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A. ABSTRACT 
Integrative networks combine multiple layers of biological data into a model of how 

genes work together to carry out cellular processes. Such networks become more valuable as 
they become more context specific, for example, by capturing how genes work together in a 
certain tissue or cell type. We discuss the applications of these networks to the study of human 
disease. Once constructed, these networks provide the means to identify broad biological 
patterns underlying genes associated with complex traits and diseases. We cover the different 
types of integrative networks that currently exist and how such networks that encompass 
multiple biological layers are constructed. We highlight how specificity can be incorporated into 
the reconstruction of different types of biomolecular interactions between genes, using tissue-
specificity as a motivating example. We discuss examples of cases where networks have been 
applied to study human diseases and opportunities for new applications. Integrative networks 
with specificity to tissue or other biological features provide new capabilities to researchers 
engaged in the study of human disease. We expect improved data and algorithms to continue to 
improve such networks, allowing them to provide more detailed and mechanistic predictions into 
the context-specific genetic etiology of common diseases 

B. INTRODUCTION 
Many biological concepts and their interactions can be represented as networks. 

Existing types of networks used in computational analyses include networks of correlation 
based on gene expression [1, 2], protein-protein interactions [3, 4], and even phenotype-
phenotype interactions [5, 6]. Some networks [7, 8] incorporate data from multiple layers of 
regulation including the interactome, transcriptome, and proteome. 

In addition to data integration, a significant frontier for biological networks has been to 
include various forms of context specificity such as capturing interactions related to a certain 
process [9, 10] in a specific tissue [11, 12, 8]. This specificity has been achieved by either 
overlaying multiple resources of interactions [11] or employing a machine learning process that 
captures context specificity [8]. 

Biological networks, once constructed, provide a unique resource for the study of human 
disease. In many cases, phenotypes are expected to arise due to changes in how information 
flows through a biological system. For example, somatic mutation events in pancreatic tissue 
that constitutively activate KRas provide a constitutive growth signal to the system that can 
result in uncontrolled proliferation and pancreatic ductal adenocarcinoma [13, 14]. Large-scale 
biological networks serve as systems-level molecular scaffolds of cells on which researchers 
can locate known disease-associated genes, interpret their relationships in the context of other 
genes, and gain insights into how these genes might be involved in the disease. Given that the 
genetic bases of most complex diseases are poorly characterized, these networks also provide 
a genomic framework for identifying novel genes linked to diseases based on their patterns of 
network connectivity. These ‘interpretive’ and ‘predictive’ modes are often used in tandem with 
one cyclically feeding the other towards filling gaps in our knowledge of disease biology. 
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C. INTEGRATED AND MULTI-OMIC NETWORKS 
Biological networks can be constructed in many different ways and from many types of 

data. Correlation networks, for example, are one of the first large-scale models of gene 
interactions built solely based on patterns of shared gene expression and can be used to 
suggest opportunities for drug development or repurposing [2]. These can be global or tissue-
specific [15]. Integrative, also called multi-omic, approaches, on the other hand, combine data-
types across levels of biological regulation. One way to combine multiple data types is to 
overlay distinct information from separate data types. Okada et al. [16] combined data from text 
mining, risk-associated variants, protein-protein networks, molecular pathways, mouse 
phenotypes, and other sources to identify biological support for potential rheumatoid arthritis 
drugs. Such approaches look for broad support for the captured interactions based on evidence 
in all (intersection) or at least one (union) type of data without explicitly modeling distinct layers 
of data together. 

Approaches that model multiple data types vary in how much they condition on known 
biological processes. Those that use documented regulatory patterns, e.g. one protein inhibits 
transcription of another gene, can reach a high level of detail in the constructed models. 
PARADIGM is an example of this type of approach. The method uses biological regulatory 
patterns to integrate multi-omic cancer measurements into a model that estimates the activity of 
individual proteins or pathways in a given tumor biopsy [17]. PARADIGM takes advantage of 
multiple data layers for the same samples. This makes it and methods like it well suited to the 
analysis of cancer genomics data where such opportunities are plentiful, but such methods are 
not as well suited to the analysis of large public data compendia. In these collections such 
matched data is often unavailable. 

Methods that integrate public data into networks can first transform these datasets into 
scores for each gene pair. Some data types, such as protein-protein interactions, are already 
pairwise: edges exist for pairs of genes that encode proteins that physically interact. Other data 
types must be wrangled into pairwise relationships. For example, genome-wide expression 
information can be converted to correlations between each gene pair. Once converted to 
pairwise scores, machine learning methods allow researchers to combine different datasets, 
including gene expression and protein-protein interaction information, into a single network [18, 
19, 10, 9]. These integrated networks capture broad biological processes and can be used for 
gene function prediction or other tasks [20, 18, 21]. In this review, we discuss their applications 
that aid in understanding the genetic and genomic basis of human phenotypes. 

D. INCORPORATING TISSUE-SPECIFICITY INTO NETWORKS 
Constructing the biological gene networks specific to the hundreds of tissues and cell 

types in multicellular organisms is a major goal towards applying network biology to higher 
organisms. Pursuing this goal is to realize Waddington’s vision of “the complex system of 
interactions” – pegs representing genes and strings representing their “chemical tendencies” – 
underlying developmental landscape pulled by interactions anchored to genes [22]. This goal is 
being actively pursued using a variety of approaches addressing different facets of the 
challenge such as capturing specific types of gene interactions (e.g., functional, physical, or 
regulatory) and expanding the coverage of these networks to all genes in the genome and all 
tissues and cell-types in the body. 

Overlaying gene (co-)expression, obtained from samples of a particular tissue, on 
protein-protein interaction (PPI) networks has been a straightforward and popular way to 
generate tissue-specific molecular networks [23]. Magger et al. [11] have shown that tissue-
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specific PPI constructed in this manner are valuable for disease-gene prediction using label-
propagation methods. Comprehensive curation and comparison of multiple sources of tissue-
gene expression has since been carried out [24, 25], results from which can be used to create 
tissues-specific PPI for an expanded set of genes and tissues. As an example, Cornish et al. 
[26] have incorporated more tissues and cell types to show that how tightly interconnected 
disease genes are in such tissue-specific networks can reveal interesting links between 
diseases and tissues. While comparing favorably with known associations from the literature, 
their results also point to novel tissue-disease links including one implicating mast cells in 
multiple sclerosis. These ‘data-overlay’ approaches succeed when many high quality 
documented annotations of gene expression and interaction are available. 

Tissue-specific networks can also be generated using tissue-specific genome-wide data 
using approaches that do not require numerous documented annotations. Regulatory networks 
with tissue-specificity have been constructed by mapping transcription-factor binding sites to 
open chromatin regions in different tissues/cell-types identified based on DNase I sensitivity 
[27]. Alternative efforts have inferred networks by employing tissue-expressed promoter and 
enhancer elements [28]. Still others have developed inference methods to mine functional [29] 
or regulatory relationships [30] from large amounts of gene-expression data from a single tissue. 
Such approaches are particularly well suited when the cells being assayed (on a large-scale) 
most closely reflect the situation in complex human tissues. 

However, large troves of existing genomic data available in public repositories, 
especially hundreds of thousands of gene-expression samples, are not resolved to tissues and 
cell-types. This represents a three-fold problem: 1) Many datasets are not annotated to the 
tissue/cell-type of origin due to unclear or entirely missing metadata; 2) Most samples are cell-
type/tissue mixtures; and 3) Many cell-types are hard to isolate at all or enough to profile gene-
expression. This challenge hence requires alternative approaches for integration and network 
inference. 

A third type of approach aimed at addressing this challenge relies on applying machine-
learning methods to simultaneously extract tissue and functional signal from data compendia 
representing heterogeneous tissue collections. Networks generated by these methods aim to be 
complete and predictive in general, however specific edges may be difficult to interpret. Work in 
Caenorhabditis elegans [31] and Mus musculus [32] demonstrated the potential viability of these 
approaches. Recently, tissue-specific networks constructed in this manner were generated for 
humans as well [8]. To perform this analysis, the authors developed gold standards of 
expression for 144 human tissues. They combined this with a gold standard of relationships 
within cellular pathways to generate 144 tissue-specific gold standards. The machine-learning 
process shown in Figure 1 constructs tissue-specific models from more than 32,000 
experiments, most of which were not annotated or resolved to specific tissues. The models were 
then used to produce tissue-specific networks for each tissue. Comparison of tissue-specific 
networks constructed in this manner to those constructed only on tissue-specific data revealed 
consistent improvements with the machine-learning based integration of the complete data 
compendium. In addition to improved performance, the machine-learning approach could also 
be applied to generate networks for more tissues than the integration restricted to tissue-specific 
data. 

E. APPLYING TISSUE-SPECIFIC NETWORKS TO STUDY HUMAN DISEASE 
Human diseases are complex, and it is now clear that in many cases weak association 

signals are revealing broad networks of variants associated with such phenotypes [8, 33]. These 
may be numerous variants of weak effect acting additively, or the single-variant projections of 
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complex epistatic disease models [34, 35]. In either case, the challenge now is to identify the 
biological signal hidden in a noisy set of statistical associations [36]. 

Networks provide a means to investigate these associations and potentially separate the 
disease-associated signal from statistical noise. Network-based approaches to identify and 
interpret disease associations are demonstrating success across diverse diseases including 
coronary artery disease [37], hypertension [8], cancer [38–40], multiple sclerosis [41], 
Alzheimer’s disease [42], and autism spectrum disorder [43]. Network-based approaches also 
present unique challenges – e.g. genes with more single nucleotide polymorphisms (SNPs) are 
also more likely to be highly connected within the network [44]. Approaches that employ 
network-based analysis should carefully evaluate and control for such biases. 

In addition to considering networks, tissue-specificity of either causes or symptoms is a 
key feature of many diseases, and work by Lage et al. demonstrated the importance of 
considering tissues [45]. The importance of tissue-specificity has carried over to recent work 
that examines many genetic associations for a specific disease, For example, rheumatoid 
arthritis is an autoimmune disease. Walsh et al. [46] recently demonstrated that genetic 
associations with the disease reveal how those variants can impact cell-lineage-specific 
regulation to contribute to the etiology of the disease. There are a number of strategies for 
incorporating tissue-specificity into the network analysis of disease. We review four approaches 
that use network analysis of associations of SNPs, gene expression, or exome-sequencing to 
identify factors underlying complex diseases. 

Tissue-specific networks can identify biologic commonalities underlying variants 
associated with human phenotypes and use those commonalities to identify disease-associated 
genes by their network connectivity patterns. In Greene et al. [8] the authors constructed 144 
tissue-specific networks of predicted intra-pathway relationships (Figure 1). They then 
developed a procedure called the network-wide association study (NetWAS). The NetWAS 
trains a classifier to identify genes that should be associated with a disease based on their 
network connectivity patterns. Specifically, genes with a nominal association are used as 
positives for a machine learning algorithm and those without a nominal association are used as 
negatives. A classifier is then trained with these labels and all pairwise network edges as 
features. The classifier is then applied back to the network to identify genes with edges that 
indicate potential associations. This approach outperformed a hypertension genome-wide 
association study (GWAS) alone, and the network-prioritization process also ranked the gene 
targets of antihypertensive drugs more highly than GWAS. This suggests that association-
guided network-based approaches may also aid drug development and repurposing. 

Tissue- and cell type-specific networks that integrate a large amount of data can be 
particularly valuable for the study of rare diseases. For instance, systemic sclerosis (SSc) is a 
rare autoimmune disease characterized by fibrosis in skin and internal organs (e.g., pulmonary 
fibrosis). The challenges of studying of SSc at the molecular level are common to many rare 
diseases: sample sizes tend to be small and internal organ biopsies are often difficult to obtain. 
Thus, there is a critical need for leveraging additional biological data to make inferences about 
rare disease pathobiology. Taroni et al. [47] mined gene expression spanning multiple tissues 
and clinical manifestations in SSc to derive a disease associated gene set used to query the 
tissue-specific networks from Greene et al. [8]. The authors then performed differential network 
analysis on skin- and lung-specific networks to compare disease signal in the major organ 
systems affected by fibrosis. The authors first identified gene-gene interactions that were highly 
specific to each tissue by subtracting the global edge weights from the skin and lung networks. 
Then, these highly tissue-specific edges were compared to identify functional differences. They 
found a set of edges highly specific to lung and suggestive of a distinct macrophage phenotype 
in lung as compared to what could be inferred from SSc skin gene expression data. The authors 
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also developed a cell type-aware multi-network approach that detected genes preferentially 
downregulated in skin during improvement of immunomodulatory treatment. This work suggests 
tissue- and cell type-specific functional genomic networks can provide insight into rare disease 
processes that are difficult to capture experimentally. 

The advent of high-throughput sequencing has enabled the discovery of regulatory 
variants relevant to disease especially through studying the genetics of gene/protein expression 
[48]. Projects such as the GTEx  [49, 50] and FANTOM5 [51] have used this approach to 
highlight regulatory variants that are specific to or shared across tissues. Analogous to tissue-
specific functional networks, tissue-specific regulatory networks that can be inferred from such 
data have the potential to delineate the role of regulatory variants in specific tissues. Marbach 
and colleagues [28] inferred tissue-specific regulatory networks by overlaying transcription 
factor binding-site occurrences over promoter and enhancer elements detected in hundreds of 
tissues/cell-types in the FANTOM5 project. They then use this network to assess links between 
diseases and tissues by calculating how surprisingly tightly connected are disease-genes 
implicated by GWAS in a particular tissue regulatory network (termed connectivity enrichment 
analysis). This analysis entails ranking genes by their summarized GWAS p-values, calculating 
the average connectivity of the genes above each rank along the list, and estimating the area 
under the curve (AUC) of connectivity as a function of rank. A connectivity score is finally 
reported based on the comparison of the observed AUC with an empirical distribution of AUCs 
generated by performing the analysis on thousands of permuted rankings. By performing this 
analysis across multiple diseases and networks, the authors find that disease genes are indeed 
tightly clustered in tissues relevant to the disease. 

Traditional network-based disease-gene prediction algorithms take as input either only 
known high-confidence disease-genes or all genes irrespective of evidence. Krishnan and 
colleagues [43] have recently developed an evidence-weighted approach that incorporates the 
trust with which disease genes are known from the sources of evidence be it high-confidence 
candidates identified in sequencing studies or weak associations mined from literature. They 
used this approach in conjunction with the brain-specific network, developed previously [8], to 
discover novel candidate genes associated with autism spectrum disorder (ASD). Intuitively, the 
underlying machine learning method learns the pattern of network connectivity characteristic of 
known ASD genes (weighted proportional to their evidence) and then identifies other genes in 
the network that highly resemble known genes in their network pattern. The method is highly 
general and can be applied to any complex disease to predict new genes based all the genes 
previously identified in single exome/whole-genome sequencing studies or collated from 
multiple datasets. 

Taken together, integrative networks serve as powerful means to both interpret existing 
knowledge about complex physiology and disease, while also offering data-driven predictions 
that point to uncharted territory, be it novel genes associated with diseases, new pathway 
memberships, key regulators of disease genes/pathways, surprising associations between 
tissues and diseases, or differential effects of disease on different tissues. Based on their 
interest and scope, experimental/biomedical researchers use these network-based tools to 
identify a small number of targets for careful investigation or to gather a prioritized list of 
candidates to guide further large-scale genetic screens. 

F. THE ROAD AHEAD 
A major bottleneck in building accurate tissue- and cell-type-specific networks is the 

extreme scarcity of prior knowledge about tissue-specific genes and interactions based on high-
quality experimental evidence. As we amass even a few scores of such specific genes and 
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interactions across under-studied tissues/cell-types, they can be used to train better machine-
learning classifiers and serve as reliable evaluation standards. A lesser but still significant 
challenge is the unavailability of large-scale genomic data uniformly from normal and disease 
states across a wide range of tissues/cell-types. Such biases in input datasets, along with 
scarce prior knowledge, creep into the final inferred networks for different tissues/cell-types, 
affecting their robustness and genomic coverage. In contrast, rare examples of massive efforts 
focused on a single tissue/cell-type help us describe the scope of data needed to construct 
better networks. Such efforts are fueled by a large collection of data from a single tissue/cell-
type including transcriptional profiles across a range of different genetic perturbations and time 
points, sometimes further profiling protein-protein or protein-DNA binding on a large-scale, 
which together facilitate integrative methods to reconstruct accurate networks [52, 53]. Overall, 
both approaches broadly covering many tissues and deeply covering single cell-types have 
enormous merits to be pursued simultaneously and, ideally, feed into each other. 

If sufficient gene expression data is available at least for multiple tissues in healthy and a 
particular disease condition, it may be possible to utilize differential network analysis to study 
disease-specific processes across tissues akin to [47]. We illustrate with a hypothetical example 
centered on blood and a disease end-target tissue, kidney, as an example for how this strategy 
may be used to gain insight into disease mechanisms. Tissue- and condition-specific networks 
could be learned from four compendia of data (disease blood, healthy blood, disease kidney, 
and healthy kidney) using the same functional standards and then compared. If an intra-
pathway relationship exists in both disease and healthy blood, but that intra-pathway 
relationship is absent in healthy kidney when compared to disease, we might infer that a 
leukocyte population is present in the diseased tissues. Furthermore, if the intra-pathway 
relationships identified in blood were connected to other pathways in diseased tissues (blood 
and kidney) alone that would suggest immune infiltrate with a particular phenotype in diseased 
kidney. With data available on genetic variants, it could also be possible to link cell-type specific 
changes in networks to underlying causal variants [54]. These multi-tissue differential network 
analyses could then guide further analyses and experiments centered on this complex multi-cell 
lineage disease process. 

In addition to the gene networks specific to individual tissues, another milestone for the 
biological networks is the ability to capture cross-tissue interactions. Much of human physiology 
relies on biochemical interactions such as hormonal signaling and immune response that span 
across tissues. Capturing these interactions requires particular data from multiple tissues of 
matched individuals. Dobrin et al. [55], proposed one of the earliest approaches towards this 
goal by calculating gene-gene correlation across hypothalamus, liver and adipose tissues in 
mouse and using the resulting networks to study molecular crosstalk between these tissues 
related to obesity. However, coordinated changes in gene expression across tissues can arise 
due to a common underlying genetic or regulatory mechanism. Such mechanisms could induce 
changes in both tissues, without reflecting bona-fide cross-tissue interactions. The recently 
produced large multi-tissue, multi-individual gene expression data from the GTEx consortium 
helps to address this challenge. Long and colleagues [56] calculated inter-tissue interactions 
while carefully controlling for the identical genetic regulation. Using these inter-tissue networks, 
they highlight specific signaling links between heart and whole-blood or lung. Similar to the 
methods described above for constructing tissue-specific networks, another recent study [57] 
has taken a network-overlay approach to infer cross-tissue interactions. In this study, 
Ramilowski and colleagues overlay tissue/cell-type gene-expression data from the FANTOM5 
database onto known physical interactions between ligands and receptors, identifying cases 
where the ligand is expressed in one tissue and the receptor in another. While these methods 
are beginning to shine light on important aspects of human biology, the ground is fertile for 
novel integrative methods that can construct such cross-tissue maps on a large scale. 
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As network-based approaches are gaining use in genetic association analysis of 
individual complex diseases, another natural leap is to the domain of multiple-phenotype 
analyses. Because many genes and pathways have pleiotropic effects, i.e. their activity can 
alter multiple phenotypes, phenome-wide association studies (PheWAS) allow for this additional 
information to be incorporated. Complementary to identifying multiple variants associated with a 
trait of interest using GWAS, PheWAS interrogates the association of a variant of interest with a 
range of traits/phenotypes. Phenotype data for such an analysis are abundant, albeit in a noisy 
manner, in electronic health records (EHRs) of thousands of patients. If these patients have also 
been genotyped, PheWAS can be used to link variation at those locations to EHR-derived 
phenotypes or clinical outcomes that vary in the patient population [58]. Denny and colleagues 
[59] have applied this approach to specifically discover several novel pleiotropic variants 
associated with multiple phenotypes, a feat that is challenging in a disease-centric setting as in 
GWAS. Although a few previous studies have used a disease network (inferred based on 
phenotypic similarity) in combination with a gene network to model many-to-many disease-gene 
associations [60], much work is needed to develop network-based approaches that can 
complement PheWAS in identifying the tissue-specific effects of pleiotropic genes. 

Most networks approaches developed to date have dealt with a single data type or a 
single integrated portrait from multiple datatypes over a common biological entity, the gene. 
New methods are being developed that incorporate multiple network types into a single 
heterogeneous network (‘hetnet’) [41]. These methods have helped to prioritize disease-
associated genes [41], and the ongoing Project Rephetio [61] provides a promising method for 
drug repurposing using these data. Though hetnets are in their early days, they may provide a 
powerful means to develop algorithms that can consider multiple biological entities 
simultaneously to identify the basis of human phenotypes. 

G. CONCLUSIONS 
Progress to date on network-based methods to identify the basis of human phenotypes 

has been promising. The initial step: connecting genetic variants to the gene that they affect 
remains challenging [62]. Advances in this domain will naturally translate to improvements for 
network-based methods generally focus on genes. In addition to the supervised methods to 
construct networks highlighted in this review, new and powerful unsupervised learning 
approaches may allow us to construct networks in cases where biological knowledge is limited 
or unavailable [63]. While we anticipate that large-scale integrated networks will make their first 
contributions at the level of identifying a shared genetic or pathway basis behind observed 
associations, we look forward to detailed networks that can suggest a mechanistic hypothesis. 
These networks will require the combination of new algorithms and analytical methods as well 
as detailed data in targeted domains. Though more remains to be done, progress in this area is 
encouraging and we look forward to advances in the years to come. 
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J. FIGURE LEGENDS 

 
Figure 1: Integrating genomic data in the context of tissue- and functional knowledge to 

generate tissue-specific functional gene interaction networks. Nodes represent genes and edges 
represent specific relationships. Known tissue-naïve functional relationships (pathway/process co-
membership links that are not specific to any tissue) are gathered from databases such as Gene 
Ontology. Known tissue-specific genes (black: genes expression in tissue of interest, say, kidney; grey: 
genes expressed in other unrelated tissue) are gathered from databases such as HPRD. Both tissue-
naive relationships and tissue-specific genes are manually curated in these resources based on high-
quality low-throughput experimental evidences. Combining the two produces a gold standard that 
represents our knowledge of ‘positive’ (both genes expressed and functionally related; thick black 
edges) and ‘negative’ (either gene in not expressed or genes not functionally related; full and dotted grey 
edges) gene interactions relevant to that tissue (labeled 1). Complementary to this low-throughput 
knowledge, thousands of genome-scale high-throughput experiments in the form of gene-expression 
profiles, protein physical interactions, genetic perturbations, and regulatory sequence patterns are 
available from public databases (labeled 2). A machine-learning algorithm can integrate all these of 
genomic datasets weighted by their relevance for and accuracy in capturing the tissue-specific 
knowledge of a given tissue. The algorithm learns distinctive patterns in genomic data that are 
characteristic of positive interactions and used these patterns to then predict the tissue-specific 
functional relationships between all pairs of genes in the human genome. 
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