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Mutator and antimutator alleles often arise and spread in both natural microbial pop-
ulations and laboratory evolution experiments. The evolutionary dynamics of these
mutation rate modifiers are determined by indirect selection on linked beneficial and
deleterious mutations. These indirect selection pressures have been the focus of much
earlier theoretical and empirical work, but we still have a limited analytical understand-
ing of how the interplay between hitchhiking and deleterious load influences the fates
of modifier alleles. Our understanding is particularly limited when clonal interference
is common, which is the regime of primary interest in laboratory microbial evolution
experiments. Here, we calculate the fixation probability of a mutator or antimutator
allele in a rapidly adapting asexual population, and we show how this quantity depends
on the population size, the beneficial and deleterious mutation rates, and the strength
of a typical driver mutation. In the absence of deleterious mutations, we find that clonal
interference enhances the fixation probability of mutators, even as they provide a di-
minishing benefit to the overall rate of adaptation. When deleterious mutations are
included, natural selection pushes the population towards a stable mutation rate that
can be suboptimal for the adaptation of the population as a whole. The approach to this
stable mutation rate is not necessarily monotonic, and selection can favor mutator and
antimutator alleles that “overshoot” the stable mutation rate by substantial amounts.

INTRODUCTION

DNA replication occurs with extremely high fidelity, de-
spite taking place in the noisy environment of the cell.
For example, laboratory strains of E. coli produce a point
mutation at a rate of roughly one nucleotide per ten bil-
lion copied (Lee et al., 2012; Wielgoss et al., 2011), which
implies that hundreds of generations can elapse before
a single mutation is introduced into the genome. To
achieve such low error rates, bacteria and eukaryotes em-
ploy a complex array of cellular machinery, which must
be maintained by natural selection.

One explanation for the low observed error rates is that
the genome encodes a large number of functions, all of
which are essential for survival. Low mutation rates could
then emerge from hard selection against these lethal er-
rors. But in practice, observed mutation rates lie far
below the levels that would quickly result in extinction.
This is evident from the fact that mutator strains, whose
mutation rates are 10- to 1000-fold higher than the wild-
type, can be propagated for thousands of generations in
the laboratory without significant loss of viability (Mc-
Donald et al., 2012; Wiser et al., 2013). This suggests
that mutation rates are not solely maintained by hard
selection, but also by more direct evolutionary competi-
tion between strains with different mutation rates. These
variants feel the effects of natural selection indirectly, by
being linked to other mutations that directly influence
fitness.

Strains with higher mutation rates are more likely to
be linked to deleterious mutations, and will therefore

experience an effective fitness cost. This cost can be
measured in head-to-head competitions between mutator
and wildtype strains (Chao and Cox, 1983; Chao et al.,
1983; Gentile et al., 2011; Giraud et al., 2001; Thomp-
son et al., 2006; Tröbner and Piechocki, 1981). In the
absence of beneficial mutations, natural selection will
therefore act to decrease the mutation rate, until it is
eventually balanced by genetic drift, mutation, or other
physiological costs. A large body of previous theoretical
work has explored these dynamics (Dawson, 1998, 1999;
Desai and Fisher, 2011; James and Jain, 2015; John-
son, 1999a; Kimura, 1967; Liberman and Feldman, 1986;
Lynch, 2008, 2011; Soderberg and Berg, 2011).

When beneficial mutations are available, lineages with
higher mutation rates are also more likely to produce
and hitchhike with a successful beneficial variant. In
the absence of deleterious mutations, natural selection
will therefore act to increase the mutation rate, until the
supply of beneficial mutations is eventually exhausted.
In accordance with these expectations, mutator alleles
are often found to spontaneously arise and spread in
rapidly adapting microbial populations in the laboratory
(Notley-McRobb et al., 2002; Pal et al., 2007; Shaver
et al., 2002; Sniegowski et al., 1997; Voordeckers et al.,
2015), and are often correlated with pathogenic lifestyles
in the wild (Bjorkholm et al., 2001; del Campo et al.,
2005; Denamur et al., 2002; Giraud et al., 2002; Labat
et al., 2005; LeClerc et al., 1996; Matic et al., 1997; Oliver
et al., 2000; Prunier et al., 2003; Richardson et al., 2002;
Watson et al., 2004).

In a few cases, laboratory populations that have previ-

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 7, 2016. ; https://doi.org/10.1101/062760doi: bioRxiv preprint 

https://doi.org/10.1101/062760
http://creativecommons.org/licenses/by-nc-nd/4.0/


2

ously fixed a mutator allele have been shown to evolve a
lower mutation rate later in the experiment, suggesting
that mutation rate evolution is an ongoing process (Mc-
Donald et al., 2012; Notley-McRobb et al., 2002; Tröbner
and Piechocki, 1984; Turrientes et al., 2013; Wielgoss
et al., 2013). Because these populations often continue
to increase in fitness during this process (Wielgoss et al.,
2013), the success of mutator and antimutator alleles
must depend on the interplay between beneficial and
deleterious mutations, rather than the complete cessa-
tion of adaptation. However, our understanding of this
interplay remains incomplete. A few simulation studies
have shown how these effects can in principle favor either
increases or decreases in mutation rates, depending on
the specific population parameters (Taddei et al., 1997;
Tenaillon et al., 2000, 1999; Travis and Travis, 2002).
Some analytical progress has also been made in the case
where beneficial mutations are rare, and occur one-by-
one in discrete selective sweeps (Andre and Godelle, 2006;
Desai and Fisher, 2011; Gillespie, 1981; Ishii et al., 1989;
Johnson, 1999b; Leigh, 1970, 1973; Painter, 1975; Tanaka
et al., 2003; Wylie et al., 2009) However, our understand-
ing is much more limited in larger populations where ben-
eficial mutations are more common, and multiple adap-
tive lineages must compete with each other for fixation.
This is the regime where the indirect effects of linked
selection are likely to be maximized, and it is also the
most relevant for understanding the microbial evolution
experiments where mutation rate modifiers have been ob-
served to spread. In this clonal interference regime, even
the most basic questions about this process remain unan-
swered: exactly how large can the deleterious load be be-
fore it effectively selects against a mutator allele? And
how does this depend on the population size, the supply
of beneficial mutations, and the magnitude of the muta-
tor phenotype?

Here, we address these questions in the context of a
simple model of adaptation, which is motivated by re-
cent microbial evolution experiments. In particular, we
focus on a regime in which deleterious mutations have a
negligible impact on the rate of adaptation, even though
they may have a large effect on the fates of mutation rate
modifiers. Within this model, we calculate the fixation
probability of an allele that changes the mutation rate by
a factor r (with r > 1 corresponding to mutator alleles
and r < 1 corresponding to antimutators). We consider
both small changes in mutation rate (r ∼ 1) as well as
substantial changes (where | log r| � 1).

We find that clonal interference amplifies the beneficial
advantage of mutator alleles, even as it constrains the
overall rate of adaptation. For large r this can be a sub-
stantial effect, resulting in greater than 100-fold increases
in the probability of fixation. However, clonal interfer-
ence also amplifies the effects of the deleterious load, re-

sulting in a much narrower window of mutator favorabil-
ity. We show that this window depends most strongly on
the strengths of typical driver mutations, and relatively
weakly on the rate at which beneficial mutations arise.
With the steady production of such modifier alleles, the
mutation rate will evolve towards a stable point at which
neither mutator or antimutator alleles are favored. Sur-
prisingly, we find that the approach to this stable point is
not necessarily monotonic, even in the absence of epista-
sis. Instead, alleles that overshoot the stable point can be
positively selected, and selection must then act to change
the mutation rates in the opposite direction.

MODEL

Our goal is to understand how beneficial and deleterious
mutations influence the fates of mutation rate modifiers
in rapidly adapting populations. We focus on the sim-
plest possible model in which we can address this ques-
tion. Specifically, we consider an asexual haploid pop-
ulation of constant size N (our analysis also applies to
diploids when all mutations have intermediate dominance
effects). We assume beneficial and deleterious mutations
occur at genome-wide rates Ub and Ud respectively. We
define U = Ub+Ud as the total mutation rate and ε ≡ Ub

Ud
as the ratio of beneficial to deleterious mutation rates.
We focus on adapting populations, and consider both
the successional-mutation regime (where beneficial mu-
tations are rare) and the clonal interference regime.

For most of our analysis we assume that beneficial mu-
tations all confer the same fitness advantage sb, though
we also comment on how our results can be extended to
the case where beneficial mutations have a distribution
of fitness effects. We assume throughout that there is
no macroscopic epistasis among beneficial mutations, so
that Ub and sb remain fixed as the population adapts.
We make no specific assumptions about the fitness ef-
fects of deleterious mutations, other than that they are
purgeable — that is, deleterious mutations are sufficiently
costly that they are unlikely to fix and do not significantly
reduce the overall rate of adaptation of the population.
We describe the technical conditions required for this to
be true and the qualitative implications of non-purgeable
deleterious mutations in more detail in the Discussion.

Our goal is to analyze the fate of a modifier allele that
changes the overall mutation rate U by a factor r (while
leaving ε and sb unchanged). For simplicity, we assume
that this allele has no direct influence on fitness, although
in the Discussion we show how this assumption can be
relaxed. These modifier alleles are produced at rate µ
from the wildtype background, and we assume that µ is
sufficiently small that the modifiers can be treated in-
dependently. In this case, the substitution rate of the
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modifier is Nµpfix(r), where pfix(r) is the fixation proba-
bility of a single modifier individual. A natural measure
of how selection “favors” or “disfavors” the modifier can
be obtained from the scaled fixation probability, Npfix(r).
When Npfix > 1, the allele is favored by selection, since it
substitutes more rapidly than a neutral allele; conversely,
the allele is disfavored when Npfix < 1. This scaled fixa-
tion probability will be our primary focus in the analysis
below. In particular, we are interested in determining
the parameters where Npfix transitions between favored
(Npfix > 1) and unfavored (Npfix < 1).

We are primarily interested in situations applicable
to microbial populations, and particularly to laboratory
evolution experiments. This motivates certain techni-
cal assumptions we describe in the Analysis below. It
also motivates our focus on asexual populations where
recombination can be neglected. This asexual case is
particularly relevant because when recombination is ab-
sent, modifiers of mutation rate remain perfectly linked
to beneficial or deleterious mutations they generate, and
hence experience the strongest indirect selection pres-
sures. In principle, we could also apply our analysis to
physically linked regions within sexual genomes (“linkage
blocks”) that are unlikely to recombine on the appro-
priate timescales (Good et al., 2014; Neher et al., 2013;
Weissman and Hallatschek, 2014). However, the scale of
these linkage blocks is a complex problem, and under-
standing these effects is beyond the scope of this study.

In the remaining sections, we calculate Npfix(r) as a
function of the underlying model parameters, and then
we use these predictions to analyze the dynamics of mu-
tation rate evolution.

THE SUCCESSIONAL MUTATIONS REGIME

To gain intuition into the forces that determine Npfix(r),
it is useful to start by considering the simplest case, where
deleterious mutations can be neglected and adaptation
proceeds by a sequence of discrete selective sweeps. This
“successional mutations” regime applies whenever ben-
eficial mutations are sufficiently rare that they seldom
segregate within the population at the same time. This
will be true provided that NUb log(Nsb)� 1 (Desai and
Fisher, 2007). In this regime, beneficial mutations are
produced at rate NUb, and establish with probability
pest = 2sb. Selective sweeps then occur as a Poisson
process with rate

1

τest
= 2NUbsb . (1)

When a successful beneficial mutation establishes, it
starts to grow deterministically and requires roughly
Tfix = 2

sb
log(Nsb) generations to complete its sweep. By

definition, this time is small compared to the time be-
tween sweeps, so the rate of adaptation is just v = sb/τest.
A modifier allele would increase or decrease this rate by
factor of r, if it was able to fix. We now analyze the
dynamics of this process.

When a modifier allele first arises, it starts at an initial
frequency fm(0) = 1/N , and it will then drift neutrally
until the next selective sweep occurs. Most of the time,
the lineage will fluctuate to extinction within the first
few generations. However, with probability ∼ 1/t, it will
survive for ∼ t generations and reach size fm(t) ∼ t/N
(Fisher, 2007). In the absence of selective sweeps, the
mutation modifier lineage could only fix by drifting to
fixation; this happens with probability ∼ 1/N and oc-
curs over a timescale of order ∼ N generations. Thus,
depending on how this drift timescale N compares with
the sweep timescales τest and τest/r, two distinct types
of fixation dynamics can emerge.

When τest and τest/r are both much much larger than
N , then the fate of the modifier lineage will be deter-
mined long before the next selective sweep occurs. Drift
is the dominant evolutionary force, and pfix(r) = 1/N .

In contrast, if either τest and τest/r are small compared
to N , the fixation process is instead controlled by genetic
draft. In this case, the modifier lineage will only fix if it
is lucky enough to produce and hitchhike with the next
selective sweep. Since we are primarily interested in un-
derstanding these effects, we will focus on this regime for
the remainder of our analysis.

The next selective sweep is produced by two competing
Poisson processes, corresponding to the beneficial mu-
tants from the wildtype and modifier lineages. These
respectively produce sweeps at rates

λ0(t) = 2NUbsb[1− fm(t)] , (2a)

λm(t) = 2NUbsbrfm(t) . (2b)

The probability that the next sweep is produced by the
modifier lineage is then simply

pfix =

〈∫ ∞
0

λm(t)e−
∫ t
0 [λ0(t′)+λm(t′)] dt′

〉
, (3)

where the angled brackets denote an average is over the
random lineage trajectory fm(t). In the regime we are
considering, the modifier lineage will remain rare until
the next selective sweep occurs. The trajectory fm(t) is
therefore described by the Langevin dynamics,

∂fm(t)

∂t
=

√
fm
N
η(t) , (4)

where η(t) is a Brownian noise term (Gardiner, 1985).
The solution of Eq. (3) can be complicated, since both
the overall rate of sweeps and their probability of arising
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in the modifier lineage depend on the random trajectory
fm(t). We present an exact solution of these equations
in Appendix A, using techniques developed by Weissman
et al. (2009).

For the present purposes, however, it will be more
useful to focus on an approximation. If the modifier
lineage stays sufficiently rare that it does not influence
the overall rate of sweeps, then we can approximate
λ0(t) + λm(t) ≈ 1/τest. Equation (3) then reduces to

pfix =

∫ ∞
0

r 〈fm(t)〉 e
−t/τest

τest
dt . (5)

In other words, the fixation probability is given by the
average size of the lineage at the time of the next sweep,
and this time is unaffected by the presence of the mod-
ifier. In this case, the modifier lineage is neutral and
〈fm(t)〉 = 1/N , so that

Npfix(r) = r . (6)

Thus, we see that the modifier fixation probability (like
the proportional change in the rate of adaptation) is in-
dependent of the population size, the mutation rate, and
the fitness benefits of the driver mutations.

To derive Eq. (6), we made the approximation that
λ0(t) + λm(t) ≈ 1/τest. Substituting our expressions for
λ0(t) and λm(t) in Eq. (2), we see that this is equiva-
lent to the assumption that (r − 1)fm(t)� 1. However,
since fm and t are both random variables, we cannot
determine the validity of this assumption based on the
average values alone. We must instead consider the typ-
ical dynamics that contribute to the average in Eq. (5):
with probability ∼ 1/τest, the modifier lineage survives
for τest generations and reaches size fm(τest) ∼ τest/N .
This ensures that the average size of the lineage is just
τest
N ·

1
τest
∼ 1

N , as expected. It also shows that the typical
values of (r− 1)fm(t) will remain small compared to one
provided that rτest � N . For simplicity, we will assume
that this condition holds for the remainder of our analy-
sis. For moderate r, this is actually the same assumption
we already made in focusing on the genetic-draft regime.
For large r it imposes an upper limit r ∼ N/τest � 1 on
the range of modifier effects that we consider. However,
this is not a fundamental problem for the analysis; we
consider such large-effect modifiers in Appendix A.

Incorporating purgeable deleterious mutations

A similar picture applies in the presence of strongly dele-
terious mutations. In particular, we assume that the typ-
ical fitness costs are larger than sb, so that a driver muta-
tion can only fix in a background that is free of deleteri-
ous mutations. If the costs are also much larger than Ud,

then the vast majority of the population will be of this
mutation-free type. We refer to these as purgeable muta-
tions, and we will assume that all deleterious mutations
are purgeable in the analysis that follows.

When a new beneficial mutation occurs, the wildtype
will be in mutation-selection balance with respect to its
deleterious mutations, so the mean fitness of the popu-
lation is −Ud. Even if it arises on a mutation-free back-
ground, the new beneficial lineage will continue to pro-
duce loaded individuals at rate Ud. This exactly cancels
the growth advantage of the mean fitness of the popu-
lation, so that the establishment probability is still just
pest = 2(sb + Ud − Ud) = 2sb. Since most genetic back-
grounds are in this unloaded state, the overall rate of
sweeps is unchanged from before. This means that if a
modifier allele were to fix, it would still change the rate
of adaptation by a simple factor of r.

However, while the deleterious mutations do not af-
fect the rate of adaptation, they can still have a large
effect on the modifier lineage while it is rare. The mod-
ifier produces doomed lineages at rate rUd, which is not
completely cancelled by the mean fitness of the wild-
type. Instead, mutator alleles will feel an effective cost of
magnitude Ud(r− 1), while antimutators will experience
an effective fitness advantage. Generalizing Eq. (4), the
mutation-free portion of the modifier lineage will then
evolve as

∂fm(t)

∂t
= −Ud(r − 1)fm(t) +

√
fm(t)

N
η(t) . (7)

Beneficial mutations produced by this lineage will like-
wise have an effective fitness sb − Ud(r − 1), and will
establish with probability

pmest = 2(sb − Ud(r − 1)) . (8)

In exactly the same manner as before, the next selec-
tive sweep is produced by two competing Poisson pro-
cesses with rates

λ0(t) =
1

τest
[1− fm(t)] , (9a)

λm(t) =
r

τest

[
1− Ud(r − 1)

sb

]
fm(t) , (9b)

and the fixation probability is given by the average in
Eq. (3). If we again make the assumption that the modi-
fier lineage has a negligible influence on the overall sweep
rate (λm + λ0 ≈ 1/τest), this reduces to

pfix = r

[
1− Ud(r − 1)

sb

] ∫ ∞
0

〈fm(t)〉 · e
−t/τest

τest
dt . (10)

In this case, the average lineage size is now 〈fm(t)〉 =
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e−Ud(r−1)t/N , and we obtain

Npfix(r) =
r
[
1− Ud(r−1)

sb

]
1 + Udτest(r − 1)

. (11)

The validity of this expression depends on our assump-
tion that λ0(t) + λm(t) ≈ 1/τest. In the same manner as
above, we can establish the region of validity of this ap-
proximation by considering the typical dynamics behind
the averages in Eq. (10). These will depend on the sign
of Ud(r − 1).

For a mutator allele (r > 1), the modifier lineage will
feel an effective fitness cost Ud(r−1). If this cost is small
compared to 1/τest, then selection will barely have time
to influence fm(t) before the next sweep occurs, and mu-
tators will continue to fix with probability Npfix ∼ r.
On the other hand, if Ud(r − 1) � τest, then this fit-
ness cost exponentially suppresses the probability that
the mutator survives until the next sweep. In particular,
the mutator will survive for t generations with probabil-
ity ∼ Ud(r−1)e−Ud(r−1)t, and provided that it does so, it
will no longer grow indefinitely, but will instead reach a
maximum size of order 1/NUd(r−1). If the time between
sweeps was deterministic, this would simply suppress the
fixation probability by a factor e−Ud(r−1)τest . However,
this is not actually the case, since the next sweep is gen-
erated by the random Poisson process above. Thus, the
intervals between sweeps are not only random, but they
are drawn from an exponential distribution, which has
important consequences for the dynamics. The broad
distribution of t does not lead to a simple exponential
suppression of Npfix(r), but rather a power law decay
∝ 1/Udτest(r − 1), which is dominated by anomalously
early sweeps for which t ∼ 1/Ud(r − 1) � τest. For a
strong-effect mutator (r � 1), this power-law decay ex-
actly balances the lineage’s increased beneficial mutation
rate, so that the r-dependence of pfix is primarily medi-
ated through the reduced establishment probability, pmest.

In contrast, antimutators will have an effective fit-
ness advantage relative to the wildtype, of magnitude
Ud(1− r). If Ud(1− r) � 1/τest, this fitness advantage
will still have a negligible influence on Npfix(r). However,
when Ud(1 − r)τest � 1, the antimutator will establish
with probability Ud(1− r) and will start to grow deter-
ministically as fm(t) ∼ eUd(r−1)t/NUd(r − 1). Again,
if the time to the next sweep was deterministic, this
would result in a simple exponential enhancement of
Npfix. But because t is exponentially distributed, it in-
teracts with the exponential growth of the lineage in a
strong way. In particular, as Ud(1 − r)τest approaches
1, the average in Eq. (11) will be dominated by anoma-
lously late sweep times for which fm(t) is no longer rare,
and our approximation that λ0 + λm ≈ 1/τest breaks
down. Thus, Eq. (11) will only be valid provided that
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FIG. 1 The fixation probability of a mutation rate modifier
in the successive mutations regime. Solid lines depict Eq. (11)
for four sets of parameters, which illustrate the four character-
istic shapes of Npfix(r). In all four cases, the base parameters
are N = 107, sb = 10−2, U = 10−4 and ε = 10−5, with
modifications listed in the legend.

1− Ud(1− r)τest � 1/ log(N/τest). Outside this regime,
the antimutator lineage will appear to sweep to fixation
on its own, without the help of an additional driver mu-
tation.

The fixation probability in Eq. (11) is illustrated in
Fig. 1 for several choices of parameters. Its overall shape
is determined by the key parameter

Udτest =
1

2εNsb
, (12)

which depends only on N , sb, and ε ≡ Ub/Ud, and is
independent of the overall mutation rate U . Depending
on the value of Udτest, Eq. (11) takes on one of two char-
acteristic shapes. If Udτest > 1, the fixation probability
is a monotonically decreasing function of r (see Fig. 1),
and mutators will never be favored to invade. Instead,
antimutators will be positively selected. Note that this
happens even though the antimutator actually causes a
decrease in the overall rate of adaptation.

On the other hand, for Udτest < 1, the fixation prob-
ability takes on a paraboloid shape (Fig. 1). It crosses
Npfix(r) = 1 at exactly two points: once at r = 1 and
once at

r∗ =
sb
Ud

(1− Udτest) . (13)

When r∗ > 1, modifiers will be favored in the range 1 <
r < r∗, and disfavored elsewhere (i.e., some mutators will
be favored). Conversely, when r∗ < 1, modifiers will be
favored in the range r∗ < r < 1 (i.e., some antimutators
will be favored). It is also useful to rewrite r∗ in terms
of the mutation rate Um = Ur of the modifier lineage:

U∗m ≡ Ur∗ = sb(1 + ε)

(
1− 1

2εNsb

)
. (14)
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Note that this is always positive (since 1/2Nsbε < 1),
and it is independent of U .

Dynamics of mutation rate evolution

We are now in a position to analyze how mutation rates
evolve over time. Imagine that we start with some par-
ticular values of N , U , ε, and sb. This will correspond to
a particular value of τest and U∗m. If Udτest > 1, mutators
are disfavored and antimutator alleles will be positively
selected instead. After an antimutator allele fixes, both
Ub and Ud are reduced, but Udτest is unchanged, so nat-
ural selection will continue to select for lower mutation
rates until this force is balanced by drift, mutational pres-
sure, or other physiological costs.

On the other hand, if Udτest < 1 and U < U∗m, mu-
tators will be favored provided that their resulting mu-
tation rate is less than U∗m. If a mutator allele fixes, Ub
and Ud will be increased, but Udτest and U∗m will remain
constant. Thus, natural selection will continue to favor
increased mutation rates until U reaches a special value,

Û = U∗m = sb(1 + ε)

(
1− 1

2εNsb

)
, (15)

which is stable against further changes in the mutation
rate. If instead the initial mutation rate U > Û , an-
timutators will be favored provided that their resulting
mutation rate is greater than Û , and natural selection
will continue to favor increased mutation rates until U
reaches Û . We describe these dynamics in more detail in
the Discussion.

Of course, this analysis crucially depends on the as-
sumption that any mutation rate increases will still lie
within the successive mutations regime. This will be
true provided that NÛb ∼ εNsb − 1 � 1/ log(Nsb).
But in order for a nonzero stable mutation rate to ex-
ist in the first place, we previously required that εNsb ∼
1/Udτest > 1. These two conditions can only be satisfied
if ε = 1/2Nsb + δ, where

0 < δ � 1

log(Nsb)
. (16)

This is an extremely small region of parameter space,
and it grows increasingly narrow as Nsb increases. As a
result, the stable mutation rate in Eq. (15) is actually a
rapidly varying function of N , sb, and ε. For larger values
of ε that violate the stringent constraints in Eq. (16),
mutator alleles will generically drive mutation rates into
regimes where selective sweeps begin to interfere with
each other. We now turn to an analysis of this case.

THE CLONAL INTERFERENCE REGIME

When multiple beneficial mutations segregate at the
same time, many potential drivers are lost due to com-
petition with other, fitter genetic backgrounds. This re-
duces the rate of successful drivers in a way that depends
on the relative values of Nsb and NUb. In the regime
most relevant for our current study, Desai and Fisher
(2007) have shown that τest is reduced to

1

τest
∼ 2sb log(Nsb)

log2(sb/Ub)
, (17)

which is valid provided that 1� log (sb/Ub)�2 log(Nsb)
and 2 log(Nsb)� log2 (sb/Ub). Similar expressions can be
obtained for other parameter regimes, all of which share
the weak dependence on NUb (Fisher, 2013). Since adap-
tation is no longer mutation-limited, one might guess
that mutators will be less strongly favored in this regime.
However, previous simulation studies (Tenaillon et al.,
1999) and heuristic reasoning (Desai and Fisher, 2011)
suggest that the opposite can actually be true: clonal in-
terference enhances the fixation of mutator alleles, even
as they provide a diminishing overall benefit for the rate
of adaptation.

In the following subsection, we introduce a traveling-
wave formalism for calculating Npfix(r) in the presence
of clonal interference. Before doing so, however, it will
be useful to consider this process from a heuristic per-
spective. This will allow us to identify the key forces and
parameters involved, and will provide intuition for the
more rigorous analysis that follows.

Heuristic analysis

In the absence of deleterious mutations, clonal interfer-
ence alters the dynamics of fixation in two main ways.
First, successful mutations can only occur in the most
highly-fit genetic backgrounds in the population. These
individuals lie in the extreme right tail or “nose” of the
population fitness distribution, which steadily increases
in fitness as the population adapts. In the regime de-
scribed by Eq. (17), the relative fitness of the nose is
given by

xc ∼
1

τest
log

(
sb
Ub

)
, (18)

which is much larger than the size of a single driver
mutation. These individuals have already acquired q =
xc/sb � 1 more adaptive mutations than the average in-
dividual, but they are not yet destined to fix. The reason
is that there are still enough individuals in the nose that
they will collectively produce multiple additional driver
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mutations in the next τest generations, and these will oc-
cur in a relatively narrow time window ∆t� τest (Desai
and Fisher, 2007). By definition, all but one of these mu-
tations must eventually be outcompeted. But this means
that the process of fixation within the nose takes place
over multiple establishment intervals, each of length τest.

Since xcτest � 1, genetic drift is not directly relevant
for most of this fixation process. Random fluctuations in
the lineage sizes are still important, but these are now
driven by genetic draft, which arises from slight differ-
ences in the relative order of the next round of driver mu-
tations. During most of this process, the lineages founded
by different driver mutations make up less than ∼ 1/q of
the total size of the nose. However, approximately once
every ∼ q establishments, an anomalously early driver
mutation will occur and reach an O(1) fraction of the
nose (Desai et al., 2013). This roughly coincides with a
fixation event. In order to fix, a lineage must therefore
(i) arise in the nose, (ii) persist for ∼ q additional estab-
lishment intervals, and (iii) be lucky enough to hitchhike
with the special “jackpot” driver event.

Mutation-rate modifiers can be incorporated into this
picture in a straightforward way. The key quantities τest

and q are only weakly dependent on the mutation rate.
Provided that | log(r)| � log(sb/Ub), the modifier ver-
sions of these parameters will be similar to the wildtype,
and the competition between these lineages will play out
according to the same dynamics as above. The modifier
is no more or less likely to arise in the nose compared to a
neutral mutation. However, provided that it does occur
in one of these special genetic backgrounds, a mutator
lineage is r times more likely than a neutral lineage to
generate an additional driver, while an antimutator lin-
eage is r times less likely to do so. Since the modifier
lineage must generate ∼ q additional drivers to fix, its
overall fixation probability is given by

Npfix(r) ∼ rq. (19)

Thus, we see that clonal interference increases the fixa-
tion probability of mutators by ∼ q factors of r. This
increase can be substantial for large r, even when q ≈ 2
(see Fig. 2). From our discussion above, we see that this
increase is primarily driven by the fact that multiple ad-
ditional drivers are required for fixation.

In the presence of deleterious mutations, a muta-
tor lineage again feels an effective cost of Ud(r − 1),
so it will tend to decline in frequency relative to the
other individuals in the nose. In particular, when the
next burst of driver mutations arises, the mutator lin-
eage will have decreased in frequency by a factor of
e−Ud(r−1)τest , which makes it that much less likely to sur-
vive to the next round. Similarly, an antimutator lineage
will have increased in frequency by an analogous factor
of eUd(1−r)τest . The overall fixation probability then be-
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FIG. 2 (Top) The fixation probability of a mutation rate
modifier in the clonal interference regime when Ud = 0.
Symbols denote the results of forward-time solutions (de-
scribed in Appendix C) for sb = 10−2, Ub = 10−5, and N ∈
{105, 107, 109}. Solid lines denote the theoretical predictions
in Eq. (38). For comparison, the successive mutations predic-
tion (Npfix ≈ r) and neutrality (Npfix ≈ 1) are shown in the
dashed lines. (Bottom) The rate of adaptation of a successful
modifier lineage, relative to that of the wildtype, for the same
set of populations above. The solid black line denotes the
asymptotic prediction, v(r)/v ≈ log2(sb/Ub)/ log2(sb/rUb),
which is independent of N . For comparison, the successive
mutations prediction (v(r)/v ≈ r) and no change (v(r)/v ≈ 1)
are shown in the dashed lines.

comes

Npfix(r) ∼
(
re−(r−1)Udτest

)q
. (20)

We discuss the regimes of validity of this expression in
our more rigorous analysis below. For the purposes of
our heuristic analysis, it will be more useful to focus on
the implications of Eq. (20).

Similar to the selective sweeps case, the direction of
selection in Eq. (20) is again determined by the product
Udτest. There are three characteristic regimes of behav-
ior. When Udτest � 1, mutators will be favored provided
that Um = Ur is less than a maximum value,

U∗m =

(
1 + ε

τest

)
log

(
1

Udτest

)
. (21)

Conversely, when Udτest � 1, antimutators will be fa-
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vored above a minimum value

U∗m =

(
1 + ε

τest

)
Udτeste

−Udτest . (22)

Similar behavior is obtained for Udτest is close to one,
except that U∗m is now given by

U∗m = U

(
1 +

1− Udτest

2

)
. (23)

When Udτest = 1, the range of favorable modifiers van-
ishes, and mutators and antimutators are both selected
against. The evolutionarily stable mutation rate is there-
fore given by

Û =
1 + ε

τest
. (24)

Note that this is actually an implicit relation for Û , since
τest depends on Ûb = εÛ/(1 + ε). Substituting our ex-
pression for τest in Eq. (17) and solving for Û , we find
that

Û ∼ 2sb log(Nsb)

log2
(

1
ε

) , (25)

where the region of validity for Eq. (17) [and hence
Eq. (25)] now becomes

1�
√

2 log(Nsb)� log(1/ε)� log 2 (Nsb) . (26)

This is still a restrictive parameter range for ε, although it
is much broader than Eq. (16) in the successive mutations
regime, and it grows larger with increasing Nsb.

Provided that these conditions are met, we see that
the stable mutation rate in Eq. (25) is only weakly de-
pendent on N and ε, and is much more strongly influ-
enced by sb. This contrasts with the behavior we found
in the successive mutations regime. In addition, we see
that unlike in the successive mutations regime, the stable
mutation rate (Û) does not necessarily coincide with the
maximally permitted mutator or antimutator allele (U∗m)
when U 6= Û . This can have important consequences for
the dynamics of mutation rate evolution in this regime.
If the mutation rate starts far above or below Û , natu-
ral selection can favor modifier alleles that overshoot the
stable value by a substantial amount, which can lead to
a nonmonotinic approach to the stable point. We will
revisit these dynamics in more detail in the Discussion.

Formal analysis

We now turn to a more formal derivation of the results
described above. To do so, we make use of “traveling-
wave” formalism developed in previous work (Fisher,

2013; Good and Desai, 2014; Good et al., 2012; Hal-
latschek, 2011; Neher and Shraiman, 2011; Neher et al.,
2010). This formalism focuses on the distribution of rel-
ative fitness within the population, which we denote by
f(x), and the fixation probability of a (wildtype) indi-
vidual with relative fitness x, which we denote by w(x).
In the absence of mutator or antimutator alleles, we and
others have previously shown that f(x) and w(x) satisfy
the partial differential equations,

−v ∂f
∂x

= (x− Ud − Ub)f + Ubf(x− sb) , (27a)

v
∂w

∂x
= (x− Ud − Ub)w + Ubw(x+ sb)−

w2

2
, (27b)

where v ≡ sb/τest is the average rate of adaptation (Good
and Desai, 2014). Note that Eq. (27) implicitly assumes
that the deleterious mutations are purgeable, i.e., they do
not fix and consitute a negligible fraction of the popula-
tion. The rate of adaptation (or equivalently, τest ≡ sb/v)
is set by the self-consistency condition,∫

f(x)w(x) dx =
1

N
, (28)

which is just another way of saying that the fixation prob-
ability of a neutral mutation must be equal to 1/N . For a
detailed derivation of these equations, see Good and De-
sai (2014). Note that because we have assumed that dele-
terious mutations are purgeable, Ud enters into Eqs. (27)
and (28) only as an overall shift in the mean fitness of
the population. If we measure fitnesses using the shifted
variable x̃ = x − Ud (i.e., fitness relative to the aver-
age unloaded individual), then the evolution equations
revert back to the purely beneficial case. We will adopt
this convention from now on.

Even in the simplified model of Eq. (27), there are
many possible parameter regimes that one may consider
(Fisher, 2013). Here we will focus on a particular ap-
proximate solution which is thought to be relevant for
many microbial evolution experiments. In this regime,
the fitnesses of unloaded individuals are approximately
normally distributed,

f(x̃) ≈ 1√
2πv

e−
x̃2

2v θ(xc − x̃) , (29)

with a sharp cutoff at x̃ = xc. This corresponds to the
“nose” of the fitness distribution described above. Mean-
while, the survival probability w(x̃) can be approximated
by the piecewise form

w(x̃) ≈


2x̃ if x̃ > xc,

2xce
x̃2−x2c

2v if xc − sb ≤ x̃ ≤ xc,
0 if x̃ ≤ xc − sb.

(30)
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In this context, xc can also be thought of as an inter-
ference threshold. Lineages that are at relative fitness
x > xc will fix provided they survive drift and establish;
this occurs with probability 2x. Below xc the fixation
probability drops off rapidly because lineages can estab-
lish but still be lost to interference. Once a lineage is
more than sb below xc, it can essentially never catch up
with the remaining lineages at the nose, and it will there-
fore have a negligible fixation probability. The location
of xc is determined by the auxiliary condition

1 ≈ Ub
sb

[
1− sb

xc

]−1

e
xcsb
v −

s2b
2v . (31)

After substituting our expressions for f(x) and w(x) into
Eq. (28), the self-consistency condition becomes

2xcsbe
− x

2
c

2v

√
2πv

≈ 1

N
. (32)

Together with Eq. (31), this completely determines v and
xc as a function of the underlying parameters. Asymp-
totic formulae for these quantities are given in Eqs. (17)
and (18); more accurate estimates can be obtained by
solving Eqs. (31) and (32) numerically.

We have previously shown that this solution applies
whenever xc − sb �

√
v, sb �

√
v, and Ub � sb (Good

and Desai, 2014). The first of these conditions says that
the parents of successful lineages must be highly-fit (i.e.,
that clonal interference is indeed present). The second
condition (which also implies the third) says that the vast
majority of individuals in the population have roughly
the same number of driver mutations (i.e., mutation pres-
sure is not too strong). In terms of the underlying pa-
rameters, these conditions become 1 � log(sb/Ub) �
log(Nsb) � log2(sb/Ub), as we stated after Eq. (17)
above.

Once we have set up this travelling-wave formalism,
mutation-rate modifiers can be added in a straightfor-
ward way. Since the fate of any allele is determined while
it is rare, we can neglect the effects of the modifier on the
wildtype population, so that f(x) and v are unchanged
from above. When a modifier allele occurs, it will arise on
a genetic background whose fitness is drawn from f(x).
We then introduce a new function wm(x) describing the
fixation probability of the modifier allele as a function of
its initial fitness. This function satisfies a similar equa-
tion as w(x), except with a different mutation rate:

v
∂wm
∂x̃

= [x̃− (r − 1)Ud − rUb]wm

+ rUbwm(x̃+ sb)−
w2
m

2
.

(33)

Thus, in addition to the increase in Ub, we see that a mu-
tator lineage experiences an effective fitness cost Ud(r−1)

corresponding to its increased deleterious load. This
cost enters as a shift in the overall location of wm(x̃),
which we can account for by defining a shifted function,
wm(x̃) = w̃m(x̃ − Ud(r − 1)). After this transformation,
Eq. (33) is of the same form as Eq. (27b). Then, provided
that the modifier mutation rate rUb is still in the same
regime as Ub, the solution for the shifted function w̃m(x̃)
will have the same form as w(x̃),

w̃m(x̃) =


2x̃ if x̃ > xcm,

2xcme
x̃2−x2cm

2v if xcm − sb ≤ x̃ ≤ xcm,

0 if x̃ ≤ xcm − sb,
(34)

except with a different interference threshold xcm, which
satisfies

1 =
rUb
sb

[
1− sb

xcm

]−1

e
xcmsb
v − s

2
b

2v . (35)

Like the wildtype interference threshold xc, the location
of xcm is independent of Ud. Since mutators are favored
when Ud = 0, we expect that xcm < xc whenever r > 1.
In other words, we expect that mutators have a lower
interference threshold, since these lineages generate ben-
eficial mutations more rapidly and, once in the nose, are
therefore less likely to be lost to clonal interference.

In order for this solution to apply, it must satisfy the
same conditions as the wildtype population: xcm− sb �√
v and rUb � sb. This will be true provided that xcm

is still close to xc, or equivalently, that the fractional
difference δx = xcm/xc−1 is small compared to 1. Given
this assumption, we can divide Eq. (35) by Eq. (31) and
solve for δx:

δx = − v

xcsb
log

[
r(1 + δx)

1 + xcδx
xc−sb

]
≈ − v

xcsb
log(r) . (36)

Since xcsb/v ∼ log(sb/Ub) in this regime, we see that
this approximation will hold provided that | log(r)| �
log(sb/Ub). This places an upper limit on the range of
modifier effects that we can consider. But since sb/Ub �
1, this includes many realistically-large modifiers of order
r ∼ 100.

Given our solution for wm(x̃), we can compute the
marginal fixation probability of the modifier by averaging
over all the fitness backgrounds that the modifier could
have arisen on:

pfix(r) =

∫
f(x̃)wm(x̃) dx̃ . (37)
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FIG. 3 The fixation probability of a mutation rate modifier in
the clonal interference regime when Ud > 0. Symbols denote
the results of forward-time solutions with the base parameters
N = 107, sb = 10−2, Ub = 10−5, Ud = 10−4, and sd = 10−1,
with modifications listed in the legend. Solid lines denote the
theoretical predictions in Eq. (38).

We evaluate this integral in Appendix B. We find that

Npfix(r) ≈ eq[log(r)−Udτest(r−1)]

× e− ν2 [log(r)−Udτest(r−1)]2

× eUdτest(r−1) − 1

Udτest(r − 1)
,

(38)

where we have employed the short-hand notation
q = xc/sb, τest = sb/v, and ν = 1/sbτest. In the
asymptotic regime we are considering, 1/q and ν are both
small parameters. To leading order, Eq. (38) converges to
the simpler expression from our heuristic analysis, which
we now recognize as the technical statement that

lim
q→∞
ν→0

logNpfix(r)

q
= log(r)− Udτest(r − 1). (39)

However, since the errors are multiplied by a large num-
ber q and exponentiated, the full version in Eq. (38) is
often required for quantitative accuracy.

We illustrate the full expression in Eq. (38) and com-
pare it to forward-time simulations in Figs 2 and 3. The
accuracy is generally good, although there are some sys-
tematic deviations for large r when the effects of the dele-
terious load are particularly costly. These are ultimately
the result of two factors: (i) inaccuracies in our approx-
imate solution for w(x) for xc − sb < x < xc and (ii)
the fact that log(r) is starting to approach log(sb/Ub).
More accurate approximations for w(x) derived by Fisher
(2013) could be used to improve the quantitative accu-
racy for these parameters; we leave this for future work.

DISCUSSION

In rapidly adapting populations, the fates of mutator and
antimutator alleles depend on a careful balance between
the benefits of hitchhiking and the cost of a deleterious
load. Our analysis shows how the fixation probabilities of
these mutation-rate modifiers depend on the population
size, the beneficial and deleterious mutation rates, and
the strength of selection. By searching for parameters
where mutators and antimutators are both disfavored by
selection, we can identify particular mutation rates Û
which are stable under future evolution. At these mu-
tation rates, the benefits of hitchhiking are exactly bal-
anced by the costs of the deleterious load, so that neither
mutators nor antimutators are favored. We now consider
how a population will approach the stable mutation rates,
and the implications of this mutation rate evolution for
the rate of adaptation within the population. Finally,
we describe the approximations we have made through-
out our analysis and the resulting limitations of our ap-
proach.

Approach to the stable mutation rate

Consider a situation in which the population starts with
a mutation rate U0 6= Û , and fixes a sequence of modifier
alleles with mutation rates U1, U2, . . . , Un. What are the
typical values of this mutation rate trajectory, under the
hypothesis that each step was favored by selection?

In both the successional mutations and clonal interfer-
ence regimes, we found that Û depends only on N , sb,
and ε. This implies that the mutation rate will always
evolve towards this unique stable point: Un → Û . How-
ever, the manner in which the population approaches Û
can be strongly influenced by clonal interference.

In the successional mutations regime, selection favors
a monotonic approach to Û . Consider, e.g., a mutation
rate U0 < Û . In this case, we have shown that mutators
will be able to fix provided that the new mutation rate
Um = rU lies in the range U0 < Um < Û . When one
of these alleles fixes, the new mutation rate will be given
by U1 = Um, and the process will repeat itself. Mutators
will still be favored to fix provided that U1 < Um < Û ,
which will lead to a U2 > U1, and so on. Thus, evolution
will favor a monotonic sequence of mutator alleles until
Un = Û , after which the mutation rate will be stable to
further changes. An exactly analogous conclusion holds
if U0 starts above Û : here selection will tend to fix an-
timutator alleles that lie in the range Û < Um < Ui until
Un = Û . In both cases, mutator or antimutator alle-
les that “overshoot” the stable mutation rate are always
disfavored. This is true even if such alleles would move
the mutation rate closer to the stable rate; e.g., an allele
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FIG. 4 The predicted fixation probability of a modifier allele
when Nsb = 106 and ε = 10−6. Grid points are colored ac-
cording to the value of Npfix from Eq. (38), and are capped
at a maximum value of | log2 Npfix| = 2 to maintain contrast.
For comparison, the solid lines denote twenty log-spaced con-
tours that range from 10−1 to 104.

that takes a population from 0.1Û → 1.1Û would not be
positively selected.

When clonal interference is present, the approach to
the stable mutation rate is more complex. This is easi-
est to see if we rewrite Eq. (20) in terms of Um, U , and
Û . Provided that | log(Ui/Û)| � log(1/ε), the quantities
τest(U) and q(U) will stay roughly constant over the rel-
evant range of mutation rates, and we can approximate
τest(U) ≈ τest(Û) ≡ 1/Û . This yields a simple heuristic
formula,

Npfix(Um) ≈

(
Ume

−Um/Û

Ue−U/Û

)q
, (40)

which depends only on the scaled mutation rates U/Û ,
Um/Û , and q. A more accurate (but more cumbersome)
version can be obtained by substituting the full expres-
sions for τest(U) and q(U) into Eq. (38). We illustrate
this full expression in Fig. 4 for a particular combination
of Nsb and ε, although the important qualitative features
are already contained in Eq. (40).

If the population starts at a mutation rate U0 ∼ Û ,
then only modest changes in the mutation rate will be fa-
vorable. However, if the population starts at a mutation
rate U0 � Û , Eq. (40) shows that mutators will be pos-
itively selected provided that U0 < Um < Û log(Û/U0).
While the most strongly beneficial modifier has Um = Û ,
the range of favored mutators also includes values of Um
that are larger than Û by a factor log(Û/U0)� 1. This
means that selection can favor mutator alleles that over-
shoot the stable mutation rate by a substantial amount.
If a mutator allele of this maximal strength fixes, the
new mutation rate will be U1 = Û log(Û/U0) > Û , and

10-1

100

101

102

103

Fi
x
a
ti

o
n
 p

ro
b
a
b
ili

ty
, 
N
p

fi
x

U=U0

U=52U0

U=150U0

100 101 102

New mutation rate, Um /U0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
d
a
p
ta

ti
o
n
 r

a
te

, 
v/
s

2 b
FIG. 5 (Top) A vertical “slice” of Fig. 4 for three different
values of U . Symbols denote the results of forward time simu-
lations with NU0 = 5780, and sd = 5sb; other parameters are
the same as Fig. 4. Solid lines denote theoretical predictions
from Eq. (38). (Bottom) The scaled rate of adaptation as a
function of the mutation rate for the same set of parameters.
Symbols denote the results of forward-time simulations, the
solid lines show the theoretical predictions obtained by solv-
ing Eqs. (31) and (32) numerically, and the dashed line shows
the asymptotic formula, v/s2

b ∼ 2 log(Nsb)/ log(sb/εUm)2.

selection will immediately favor the fixation of antimuta-
tor alleles, despite the fact that the location of Û has not
changed (see Fig. 5). If U � Û , these antimutator alleles
can overshoot the stable mutation rate in the other direc-
tion, by a factor U/Ûe−U/Û � 1. In the example above,
this could then lead to U2 = U0 log(Û/U0), which is larger
than the initial mutation rate U0 but still much smaller
than Û . Thus while the population will still approach the
stable mutation rate over time, this approach does not
have to be monotonic, even in the absence of epistasis or
environmental variation. Moreover, the functional form
of Eq. (40) implies that this behavior is highly asymmet-
ric: an antimutator allele can overshoot Û by a larger
amount (and with a larger Npfix) than a mutator allele
with the same value of | log(U/Û)|. This can also be seen
in Figs 4 and 5.
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Application to a long-term evolution experiment in E. coli

Several studies have observed the spread of mutator al-
leles in microbial populations in the laboratory. One of
the best-studied examples is Lenski’s long-term evolution
experiment (the LTEE), where 12 replicate populations
of E. coli have been propagated constant conditions for
more than 60, 000 generations (Lenski et al., 1991, 2015).
Mutator phenotypes have fixed in 6 of the 12 populations
over the course of this experiment, and have typically
increased the mutation rate by ∼ 100-fold. The rate
of adaptation in the mutator populations increased less
than 2-fold, suggesting that clonal interference plays an
important role (Wiser et al., 2013). In one of the 12 repli-
cates, the dynamics of mutation rate evolution have been
studied in more detail. Wielgoss et al. (2013) have shown
that, soon after the fixation of the mutator allele, an an-
timutator phenotype fixed, which lowered the mutation
rate by a factor of two. The antimutator phenotype had
two independent origins, suggesting that both it and the
original mutator allele were favored by selection. Given
these findings, it is interesting to compare various expla-
nations for this behavior in the context of our theoretical
analysis above.

One potential explanation for these findings is sug-
gested by the “overshooting” behavior illustrated in
Figs 4 and 5. Although the precise evolutionary param-
eters of these populations are not known, Fig. 5 shows
that it is at least feasible to overshoot the optimum by a
factor of 2 when the population starts at a mutation rate
of U0 ∼ 0.01Û . Note, however, that Npfix is not neces-
sarily large in the reverse direction, so it remains to be
seen whether this effect could efficiently select for lower
mutation rates on the rapid timescales observed.

Another potential explanation for the mutation-rate
reversal, initially suggested by Wielgoss et al. (2013), is
that long-term epistasis reduced the effective advantage
of hitchhiking later in the experiment, thereby shifting
the location of Û below its initial value. In the context
of our model, this epistasis can manifest itself in one of
two ways. First, it could reduce ε, reflecting a diminished
supply of beneficial mutations (or an increasing supply
of deleterious mutations) as the population adapts. Our
formula in Eq. (25) suggests that rather drastic reduc-
tions in ε are required to cause a 2-fold reduction in Û .
Alternatively, diminishing-returns epistasis could reduce
the magnitude of sb, while leaving the beneficial muta-
tion rate unchanged. Equation (25) suggests that this
has much stronger effect on Û . Wiser et al. (2013) have
recently proposed and fit a concrete model for how sb de-
clines with fitness in the LTEE. These estimates suggest
that sb declines by . 20% in the 4,000 generations that
separate the mutator and antimutator alleles. This would
seem to be too small to account for a & 50% reduction

in Û , although the magnitudes are sufficiently close that
a careful comparison with simulations is required. This
would be an interesting avenue for future work.

A third potential explanation is a direct fitness ben-
efit to either the mutator or antimutator allele. While
such benefits are difficult to measure directly (due to the
confounding effects of the deleterious load), they can be
incorporated into our model in a straightforward way.
We can simply replace Ud(r−1)→ Ud(r−1)−sm in our
formulae for pfix(r), where sm is the direct benefit of the
modifier allele. Since the effect of the deleterious load
is typically of order Û < sb, even a small direct benefit
(sm < sb) can shift the balance between hitchhiking and
load in important ways.

The evolution of mutation rates and the average rate of
adaptation

Because we have assumed that deleterious mutations are
purgeable, increasing U always increases the rate of adap-
tation, even though these increases may be small in the
presence of clonal interference. Our results therefore sug-
gest that mutation rates will evolve toward a stable mu-
tation rate that is less than what would be optimal for the
population (which, in this case, is technically Uopt =∞).
Of course, as we increase mutation rates, the assumption
that deleterious mutations are purgeable will eventually
fail. Somewhere above this point, there will be an opti-
mal mutation rate Uopt <∞ that maximizes the rate of
adaptation (see, e.g. Orr (2000)). To confirm that the
stable mutation rate is indeed below Uopt, we must ver-

ify that Û is still in the purgeable deleterious mutations
regime. For the example in Fig. 5, we can verify this di-
rectly, since the rate of adaptation continues to increase
as the mutation rate passes through Û . This behavior
will hold more generally provided that the typical cost of
a deleterious mutation, sd, is much larger than Û . Since
Û is typically smaller than sb in the regimes that we con-
sider, this will indeed be the case whenever sd & sb.

In these cases, the stable mutation rate is below the op-
timal mutation rate, which implies that the dynamics of
the evolutionary process can sometimes favor changes in
mutation rate that slow the adaptation of the population.
Antimutator alleles can be favored even when their fixa-
tion will ultimately reduce the overall rate of adaptation.
Conversely, mutator alleles can be disfavored even when
their fixation would have increased the rate of adapta-
tion.

Although our results are limited to the purgeable
regime, a similar distinction between Û and Uopt may
also apply even when deleterious mutations are no longer
purgeable. We cannot prove this conjecture in our
present framework, but it is an interesting hypothesis

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 7, 2016. ; https://doi.org/10.1101/062760doi: bioRxiv preprint 

https://doi.org/10.1101/062760
http://creativecommons.org/licenses/by-nc-nd/4.0/


13

for future work.

Limitations to our analysis

We have made a number of key assumptions through-
out our analysis. Most crucially, we have assumed that
deleterious mutations are purgeable. For this to be true,
two conditions must be met: the deleterious mutations
cannot fix, nor can they affect the overall rate of adap-
tation by reducing the fixation probabilities of beneficial
mutations. This is a slightly stronger condition than the
“ruby in the rough” approximation used by earlier au-
thors (Charlesworth, 1994; Peck, 1994). Our previous
work on the effects of deleterious mutations in adapting
populations provides a detailed analysis of when these
conditions will hold, and of the effects of deleterious mu-
tations on adaptation when the purgeable assumption
fails (Good and Desai, 2014). This earlier work sug-
gests that deleterious mutations are likely to be purge-
able in most microbial evolution experiments, though re-
cent experimental work hints that this may not always
be the case (McDonald et al., 2016). Here we first sum-
marize the conditions under which deleterious mutations
are purgeable, and then describe the potential effects of
deleterious mutations when this condition is violated.

In our earlier work, we showed that deleterious muta-
tions with fitness cost sd will typically not fix provided
that sd � 1/Tc, where Tc ∼ 1/qτest is the coalescence
timescale (Good and Desai, 2014). Since sb � 1/Tc in
all the regimes that we consider, this will be true provided
that sd is not much smaller than sb. Deleterious muta-
tions can also hinder the fixation of beneficial mutations
that arise in less-fit backgrounds. However, provided that
sd � Ud, deleterious variants will be rapidly eliminated
from the population, and most genetic backgrounds will
be free of deleterious mutations. Assuming typical values
of Ud ∼ 10−4 and sd ∼ 10−2 − 10−1 for microbial evolu-
tion experiments (Wloch et al., 2001), this condition will
often be met.

When deleterious mutations have small enough fitness
costs that they are not purgeable, our quantitative re-
sults all break down. However, sufficiently weakly dele-
terious mutations cannot affect mutator or antimutator
dynamics on the relevant timescales, so they are effec-
tively neutral from the point of view of mutation rate
evolution. On the other hand, sufficiently strongly delete-
rious mutations are purgeable. Thus it is only some range
of deleterious mutations between these limits whose ef-
fects are both important to mutation rate evolution and
not described by our analysis. Since these mutations
are less deleterious than purgeable mutations, they must
by definition be less unfavorable to mutator alleles (and
less favorable to antimutators). Thus they do not affect

the fate of a modifier of mutation rates as strongly as a
corresponding purgeable mutation would. This suggests
that we can qualitatively understand the effects of non-
purgeable deleterious mutations in adapting populations
by weighting them less heavily than purgeable ones, so
that the total effective deleterious mutation rate is ac-
tually somewhat less than Ud. Of course, this is only a
rough intuition. To analyze the effects of non-purgeable
deleterious mutations more fully, we need to include them
in our traveling wave framework. Our earlier work ex-
plains how these mutations affect f(x), w(x), xc, and v,
which provides a potential starting point for these calcu-
lations (Good and Desai, 2014). More generally, we may
wish to consider the evolution of mutation rates in the
limit where non-purgeable mutations become so impor-
tant that the population no longer adapts, and instead
Muller’s ratchet plays a crucial role. These are interest-
ing but complex directions for future work.

In addition to these key limitations of our analysis, we
have also made a number of more technical assumptions.
For example, we have assumed that beneficial mutations
all provide the same fitness benefit sb. In reality, benefi-
cial mutations will have a range of different fitness effects,
drawn from some distribution of fitness effects. However,
earlier work has shown that in this case the evolution-
ary dynamics can be summarized using a single effective
beneficial fitness effect and corresponding effective bene-
ficial mutation rate (Desai and Fisher, 2007; Fisher, 2013;
Good et al., 2012). Thus our analysis can be applied to
this situation using the appropriate effective sb and Ub.

In our analysis of clonal interference, we focused on
a regime in which 1 � log(sb/Ub) � 2 log(Nsb) �
log2(sb/Ub). The latter condition implies that clonal
interference is not exceptionally strong, and is often a
good approximation for microbial evolution experiments
at wildtype mutation rates. For some large effect muta-
tors, we start to approach the boundary of this regime,
and our quantitative expressions become less accurate
(see Fig. 5). In principle, we could extend our anal-
ysis to the “high-speed” [2 log(Nsb) � log2(sb/Ub)] or
“mutational-diffusion” regimes [Ub � sb] by using analo-
gous solutions for f(x) and w(x) derived by Fisher (2013)
or Hallatschek (2011). We leave this for future work.

Throughout our analysis, we have assumed that modi-
fier effect sizes can be large but not exceptionally so [e.g.,
in the clonal interference regime, | log(r)| � log(sb/Ub)].
Since Ub � sb, this includes many realistically large
mutators of order r ∼ 100, and in practice, our ex-
pressions appear to work reasonably well even when
log(r) ∼ log(sb/Ub) (see Fig. 3). For sufficiently large r,
we may also encounter situations where modifiers switch
from one regime to another (e.g., from the clonal inter-
ference to successive mutations regime, or from Ub � sb
to Ub > sb). Our quantitive predictions for Npfix break
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down in all of these cases. However, the evolutionarily
stable mutation rates are defined by the behavior of Npfix

in the local neighborhood of r ≈ 1, so the location of Û is
not influenced by this problem. If the population starts
sufficiently far from Û , then the fixation probabilities of
the first few Ui are not well-described by our analysis,
but we know that the mutation rate must still approach
Û (in a possibly non-monotonic manner). Eventually,
the mutation rate will become close enough to Û that
our expressions start to apply, and the remaining steps
of the mutation trajectory can be predicted.

Finally, we have assumed throughout that modifier
mutations are sufficiently rare that their fates are deter-
mined independently. In other words, we have neglected
clonal interference between different modifier mutations.
For deleterious or weakly beneficial modifiers, this will
often be a good approximation. However, for strongly
beneficial modifiers, this requires that the establishment
time 1/Nµpfix(r) between successive mutators is large
compared to the fixation time. In the clonal interference
regime, Tfix ∼ log(sb/Ub)/sb, and this condition becomes
µ� sb/ log(sb/Ub)Npfix(r). This can sometimes be vio-
lated for strongly beneficial mutator alleles with a large
target size (e.g., loss-of-function mutations in multiple
genes). In these cases, our quantitative predictions be-
come inaccurate, although the overall direction of selec-
tion [i.e., whether Npfix > 1 or Npfix < 1] will remain
unchanged.

Conclusions

Our analysis has explained how the interplay between
beneficial and deleterious mutations in adapting popu-
lations creates indirect selection pressures on modifiers
of mutation rates, and we have shown how these indi-
rect selection pressures affect the fates of mutator and
antimutator alleles. Our analysis of the successional mu-
tations regime follows the logic of earlier work (Andre
and Godelle, 2006; Desai and Fisher, 2011), balancing
the probability a new beneficial mutation arises in a mu-
tator or antimutator background with the effects of the
modifier allele on the accumulation of deleterious load.
We have also studied rapidly adapting populations where
clonal interference is widespread. Our approach to this
question builds on the traveling wave framework we and
others have recently introduced (Fisher, 2013; Good and
Desai, 2014; Good et al., 2012; Hallatschek, 2011; Neher
and Shraiman, 2011; Neher et al., 2010). In this frame-
work, analyzing the fate of an allele modifying mutation
rate is similar in spirit to calculating the fixation prob-
ability of any lineage: we must solve the same equation
for w(x), except instead of a mutation changing the fit-
ness x, it changes the mutation rate U . This general

framework can also be applied to analyze indirect selec-
tion pressures that act on other modifiers of the evo-
lutionary process. For example, we could analyze the
fate of a mutation that changes the distribution of fit-
ness effects of new mutations by solving for w(x) for an
allele that modifies ρ(s). Our analysis does not need to
be limited to adapting populations, since the traveling
wave framework applies whenever interference selection
is widespread, even if the population is not adapting on
average. Of course, in practice, some modifiers and pa-
rameter regimes will lead to equations for w(x) that are
analytically tractable, while others will not. Thus further
work is needed to more fully understand both the limits
and promise of this approach.
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Appendix A: Exact solution of Eq. (3)

In this section, we evaluate the integral

Npfix =

〈∫ ∞
0

λm(t)e−
∫ t
0 [λ0(t′)+λm(t′)] dt′ dt

〉
, (A1)

where λ0 = 2NUbsb [1− fm(t)] and λm(t) = 2NUbsbrfm(t), and fm(t) satisfies the Langevin dynamics

∂fm
∂t

=

√
fm
N
η(t) , (A2)

with fm(0) = 1/N . Using integration by parts, we can rewrite this integral as

Npfix =
r

r − 1

[
1−

∫ ∞
0

dt

τest
e−

t
τest

〈
e−

r−1
τest

∫ t
0
fm(t′) dt′

〉]
, (A3)

where we have used the short-hand τest = 1/2NUbsb. To evaluate this integral, we must first solve for the generating

function H(y, t) for the weight
∫ t

0
fm(t′) dt′, which is defined by

H(y, t) =
〈
e−y

∫ t
0
fm(t′) dt′

〉
. (A4)

This can be done using techniques described in Weissman et al. (2009). Briefly, we first introduce the joint generating
function,

H(z, y, t) =
〈
e−zfm(t)−y

∫ t
0
fm(t′) dt′

〉
. (A5)

By Taylor expanding H(z, y, t+ dt) and using the Langevin dynamics in Eq. (A2), we can show that H(z, y, t) obeys
the partial differential equation

∂H

∂t
=

[
y − z2

2N

]
∂H

∂z
, (A6)

which can be solved using the method of characteristics. The characteristic curves satisfy

∂y

∂σ
= 0 ,

∂z

∂σ
=

z2

2N
− y , ∂H

∂σ
= 0 , (A7a)

and the solution is given by

H(z, y, t) = 1−
√

2Ny

N
tanh

[
t

2N

√
2Ny + tanh1

(
z√

2Ny

)]
. (A8)

The marginal generating function for
∫ t

0
fm(t′) dt′ can then be obtained by setting z = 0:

H(y, t) = 1−
√

2Ny

N
tanh

(
t

2N

√
2Ny

)
. (A9)

Subsituting this expression into the integral in Eq. (A3), we find that

Npfix = r

∫ ∞
0

e−z

√
2N

τest(r − 1)
tanh

(√
τest(r − 1)

2N
z

)
dz , (A10)

= r

Ψ
(

1
2 +

√
N

8τest(r−1)

)
−Ψ

(√
N

8τest(r−1)

)
−
√

2τest(r−1)
N

τest(r−1)
N

 , (A11)

where Ψ(z) is the digamma function. Asymptotic expansions for small and large arguments yield

Npfix ∼

r
[
1−O

(
τest(r−1)

N

)]
if τestr � N ,√

Nr/τest

[
1−O

(√
N
τestr

)]
if τestr � N.

(A12)
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Appendix B: Derivation of Eq. (38)

To obtain an expression for Npfix(r), we must evaluate the integral

pfix(r) =

∫
f(x̃)wm(x̃) dx̃ =

∫
f(x̃)w̃m(x̃− Ud(r − 1)) dx̃ =

∫
f(x̃+ Ud(r − 1))w̃m(x̃) dx̃ , (B1)

using the expressions for f(x̃) and w̃m(x̃) in Eqs. (29) and (34) in the main text. This is straightforward, although
the algebra is somewhat tedious. Since f(x̃) and w̃m(x̃) are piecewise functions, the form of the integrand will depend
on whether xc − Ud(r − 1) is greater or less than xcm and xcm − sb.

We first consider the case where xc − Ud(r − 1) > xcm. In this case, the mutator interference threshold is reached
before the nose, so that

pfix(r) ≈
∫ xcm

xcm−sb

e−
(x̃+Ud(r−1))2

2v

√
2πv

· 2xcme
x̃2−x2cm

2v dx̃+

∫ xc

xcm+Ud(r−1)

e−
x̃2

2v

√
2πv
· 2[x̃− Ud(r − 1)] dx̃. (B2)

After multiplying both sides by N =
√

2πv
2xcsb

e
x2c
2v , we obtain

Npfix(r) ≈ e
x2c−x

2
cm

2v − (Ud(r−1))2

2v − xcmUd(r−1)

v
xcm
xcsb

∫ sb

0

e
Ud(r−1)z

v dz +
e
x2c
2v

xcsb

∫ xc

xcm+Ud(r−1)

ze−
z2

2v dz

− 2NUd(r − 1)

∫ xc

xcm+Ud(r−1)

e−
z2

2v

√
2πv

dz.

(B3)

Evaluating the remaining integrals and substituting xcm = xc − v
sb

log(r), we find that

Npfix(r) ≈ e
xc
sb

[
log(r)−Udsb(r−1)

v

]
− v

2s2
b

[
log(r)−Udsb(r−1)

v

]2 [
e
Udsb(r−1)

v − 1
Udsb(r−1)

v

]

+
v

xcsb

[
e
xc
sb

[
log(r)−Udsb(r−1)

v

]
− v

2s2
b

[
log(r)−Udsb(r−1)

v

]2
− 1

]

− 2NUd(r − 1) ·
Erfc

(
xc − v

sb
log(r) + Ud(r − 1)/

√
2v
)
− Erfc

(
xc/
√

2v
)

2
,

(B4)

where Erfc(z) = 2√
π

∫∞
z
e−t

2

dt. The last two terms are only relevant for extremely high deleterious mutation rates

where Ud(1− r) ∼ xc. After neglecting these terms, we obtain Eq. (11) in the main text.
Now we consider the case where xc − Ud(r − 1) < xcm. In this case, the edge of the fitness distribution is reached

before the mutator interference threshold. If xc−Ud(r− 1) < xcm− sb, then the edge of the fitness distribution never
even makes it to the region where w̃m(x̃) is positive, and pfix(r) ≈ 0. On the other hand, if xc−Ud(r−1) lies between
xcm and xcm − sb, then

pfix(r) =

∫ xc−Ud(r−1)

xcm−sb

e−
(x̃+Ud(r−1))2

2v

√
2πv

· 2xcme
x̃2−x2cm

2v dx̃. (B5)

Multiplying by N =
√

2πv
2xcsb

e
x2c
2v and evaluating the integrals, we obtain

Npfix(r) = e
xc
sb

[
log(r)−Udsb(r−1)

v

]
+
Udsb(r−1)

v − v

2s2
b

[
log(r)−Udsb(r−1)

v

]2 [
1− e−

Ud(r−1)

v (xc−Ud(r−1)−xcm+sb)

Udsb(r−1)
v

]
. (B6)

In practice, the differences between Eqs. (B4) and (B6) do not become very pronounced until Npfix(r) is already quite
small. For simplicity, we will therefore use Eq. (B4) for the full range of r.
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Appendix C: Forward-time simulations

We validate several of our key approximations by comparing our predictions with the results of forward-time sim-
ulations similar to the standard Wright-Fisher model. In these simulations, the population is divided into fitness
classes depending on the number of beneficial mutations (nb) and the number of deleterious mutations (nd) that
each individual possesses. The simulation starts with a homogeneous population of N individuals with nb = 0 and
nd = 0. To form the next generation, each individual produces a Poisson number of identical offspring with mean
Ct(1+sbnb−sdnd)(1−Ud−Ub), a Poisson number of beneficial offspring (nb → nb+1) with mean Ct(1+sbnb−sdnd)Ub,
and a Poisson number of deleterious offspring (nd → nd + 1) with mean Ct(1 + sbnb − sdnd)Ud, where Ct is a con-
stant recalculated at each generation to ensure that the expected number of offspring for the entire population is N .
Starting from the initial population, all simulations are allowed to “burn-in” for ∆t = 5× 104 generations before any
measurements are made.

To measure the fixation probability of a modifier allele, we modify this basic algorithm so that new modifier
offspring are produced from wildtype individuals at rate µ. These modifier lineages reproduce the same way as
wildtype individuals except with Ub → rUb and Ud → rUd. Further modifications to the mutation rate or reversion
to the wildtype are not allowed. To minimize the effects of initial conditions, µ is artifically fixed at zero until the
burn-in period has elapsed. We then record the number of generations T between the end of the burn-in period and
the fixation of the modifier phenotype. In the limit that µ→ 0, this is related to the fixation probability through the
relation

Npfix(r) =
1

µT
. (C1)

To ensure that µ is chosen to be small enough for Eq. (C1) to apply, we repeat this process M = 60 times with a
sequence of modifier mutation rates µ1, µ2, . . . , µM , and a sequence of fixation times T1, T2, . . . , TM . The mutation
rate at step i is chosen based on the previous Ti−1, so that the predicted value of Ti is 104 generations:

µi = min

{
µi−1Ti−1

104
, 10−2

}
. (C2)

The value 104 is chosen because, for the parameters considered here, 104 � 1
sb

log(sb/Ub), and the mutation rates are

capped at 10−2 to minimize the correlated effects of Muller’s ratchet (Neher and Shraiman, 2012). The sequence is
started with µ1 = 10−4, and is allowed to “burn-in” for 10 iterations before Ti’s are recorded. The fixation probability
is calculated from the maximum likelihood estimator,

N̂pfix(r) =
1∑60

i=10 µiTi
. (C3)

A copy of our implementation in Python is available at https://github.com/benjaminhgood/mutator_simulations.
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