Fig. 6C could be needed for the correct folding of the transient intermediates in E. coli.

Further evidence for the role of bicodons in translational pauses is provided by a well studied single polymorphism (SNP)
in the gene MDR137. This gene encodes the drug-transport pump ABCB1, which transports a variety of drugs from the brain
into the blood. Kimchi-Sarfaty et al. observed that as a result of a synonymous SNP (rs1045642) the structure and function of
the protein are altered with the consequent change in its substrate specificity16. The SNP in exon 26 at position 3435 changes
the codon ATC to the synonymous ATT, which reduces the codon usage from 47% to 35%. It was argued that the presence
of a rare codon affects the timing of co-translational folding and insertion of P-glycoprotein into the membrane. Although
it is difficult to consider the ATT codon as rare, it is clear that the SNP alters the timing of the ribosomal transit. We offer
here an alternative cause of the translational attenuation; in this sense we have observed that this SNP is also associated with
a large change in the propensity pause index π of the bicodons. Specifically, bicodon ATCGTG has preference for low PA
sequence with π = 1.21, while bicodon ATTGTG has preference for high PA sequence π =−1.55. This means a change of
178%, almost 8 folds greater than the change in the codon usage. Further, the other synonymous bicodon ATAGTG has a even
lower pause propensity, π =−1.73, in agreement with Kimchi-Sarfaty et al. observation that associates to this haplotype a
larger decrease in the inhibitory effect16. In addition to the SNP above, there are other synonymous SNPs related to human
diseases that could be explained by a large change in the pause propensity. Among them we can mention the SNP rs34533956
in the gene CFHR5 which is associated with age-related macular degeneration38. In this case, the mutation changes the bicodon
GACGTG to GATGTG and associated change in the pause propensity is 183%, while the change in the relative synonymous
codon usage is only 13%. Other example corresponds to the SNP rs11615 in the gene ERCC1 which was associated with
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colorectal cancer39, where the pause propensity change is 192%, against a small change in the relative synonymous codon
usage (again 13%). These relationship suggest that some pathological synonymous mutations could be understood in terms of
the change in the timing needed for co-translational folding programmed by the bicodons.

Discussion
If we consider an average of three alternative codons for coding each amino acid, there exist more than 1.3×10143 manners to
codify a protein with 300 residues. However, organisms use an insignificant fraction of the number of options offered by the
genetic code redundancy. This is due to several constraints operating to optimize many important biological features such as:
the expression level7, ribosomal proofreading errors40, protein solubility41, folding accuracy19, 20, 42, protein stability, etc. In
this sense, it has been shown that codon usage in E. coli is biased to reduce the cost of translational errors43. In addition, codons
that bind to their cognate tRNA most rapidly are preferentially used in highly expressed genes44. It has also been reported a
bias in the bicodon usage frequency in several organisms25. More recently, Lian et al. have identified codons that regulate
translation speed in human cell lines45. Many other studies agree in the key role of ribosomal pause, coded by codon usage or
SD-like sequences, in orchestrating the hierarchical co-translational folding of single domains15–17, 46, 47. In summary, there
exist rising evidences that many relevant features, other than the linear sequence of amino acids, are also coded at nucleotide
sequence level. These facts should considerably reduce the amount of alternative ways of correctly convey the message from
genes to functional proteins, despite the redundancy of the genetic code.

Among the above biological constraints determining the codon usage, we have focused our attention on the translational
speed, i.e., the sequential process of protein elongation4. Briefly, each proofreading iterative step of this process involves
recruitment of the tRNA charged anticodons, tRNA association/dissociation to mRNA, assembly of the residue to the nascent
peptide, and translocation of tRNA-mRNA from the A-site to the P-site. Each step has a particular rate and it has been shown
that disruption of the interaction between mRNA codon in the A-site from the decoding center is a rate-limiting process30. In
fact, there are evidences that such rates are codon dependent in E. coli48. Further contributions to the translational rate, not
linked to the tRNAs’ abundance, are the non-Watson-Crick (wobble) interactions. These interactions are usually associated
with higher dissociation rates between mRNA and decoding center49.

In this paper, we assume the hypothesis that ribosomal pauses are encoded by bicodons, and examine the bicodon frequency
usage in nine organisms. We found that many codons have an evident preferential usage in sequences that code for highly
abundant proteins, while many others have preference for coding proteins scarcely abundant. The latter bicodons can be
understood as short sequences linked to translational pauses. The observed bias cannot been explained by the codon usage in
many bicodons. However, the small number of such bicodons found in E. coli, where most of bicodon preferences, except for
96 bicodons, can be explained by the codon usage, is worth noting. This clearly contrasts with the other prokaryotes studied
here; for example, we have report almost 585 bicodons in B. subtilis which are preferentially used to encode either low or high
abundant proteins without a codon usage correlate.

The bicodon preference is also found in a plant, a fungus and two invertebrates. Our results indicate that many bicodon
preferences are shared by S. cerevisiae, C. elegans and D. melanogaster, and to a lesser extent they are also shared with A.
thaliana and B subtilis. In the case of the mammalian species (H. sapiens and M. musculus), we found a number of bicodons
with high preference comparable with E. coli. However, we illustrate with an example of synonymous mutations of clinical
relevance, that the exchange of two codons with opposite preferences, even when such preferences are moderate, can alter
the translation ribosomal traffic. This example suggests that single mutations that changes the bicodon preference can trigger
pathological phenotypes by altering the translational attenuation program of the protein.

Even though the results provided here suggest that some bicodons should regulate translational attenuation, it is important
to remark the limitations of the present approach to assign to each bicodon one value of the pause propensity index. The
more evident limitation is that protein abundances are not uniquely dictated by a quick translation, transcription levels have
also important roles in prokaryotes7, while RNAi pathway is a common way to regulate expression in mammalians50. These,
and other factors, can introduce undesired bias and overshadow some bicodon bias. It is likely that the small number of
bicodons with evident preference observed in mammalians is due to the fact that protein abundance is not majorly determined
by the bicodon usage, with the consequent poor performance of the method in these organisms. Alternative methods based
on the ribosome density profile could overcome these drawbacks. But first it is needed to solve the link between density and
ribosomal speed at the nucleotide level, due to the fact that a pause at a given site will stop the transit of many other ribosomes
proofreading upstream, increasing artificially the ribosome density of the upstream sequences.

Summarizing, we are here reporting that bicodon usage frequency depends on protein abundance. This preference cannot
be explained by the traditional codon usage in many bicodons. This empirical evidence supports the hypothesis that bicodons
encode translation pauses. Such a scenario allowed us to contrast this hypothesis in various circumstances where translation
rates could be altered. Like the naive codon usage, the bicodon usage can empower novel strategies for rational transcript design
that minimize misfolding while simultaneously maximizing co-translational folding for foreign proteins in heterologous hosts.
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Methods
Data sources
In this work, we have used two kind of data: (i) genome-wide protein abundance across nine model organisms, and (ii)
nucleotide sequences associated with proteins indicated above. The absolute protein abundance data from three prokaryotes (M.
aeruginosa B. subtilis and E. coli), one unicellular fungus (S. cerevisiae), one plant (A. thaliana), two multicellular eukaryotes
(D. melanogaster and C. elegans) and two mammalians (M. musculus and H. sapiens) were downloaded from PaxDb web
site (http://pax-db.org/) on May 201551. From these comprehensive data sets we have selected two sample of proteins: the
500 most abundant proteins and the 500 less abundant ones, including into our samples only one isoform when more than
one are present in the comprehensive data set. As PA distributions are in general biased, i.e., the short proteins should be
more abundant than larger ones (see Fig. 7), we have also selected two sets of 500 sequences, but taking into account that the
sequence length distribution of both sets were similar (Supplementary Tables S1 and S2). The procedure to sampling sequences
with similar length distributions consist in ordering all sequences, corresponding to a given organism, in a PA crescent order. To
select the sequences of the low PA samples, we began from the lowest PA extreme of the list of sequences, and we compare
rl = exp[−(l− lo)2/2σ ] (where l is the length of the sequence, lo and σ are the mean length and standard deviation, respectively,
of the target distribution) with a random number uniformly distributed r. If rl > r the sequence is joined to the set of low PA
sequences. Then, we test the second sequence in a similar manner and so on, until we have selected 500 sequences. To select
the high PA sequence set, we performed the same procedure, but beginning from the end of the sequence list. In Fig. 7 (and
also in Supplementary Figs. S3-S10) we have plotted the distributions of whole PA for all organisms used in our study, and
the PA and the sequence length distribution of the selected data sets. The nucleotide coding sequences corresponding to the
selected proteins were downloaded from Ensembl web sites (four eukaryotes organisms from ftp://ftp.ensembl.org/pub/ and
four prokaryotes organisms from http://bacteria.ensembl.org), while Arabidopsis thaliana coding sequences were downloaded
from www.arabidopsis.org.

We also used ribosome density profiles data of E. coli taken from NCBI GEO accession GSE3564123. tRNA levels and
codon usage of E. coli from44, and http://www.kazusa.or.jp/codon/, respectively.

Statistical analyses
The bicodon bias was studied in the context of the low and high PA samples. Basically, we count all consecutive pairs of codons
on the same reading frame of the coding sequences belonging to a given sample, which allows us to compute the occurrence of
each bicodon i j in all sequences of each sample. The index i indicates the codon corresponding to P-site, while j indicates the
one corresponding to the A-site. The occurrence of the codon pair i j will be denoted by oi j. We also compute in the same
sample of sequences the number of single codons fi. Further, we compute expected number of occurrences of each codon
pair, as ei j = fi f jNp/N2

tot , where Ntot is the total number of codons in the set of sequences and Np is the number of bicodons.
Following34, we remove the contribution due to the nonrandomness of amino acid pairs by normalizing the former expected
values as:

êi j = ei j×
∑
∗
kl okl

∑
∗
kl ekl

, (1)

where the ∗ indicates that the sum is only over codon pairs encoding the same amino acid pair encoded for the bicodon i j. From
the observed and normalized expected bicodon counts recording in a given sample S, we compute the residual scores for each
codon pair as:

χ
2
Si j =

(oi j− êi j)
2

êi j
, (2)

where S indicates the sequence samples, i.e., S = L for low PA sample, or S = H for high PA sequence sample. Further to
use residual scores to test whether the bias in a given codon pair can be explained, or not, by the bias in codons and amino
acids, we use the Fisher’s exact test to examine whether a number of occurrences of bicodon oL

i j, observed in sequences sample
associated with low protein abundance are significantly different than the number of occurrences observed in high protein
abundance sample oH

i j . Thus, we construct a 2×2 contingency tables for each bicodon as shown, for an illustrative purpose, in
the Supplementary Fig. S11 for the particular case of the bicodon AAGAAG.

Applying the Fisher’s exact test on the right table gives that the observed frequencies of AAGAAG in both samples are
significantly different with a p-value of 5.3 × 10−9352. In order to compute the binomial coefficients associated with the
p-value calculation, we approximate the factorial operator with the Stirling’s formula, n! ≈

√
2πn(n/e)n for n ≥ 25. We

performed a similar analysis for all possible bicodons (61× 64 = 3904), excluding stop:sense bicodons and the stop:stop
bicodon. To express the preference degree of a given bicodon for low or high PA sequences we define the pause propensity, π ,
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as −S log10[p-value] where S takes value +1, or −1, when the bicodon has preference for sequences with low or with high PA,
respectively.

We also use some measures provided by the information theory (IT). The essential IT idea is that of quantify our ignorance
associated to a given probability distribution (PD) in a mathematical fashion and formally deal with it. The ignorance associated
to a PD {pi} is measured by the Shannon’s entropy53 H, defined as:

Hp =−
n

∑
i=1

pi logb(pi), (3)

where b is the base of the logarithm used; when b = 2 the units of entropy are referred to as bits. Hereafter, we work in base 2,
and log will be denoted log2 in order to simplify the notation. A message (concatenation of symbols of an alphabet) whose
symbols have associated a non-uniform distribution will have less entropy than if those symbols had an uniform distribution.
This measure is between 0 and 1, and allows us to compare the information content of two PD with different alphabet size.
Another IT concept used in this manuscript is the statistical distance between two PDs. In this sense, we use the symmetric
version of the Kullback-Leibler divergence measure defined as54:

Dpq =
n

∑
i=1

pi log
pi

qi
+

n

∑
i=1

qi log
qi

pi
. (4)

As the alphabet size n impacts on the entropy and divergence measures, messages with larger alphabet have associated higher
entropy. We found useful to normalize such measures dividing by log(n).

References
1. Watson, J. D. et al. Molecular Biology of The Gene (Springer-Verlag, Berlin/Heidelberg, 2003).

2. Jukes, T. & Osawa, S. Evolutionary changes in the genetic code. Comparative Biochemistry and Physiology B 106,
489–494 (1993).

3. Hershberg, R. & Petrov, D. A. Selection on codon bias. Annual Review of Genetics 42, 287–299 (2008).
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Figure 1. Bicodon usage for the KK amino acid pair. Red and orange bars denote the frequency of bicodons observed in a
set of 500 coding sequences with the lowest PA (A), and observed in a set of another 500 coding sequences with the highest PA
(B), respectively. Black bars represent the expected frequency obtained by the product of each codon frequency.

dipeptide bicodon χ2
L +χ2

H -log10(p-value)
elegans fly yeast elegans fly yeast

NA AATGCA 8.26623 7.0634 23.875 4.5709 24.5975 4.0672
NA AATGCG 12.6365 4.2896 13.832 3.1346 5.55667 4.1022
LR CTTCGA 44.9244 5.3305 5.69759 4.1911 5.24396 5.4465
KK AAAAAG 47.0125 4.9035 6.67079 8.2823 34.0884 6.1609
YK TATAAA 17.1832 4.0035 8.81229 5.2348 5.06749 6.0497
FF TTTTTT 8.103 13.5285 18.1809 3.7197 7.50482 12.1921
FQ TTTCAG 11.1061 7.903 7.37717 5.2912 5.7149 6.4614
IT ATAACA 11.1095 8.6769 6.45525 3.333 5.36998 11.9294
KI AAAATA 8.20946 21.1178 56.1534 4.691 12.958 26.2017
IM ATAATG 14.6726 7.9497 6.75161 7.0112 5.42947 4.3485

Table 2. Shared bicodons in C. elegans, D. melanogaster and S. cerevisiae that have high preference for low PA or high PA
sequences (p-value ≥ 3), but such preference cannot be explained by the codon usage bias (χ2 >5).
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Figure 2. Frequency distributions from unbiased samples of sequences. Frequencies associated with bicodons that
encode the amino acid pair KK, computed using sequences from the low PA sample (red bars) and from the high PA sample
(orange bars). The frequency usage of bicodon AAGAAA in the sequences of both samples are almost the same, while other
bicodons have an evident preference for sequences associated with low or high PA.
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Figure 3. Divergence measure between histograms obtained from low and high PA samples. Statistical distances
between all histograms as in Fig. 2 for B. subtilis, S. cerevisiae, H. sapiens and E. coli. P-site codons occupy the horizontal axis
and A-site codons the vertical axis. Divergence measures associated with other organisms are displayed in Supplementary Fig.
S1.
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Figure 4. Pause propensity heat maps for nine organisms. The color of each cell is determined by the pause propensity π

of the associate bicodons. Red cells indicates bicodons with clear preference for sequence associated to low PA, while blue
cells indicates bicodons with high PA preference.
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Figure 5. Scatter plots indicating the residual scores χL and χH computed over the low PA and high PA samples, respectively,
for B. subtilis, S. cerevisiae, H. sapiens, and E. coli. Raster plots of other organisms are displayed in Supplementary Fig. S2.
The codon pairs whose preference for sequences with low or high PA cannot be explained by the codon usage bias are out of
the grey quadrant (i.e., χ2 ≥ 5). Among them, we distinguish bicodons more frequently used in low PA sequences (red dots), or
in high PA sequences (blue dots). Inside the quadrant, there are codon pairs with a significantly different usage frequency in
low and high PA samples, but whose bias can be explained by codon usage bias (green dots). Codon pairs whose usage
frequencies in low and high PA samples are not significantly different (black dots).
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Figure 6. Translational attenuations in the sufI protein of E. coli. (A) Schematic representation of two translational pause
mechanisms: anti-SD (aSD) sequence in the 16S RNA can link to SD-like sequences in the transcript. In addition, bicodons
with high pause propensity (red) can modulate the translocation rate of tRNAs in the decoding center (DC). (B) Top panel:
pause propensity profile of sufI, with two clear cluster of bicodons with high pause propensity (red dots) at 160-180 and at
259-276 residues. These clusters co-localized with SD-like sequences (asterisk). These sequences can be responsible for the
peaks in the ribosomal density profile (Middle panel), fact that cannot be explained by the translational rate (Bottom panel)
based on codon usage (blue line) or tRNA abundance (red line). (C) Positions, nucleotide sequences and pause propensity of
the clusters of bicodons denoted by red and green dots in Fig. 6B.
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Figure 7. Protein abundance and the sequence length distributions. Protein abundance distributions of the whole dataset
of S. cerevisiae, lowest and highest PA subsets are indicated in red and blue colors, respectively (A). Sequence length
distributions of the subsets of sequences shown in left panel (B). Protein abundance distributions of the whole dataset, the
selected low and high PA subsets of sequences used in the study (listed in Supplementary Tables S1 and S2) are indicated in red
and blue colors, respectively (C). Sequence length distributions corresponding to the subsets of sequences shown in left panel
(D).
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