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Abstract 22 

Climate change vulnerability assessments are commonly used to identify species at risk 23 

from global climate change, but the wide range of methodologies available makes it difficult 24 

for end users, such as conservation practitioners or policy makers, to decide which method 25 

to use as a basis for decision-making. Here, we compare the outputs of 12 such climate 26 

change vulnerability assessment methodologies, using both real and simulated species, and 27 

we validate the methods using historic data for British birds and butterflies (i.e., using 28 

historical data to assign risks, and more recent data for validation).  Our results highlight 29 

considerable inconsistencies in species risk assignment across all the approaches 30 

considered and suggest the majority of the frameworks are poor predictors of risk under 31 

climate change – two methods performed worse than random.  Methods that incorporated 32 

historic trend data were the only ones to have any validity at predicting distributional trends 33 

in subsequent time periods.  34 

 35 
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Standardised methods of risk assessment are important tools for prioritising adaptive 37 

strategies to counter the impacts of climate change, including conservation action for 38 

species most likely to face extinction. The IUCN Red List1,2 is globally accepted as the 39 

method for assessing the vulnerability of species to extinction. However, it has recently been 40 

suggested that this process does not adequately identify potential future risk, such as that 41 

posed by climate change, as it focuses more on the symptoms of declines than on the 42 

underlying causes3. Given that global extinction risks4-6 are increasing as a consequence of 43 

climate change7,8, this could potentially lead to an under-estimate of the risk to species7. 44 

These concerns have led to the parallel development of a number of risk assessment 45 

frameworks9, each of which aims to quantify the vulnerability or extinction risk of a species 46 

due to climate change.  47 

Each framework draws on different input variables and combines them in different ways, so 48 

they are not necessarily interchangeable. To allow for meaningful interpretation of the 49 

assessments by conservation practitioners and policy makers, it is necessary to evaluate 50 

whether the results of different frameworks are in agreement with one another; and this is 51 

currently unknown. If the results of species risk assessments do differ, the choice of 52 

framework would affect the perceived vulnerability of different species, hence changing 53 

conservation priorities and management actions. It is also unknown whether any of the 54 

different assessment frameworks provide a projection of risk that is accurate or realistic. It is 55 

important, therefore, that the frameworks should be validated using empirical data on 56 

observed changes to the status of species to determine which methods are most appropriate 57 

to use. 58 

Climate change vulnerability assessments follow two broad approaches9: trait-based and 59 

trend-based. Trait-based vulnerability assessment frameworks10-14 focus primarily on species 60 

traits believed to increase or decrease risk under climate change. These include traditional 61 

traits, such as life-history information, but they may also incorporate trait data derived from 62 

distributional data (e.g. to estimate thermal limits). In contrast, trend-based correlative 63 
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frameworks15-17 focus primarily on abundance and distribution changes (observed and 64 

projected), supplemented by some trait information to inform assessors of the likelihood that 65 

projected trends will be realised. Some studies have attempted to combine the two types into 66 

hybrid frameworks18-21, weighting one set of inputs most heavily or including trend-based 67 

data as an optional set of inputs. The ease of applying each of these frameworks depends 68 

on the availability of trait, trend and modelled input data for the taxon and region under 69 

consideration. In this regard, some frameworks have been developed with specific taxa in 70 

mind10-12,16,19-21, particularly birds and other vertebrates, while others are generic; and they 71 

have been applied to a range of geographic scales (Table 1). However, they can all be 72 

scaled up or applied to different taxonomic groups with little or no adjustment.  73 

In general, the frameworks attempt to quantify three major components (or some 74 

combination thereof) of risk: sensitivity, exposure and adaptive capacity22,23. All approaches, 75 

whether trait- or trend-based, explicitly incorporate measures that are intended to represent 76 

both species exposure and species sensitivity to climate change (Table 1) but, beyond this, 77 

there is little agreement across the frameworks on exactly which measures (input variables) 78 

to use. This may arise, in part, because there is limited evidence to identify which traits are 79 

most important in determining the sensitivity of a species to climate change24 or exactly how 80 

climate exposure should be quantified. A range of different inputs are therefore used to 81 

assess vulnerability, using a combination of projections from distribution models, population 82 

dynamics and life history traits. These amount to 117 specific input variables across the 12 83 

frameworks considered here, of which three-quarters are unique to a single framework; and 84 

only 5 of the 117 variables are represented in more than two frameworks (Supplementary 85 

Table 1). Ideally, these differences would not matter and each framework would identify the 86 

same species as vulnerable, but this should be tested, not assumed. In addition to the 87 

variation in input variables used by different frameworks, there is inconsistency in whether 88 

inputs are considered measures of sensitivity, exposure or adaptive capacity. For example, 89 
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metrics of dispersal are treated as sensitivity12,14,15,18,20, exposure19 or adaptive capacity10,11,13 90 

depending on the framework used. 91 

Here, we assess the utility of 12 published frameworks, using some of the best biodiversity 92 

data available. Initially, we consider whether the 12 frameworks generate consistent results; 93 

i.e. whether the frameworks ‘agree’ on which species are at risk from climate change. We 94 

also consider the current Red List assessment approach, without incorporating any future 95 

projected declines using bioclimate envelope modelling, and compare the outputs against 96 

those from each of the 12 frameworks. We then validate the performance of the 12 different 97 

frameworks. We carry out an assessment using each framework based on historic species 98 

data and compare the outcomes to subsequent, observed changes in distribution and 99 

population. For frameworks that perform well in validation, species that are classified as at 100 

risk using historical data are expected to be most likely to have declined since then.   101 

  102 
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Results 103 

Consistency between the results of different vulnerability frameworks 104 

We first assessed risk to 18 data-rich species (11 bird and 7 butterfly) in Great Britain 105 

(hereafter ‘exemplar species’, Table 2) using each of the 12 frameworks and a medium 106 

emissions scenario. Individual frameworks differed in their risk categories, so we 107 

standardised the output from each to a low/medium/high scale (Supplementary Table 2).  108 

The results of the assessments were highly variable, with no single exemplar species 109 

assigned to the same risk category by all frameworks (Table 2). The majority of species 110 

were classified as high risk by at least one assessment (14/18 species); yet only one species 111 

(Black Grouse) was classified as high risk by at least half of the frameworks (Table 2). 112 

Pairwise Spearman’s rank correlations between frameworks showed poor overall agreement 113 

in risk assignment (rs mean = 0.17 ± 0.03, rs median = 0.21).  114 

As conservation prioritisation will ultimately concentrate on high risk species, we then 115 

focussed only on classification of species in the highest risk category. Inter-rater reliability 116 

analysis (for high risk versus low or medium risk) produced a similar pattern to the rank 117 

correlation results, with ‘weak’25 agreement across frameworks (mean κPABAK = 0.51 ± 0.03, 118 

median κPABAK = 0.55).  A similar pattern was observed for the exemplar taxa when using a 119 

low emissions climate scenario, with only a small number of species changing risk 120 

categories between scenarios (Supplementary Table 3). The frameworks also showed poor 121 

overall agreement with the Red List assessment (rs mean = -0.28 ± 0.03, rs median = -0.25), 122 

and this agreement was not improved when we considered trait-based and trend-based 123 

frameworks separately (trait-based: rs mean = -0.39 ± 0.02, trend-based: rs mean = 0.01 ± 124 

0.01).  125 

We further tested the frameworks with an additional 171 British bird and 47 British butterfly 126 

species (Supplementary Table 4) for which data were available to model GB distribution 127 

changes under a medium emissions climate change scenario. Of these 218 species, 119 128 
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were classified as high risk by at least one framework (54%) (Figure 1B), with only 13 129 

species (3 bird and 10 butterfly species) classified into the same risk category by every 130 

framework (Supplementary Table 4). Pairwise rank correlations showed poor overall 131 

agreement (rs mean = 0.18 ± 0.03, rs median = 0.17), confirming that even with a larger 132 

sample of real species with strong correlations between traits, there was little consistency 133 

across the frameworks. In addition, inter-rater reliability analysis indicated weak25 agreement 134 

across frameworks when classifying species as high risk (mean κPABAK = 0.43 ± 0.03, median 135 

κPABAK = 0.61). 136 

Sufficient data to run all the frameworks are only available for a small subset of taxonomic 137 

groups (primarily vertebrates, and birds in particular), which only samples a relatively small 138 

range of potential species-types, and hence of ecological traits. In order to sample the full 139 

range of potential trait variation in nature, we generated 10,000 ‘simulated species’, each 140 

with randomly generated trait sets and populations, bounded by real world (trait value) limits. 141 

To fully incorporate all possible parameter space, we chose to remove all but logically 142 

necessary correlations between traits (e.g. we retained logical consistency between 143 

numbers of habitats occupied and presence in particular habitat types, but did not enforce 144 

correlations between body size and fecundity, which are positive in some taxa but negative 145 

in others). Correlations between life history traits vary widely between taxonomic groups and 146 

would be almost impossible to simulate accurately for a wide range of taxa. As our extensive 147 

real bird dataset maintains correlations between traits for that group, our simulation provides 148 

contrasting data by removing such constraints, increasing the generality of our assessment.  149 

All 10,000 simulated species were assessed individually using each of the 12 risk 150 

assessments. The frameworks show broadly similar patterns in the overall assignment of 151 

risk to the real species, classifying the majority of species as low risk and relatively few as 152 

high risk (Supplementary Figure 1). However, over 75% of the 10,000 simulated species 153 

were classified as high risk by at least one framework considered, and only 135 were 154 

assessed as high risk by more than half of the frameworks (Figure 1a). Overall, we found 155 
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poor agreement across the frameworks in assigning risk (Figure 2, rs mean = 0.07 ± 0.01, rs 156 

median = 0.04). Pairwise correlations within broad framework types were stronger than the 157 

overall pairwise correlations (between trait-based frameworks: rs mean = 0.13 ± 0.04, rs 158 

median = 0.08; between trend-based frameworks: rs mean = 0.29 ± 0.12, rs median = 0.18), 159 

but still relatively poor. There was also little difference between frameworks designed for 160 

single species and more generic frameworks (between species-specific frameworks: rs mean 161 

= 0.09 ± 0.05, rs median = 0.04 and between generic frameworks: rs mean = 0.11 ± 0.03, rs 162 

median = 0.04).  Using inter-rater reliability analysis to compare agreement between 163 

frameworks in their classification of simulated species in the highest risk category only, we 164 

again found weak overall agreement (mean κPABAK = 0.55 ± 0.02, median κPABAK = 0.52).  165 

This inconsistency suggests against using a consensus of contrasting methods as the basis 166 

for prioritisation. 167 

Comparing the outputs of the frameworks to Red List outputs also produced poor 168 

correlations (Figure 2: Spearman's rank correlation rs mean = 0.04 ± 0.01, rs median = 0.01), 169 

with trait-based assessments showing weaker correlation with Red List outputs than trend-170 

based approach types (trait based: rs mean = 0.02 ± 0.01, rs median = 0.01, trend based: rs 171 

mean = 0.11 ± 0.01, rs median = 0.13). 172 

To investigate similarities between the risk assignments of different frameworks further, we 173 

used Principal Components Analysis (PCA) on the risk category outputs. We found distinct 174 

clusters for trait-only frameworks10-14 and trend-based frameworks15-17 with hybrid 175 

assessments falling between the two18,19 (Figure 3, Supplementary Table 5). This pattern is 176 

the same for the pairwise correlations between frameworks, with weak agreement overall, 177 

but stronger correlations within the five purely trait-based frameworks and within the three 178 

trend-based frameworks.  179 

 180 
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Validation of different vulnerability frameworks 181 

Given the great variation in the risk categories assigned to each real and simulated species, 182 

validation is required to assess whether any of the vulnerability frameworks has any 183 

predictive power at all. To do this, we used historic data for British birds and butterflies to 184 

assign each species to a risk category (for each of the 12 frameworks), using data up to the 185 

1990s. We then used 1990s-2000s observed trends in distribution/abundance to evaluate 186 

whether the risk categories assigned by each framework were predictors of subsequent 187 

population and distribution changes. We ran the assessments for 169 British bird species 188 

(validated against observed distribution and abundance changes) and 50 British butterfly 189 

species (validated against abundance changes only), for which data were available to model 190 

distribution change under a medium emissions climate change scenario and to calculate 191 

recent changes in distribution/population. The risk outputs of each framework were again 192 

standardised using the same Low/Medium/High scale defined previously (Supplementary 193 

Table 2). Because species are affected by multiple factors in addition to climate change (e.g. 194 

a low-risk species may decline for non-climatic reasons), we used quantile regression to 195 

consider trends in distribution/population change in the 0.50 and 0.75 quantiles, representing 196 

the response of the majority of species within each risk category. 197 

Overall, none of the frameworks showed strong predictive power, with 8 of the 12 showing 198 

no significant trend in either the 0.50 or 0.75 quantiles when comparing risk category against 199 

observed change in distribution for the British birds (Figure 4).  Of the remaining four 200 

assessment frameworks, two13,20 showed significantly worse-than-random risk 201 

categorisations – higher risk species showed more positive subsequent distribution trends 202 

than lower risk species (the two frameworks that show a significant positive trend for the 203 

0.75 quantile, in Figure 4). Only two15,17 of the frameworks produced significantly better-than-204 

random risk assessments (one significant for the 0.50 and 0.75 quantiles, and one for the 205 

0.75 quantile). Both of these frameworks are trend-based approaches, which would suggest 206 
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incorporating this type of data into the assessment process produces more robust risk 207 

outputs.  208 

The results of validation for both birds and butterflies when using population change, rather 209 

than distribution change as the response variable, also suggested limited framework 210 

effectiveness. When considering changes in bird populations, there were no significant 211 

trends in the 0.50 quantile for any of the frameworks and only a single framework showed a 212 

significant trend for the 0.75 quantile (Supplementary Figure 2). This framework20 provided 213 

significantly worse-than-random risk categorisations (high risk species subsequently showed 214 

greater population growth), and was one of the two frameworks that was also worse than 215 

random when assessed against bird distribution changes. There were no significant trends in 216 

either the 0.50 or 0.75 quantile for any of the 12 frameworks when assessing population 217 

change for butterflies (Supplementary Figure 3), although overall performance appeared to 218 

be better than for the bird population analysis. 219 

Frameworks are ranked in Table 3 first by significant ‘correct’ predictions (high risk species 220 

subsequently decline most) across the six tests (0.50 and 0.75 quantiles for each of bird 221 

distributions, bird abundances, butterfly abundances), and then by ‘correct’ non-significant 222 

trends.  Our validation tests therefore suggest a few of the frameworks may work but that 223 

others have no predictive power and some are worse than random, given the test data.  224 

 225 

Validation using an ensemble approach 226 

In addition to the individual framework validation, we also consider the effectiveness of using 227 

an ensemble approach to climate vulnerability assessment. We compared the modal risk 228 

category assigned to a species by the 12 frameworks against the same change in 229 

distribution/population value used in the individual framework validations. For the 169 bird 230 

species, only two had a modal risk classification of high risk, with both showing positive 231 

changes in distribution (Figure 5a) and population (Figure 5b), measured over the validation 232 
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period. The 50 butterfly species also had just two species with a modal high risk 233 

classification, with one increasing its population over the validation period and the other 234 

showing little change in its population (Figure 5c). Therefore, the ensemble approach did not 235 

identify high risk species that subsequently declined – and across all species, there was no 236 

link between the consensus risk category and subsequent distribution trends in quantile 237 

regressions. We also considered the maximum risk category assigned by an ensemble 238 

approach (Supplementary Figure 4), but as this approach was not significant either; and it 239 

would be impractical to use to set conservation priorities because maximum risk identified 240 

over half the bird and butterfly species as high risk (Figure 1b). 241 

  242 
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Discussion 243 

Our results from both real and simulated species highlight poor overall agreement on risk 244 

assessment across the 12 frameworks considered, particularly between trend- and trait-245 

based approach types, suggesting that the differences between approach types are 246 

fundamental. More importantly, our validation results suggest that few methods have any 247 

predictive value, at least for the test-data considered. The inconsistencies between methods 248 

holds, regardless of whether we take into account the correlated traits that exist for real 249 

species within a given taxonomic group or if we minimise correlations between traits in 250 

simulated species (given that different higher taxa possess dissimilar trait correlations). The 251 

similarities between our results for simulated and real species suggests that the 252 

inconsistencies arise from differences between the risk framework methods themselves (i.e., 253 

which variables are included in an assessment, and how they are combined to place each 254 

species in a risk category) rather than from the test data that we used. Given that real and 255 

simulated species are placed in different climate-risk categories by different risk assessment 256 

frameworks, it is essential that validations are carried out to assess whether none, some or 257 

all of the frameworks have predictive power. 258 

The results from the validation analysis revealed that most frameworks perform poorly. 259 

Across the six validation tests (0.50 and 0.75 quantiles for each of bird distribution, bird 260 

abundance and butterfly abundance changes), two frameworks13,20 produced significantly 261 

worse-than expected assessments in one or more cases, in the sense that the species 262 

assigned to high-risk categories subsequently showed more favourable distribution and/or 263 

population trends than the species that were assigned to lower risk categories. Another three 264 

frameworks10,12,19 gave qualitatively (though not significantly) similar results; i.e., the bottom 265 

five frameworks in Table 3 performed poorly.  This leaves the ‘top seven’ for further 266 

consideration.  Of these, only two  methods15,17, both of which were trend-based, assigned 267 

risk appropriately (i.e. the high-risk species declined more than lower risk species) and 268 

significantly (Figure 4); although predictions were only significant when considering change 269 
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in distribution as the response variable, not change in population (top two rows of Table 3). 270 

One of these methods15 also generated non-significant predictions in the expected direction 271 

in all of the other tests (top row of Table 3). These two methods are closely related to one 272 

another, with both using predicted trends based on climate as the driving force, with one15 273 

using additional trait/habitat information that modifies the capacity of each species to 274 

respond as predicted. These additional constraints apparently increased the predictive 275 

power of this framework.  276 

Some of the other frameworks do show a similar overall pattern, but assign such small 277 

numbers of species to the high risk category that it was not possible to detect significant 278 

trends (see Figure 4). For example, one trait-based framework14,18  failed to assign any 279 

species to the high-risk category (and only between 9 and 13 to the medium-risk category) 280 

and one hybrid framework18 only assigned 1, 1 and 5 species to high risk in the three tests.  281 

Two of the frameworks20,21 classify species into risk categories based on proportions (e.g. 282 

top tenth of values assigned high risk) instead of consistently set threshold values, as seen 283 

in the other frameworks. The risk outputs from these two frameworks correlate poorly with 284 

most others, and they fall close to the origin in the PCA (Figure 3). Another framework13 285 

uses proportional cut offs for some input data and along with a method that uses 286 

proportional risk categories20 performs poorly overall in the validation analysis; with 287 

significant trends in the opposite direction to that expected if assigning risk suitably. 288 

Proportions of species at risk from climate change are not expected to be the same in 289 

different regions (or taxonomic groups), so we recommend avoiding proportional 290 

approaches. 291 

Since each framework we tested gives markedly different results, it is necessarily the case 292 

that most or all methods are misleading, which limits informed conservation responses.  A 293 

possible alternative is to consider the results from an ensemble of climate vulnerability 294 

assessments.  The high variability in outputs, however, also limits the effectiveness of taking 295 

an ensemble approach. We considered two possible approaches to this.  The first was to 296 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 11, 2016. ; https://doi.org/10.1101/062646doi: bioRxiv preprint 

https://doi.org/10.1101/062646


consider the possibility that there are many different mechanisms of endangerment from 297 

climate change, and hence to consider a species as at risk if any of the 12 methods 298 

classified it as at high risk.  This was not practically useful because the majority of species 299 

were identified as high risk using this approach.  The second was to assign species to the 300 

modal class of vulnerability, which resulted in almost no species being classified as high risk. 301 

Neither approach significantly identified declining species in validation.  The output from the 302 

ensemble of methods does not offer sufficient improvement over any individual method to 303 

justify the time and effort required to collect the data to run all of the assessments.  304 

It should be noted that the time period for the observed changes used in the validation 305 

analysis are relatively short for both birds and butterflies (20 and 10 years respectively), and 306 

from a period when a range of other pressures have also affected species’ population in the 307 

area considered, particularly changes in agricultural management26. There is a possibility 308 

that some species considered may be climate-threatened but not yet showing a strong 309 

negative response in distribution or population, whilst others may be limited by other factors, 310 

potentially leading to the under-estimation of framework performance. However, we would 311 

expect frameworks to show some separation between range- or population-expanding and 312 

contracting species, as during this period both bird and butterfly communities have 313 

responded to climate change27,28, for example with polewards shifts29-31. The fact we do not 314 

see such a pattern for most assessments (and some trends are the reverse of those 315 

expected), combined with the results of our comparison between frameworks, does highlight 316 

the lack of evidence currently available to support the use of most of these frameworks. As 317 

some of the assessments are designed for global assessments of risk, there is a possibility 318 

that the poor performance is a consequence of applying them over a regional scale. 319 

However, this methodology is being applied at non-global scales by researchers and 320 

practitioners32 so the results of our validation at a regional scale remain applicable to how 321 

the methods are actually being used.   322 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 11, 2016. ; https://doi.org/10.1101/062646doi: bioRxiv preprint 

https://doi.org/10.1101/062646


The science underpinning trend-based approaches is stronger; with increasing evidence that 323 

species distribution models used to measure exposure in trend-based approaches can 324 

retrodict recent population and range trends33-35. There remains uncertainty around 325 

identifying the key traits influencing species vulnerability to climate change24, which may vary 326 

widely by taxonomic group and could explain the wide range of inputs across the different 327 

trait-based assessments. Recent work36 has advocated the combination of elements of trait-328 

based vulnerability assessments with species distribution modelling to produce more realistic 329 

projections of future risk. This approach has already been implemented to different extents 330 

by some frameworks considered here15,16,18, although the outputs of these show at best 331 

weak correlations with purely trait-based assessments, suggesting that trait-only 332 

assessments may not adequately capture the exposure component of climate risk. The two 333 

general types of assessment (trait, trend) effectively represent different paradigms, with 334 

combined approaches representing arbitrarily-weighted blends of the two.  335 

We have demonstrated that different vulnerability assessment frameworks should not be 336 

used interchangeably when attempting to assess a species’ potential future risk to climate 337 

change, because assessments made with either real or simulated species produce 338 

conflicting results. Our validation results suggest there is currently little evidence to support 339 

the use of purely trait-based vulnerability assessments. Trend-based approaches are the 340 

only type of methodology to consistently and significantly assign species to appropriate risk 341 

categories in the validation analysis, particularly when this information is supplemented with 342 

additional species trait data. Whilst we recognise this may restrict the assessment options 343 

available to practitioners (e.g. without long-term monitoring data, trend-based approaches 344 

will not be possible), our results highlight the considerable uncertainty in the results of 345 

approaches not incorporating this type of information. A poorly performing framework should 346 

not be used simply because it is the only one for which adequate data are available. Without 347 

significant investment in long-term monitoring, to study change as it occurs, and in research 348 

to identify exactly what traits make a species' vulnerable to climate change, our ability to 349 
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identify the species most in need of conservation attention in the face of climate change will 350 

remain poor. 351 

  352 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 11, 2016. ; https://doi.org/10.1101/062646doi: bioRxiv preprint 

https://doi.org/10.1101/062646


Methods 353 

Exemplar and real species comparisons 354 

The assessments of exemplar real species and additional British bird species (Table 2) were 355 

carried out based on trait and distribution data within Great Britain, due to the quality and 356 

availability of data for the taxa considered within this region. The 18 exemplar species were 357 

chosen because they were the only species of any taxonomic group with both 358 

comprehensive distribution (in two or more time periods) and traits data and a northern or 359 

southern range margin lying within Great Britain37 (species with range boundaries in a region 360 

are likely to be of interest when running climate change vulnerability assessments). All 361 

common British breeding bird and butterfly species were considered for the additional 362 

assessment, the 218 species selected being the ones for which future distributions could be 363 

modelled based on data availability. 364 

Trait data for the real species were collected from a variety of sources including scientific 365 

literature and species atlas data38,39. Projected distribution changes were based on existing 366 

bioclimate model data17, applying a Bayesian, spatially explicit (Conditional Autoregressive) 367 

GAM40 to the bird and butterfly distribution data. A medium emissions scenario (UKCP09 368 

A1B) for projected climate change for 2080 was used for future climate data, corresponding 369 

to a 4°C increase in average temperature. The assessments were also run using a low 370 

emissions scenario (UKCP09 B1), corresponding to a 2°C increase in average temperature, 371 

with little difference in overall risk category assignment (Supplementary Table 4). 372 

Simulated species comparisons 373 

To compare the outputs of the 12 risk assessment frameworks using simulated species, we 374 

generated ranges of values for the 117 unique input variables (Supplementary Table 1), 375 

covering characteristics such as species traits and population trends. We then drew values 376 

for each of these input variables to generate 10,000 combinations of ‘trait sets’ that were 377 

used as simulated species in the assessments, in lieu of real world data for many species.  378 
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Where it has been possible to do so, we applied constraints on the input variables to ensure 379 

logical consistency. For example, in the case of interspecific interactions, some frameworks 380 

ask broadly whether there is a dependence of a species on any interspecific interaction, 381 

whilst other frameworks require inputs relating to multiple, clearly-defined interspecific 382 

interactions. In this situation it would not make sense for the broad interaction to be scored 383 

as absent while specific interactions are scored as present. In this case the broad interaction 384 

is generated first and the scores of more specific interaction variables are influenced by that, 385 

to ensure consistent inputs across frameworks. 386 

For continuously distributed input variables, upper and lower bounds were set based on 387 

reported values from the literature (e.g. body size, generation time) or theoretical minimum 388 

and maximum values. A value for the variable for each simulated species was then drawn 389 

from a uniform distribution bounded by those upper and lower limits. Species current 390 

distributions were simulated using the same approach, sampling a value for area occupied 391 

(in km2) from a uniform distribution with an upper limited based on known real world 392 

distribution limits. For projected changes to species distributions under climate change, a 393 

future distribution was generated using the same process as for current distributions, and the 394 

percentage change in area between the two calculated.  395 

The uniform distribution was chosen for all variables (equal probability for binary and 396 

categorical variables) because, for many input variables, there was little or no data available 397 

on how they might be distributed in reality (and they differ greatly between taxonomic 398 

groups), so an arbitrary selection of distribution would have been needed. Nonetheless, 399 

where there was an a priori expectation of the distribution of a trait based on the literature 400 

(e.g. logarithmic scaling of dispersal distance), the uniform draw was from between the 401 

transformed trait limits. The uniform distribution also allows for generation of traits covering 402 

the full range of the potential parameter space for the input variables, which was one of the 403 

main advantages of generated trait sets rather than a larger sample of real species data. 404 

The results therefore test consistency in framework performances, rather than the ‘true’ 405 
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frequencies of risk (which we do not know, given the differences between framework 406 

methods). 407 

Many of the input variables are categorical, typically scored as low/medium/high or some 408 

similar variation. In some cases it is possible to base these on a continuous variable which is 409 

then split into the different categories (e.g. dispersal distance < 1km scored as low, dispersal 410 

distance > 1km and < 10km scored as medium, dispersal distance > 10km scored as high). 411 

Where it has not been possible to generate a continuous variable to base the categorical 412 

split on (e.g. impact of climate mitigation measures – scored as low to high), the category 413 

was instead assigned randomly to one of the possible options, with an equal probability of 414 

assignment to each. IUCN Red List conservation status was required as an input to one of 415 

the frameworks and was generated using IUCN criteria A to D, with no projected future 416 

changes considered. This conservation status for each simulated species was also used in 417 

comparisons of Red List risk category against risk category for each framework, and 418 

therefore informs us of the relationship between climatic and non-climatic risks rather than 419 

whether the Red List could adequately take climate change into account. 420 

Validation 421 

To examine how well the different climate vulnerability assessments performed at projecting 422 

future risk we used the results of assessments based on historic species data to compare 423 

against observed recent trends in species distribution/abundance. For validation of the 424 

frameworks to produce robust results they need to be tested using reliable input data, poor 425 

quality input data will always lead to poor assessments of risk regardless of the method used 426 

for the assessment. We therefore utilized some of the best quality data available globally 427 

and selected British birds and butterflies for the analysis. 428 

Validations were carried out by using historically-available data to assign species to low-, 429 

medium- and high-risk categories (for each of the 12 risk assessment frameworks), as 430 

though the assessments were carried out in the past, and then we compared recent 431 
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distribution and population changes for species that had been assigned to each risk 432 

category.  Assessments for British birds were based on the time period 1988-1991, to match 433 

the breeding bird atlas data41. Assessment inputs based on the ‘then-current’ 434 

distribution/population were calculated from this Atlas data, with historic changes in 435 

distribution calculated from the 1968-1972 Atlas to the 1988-1991 Atlas41. Projected changes 436 

in distribution were modelled using the 1988-1991 Atlas distribution data and future climate 437 

projections for 2080. Historic assessments for British butterflies were performed using the 438 

same approach, based on the 1995-99 Millennium Butterfly Atlas39 and historic trends 439 

calculated from the previous 1970-82 national survey. Future projected distributions were 440 

modelled using the same methodology as for the bird species.  441 

In addition to the output of the assessments, observed recent trend data for distribution and 442 

population change since the assessment time period was required. For bird distribution 443 

trends, data from the 2007-2011 Atlas was used giving the percentage change in occupied 444 

10km grid squares between 1988-1991 and 2007-2011. Observed changes in population for 445 

birds were obtained from the State of the UK Birds report42 as a percentage change in 446 

population from 1995 to 2013. Butterfly population change data was obtained from the State 447 

of the UK Butterflies report43, giving a percentage change in population from 1995 to 2005.  448 

Although these dates partly overlap with the Millennium Butterfly Atlas39, the population data 449 

are collected on fixed transects that are separate from the millions of independent 450 

distribution records that give rise to the Atlas maps. Distribution change data for the 451 

butterflies was not used in the analysis due to a large increase in observer effort in latter 452 

time period, which resulted in increases in distribution that are likely to reflect increased 453 

effort rather than true changes in distribution. 454 

Statistical analysis 455 

The risk category outputs from each of the frameworks were converted to a set of 456 

standardised categories: Low/Medium/High risk (Supplementary Table 2). Broad agreement 457 

between the frameworks was tested on a pairwise basis using Spearman’s rank correlation, 458 
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to establish how consistently species were assigned to the same Low/Medium/High risk 459 

categories by the different frameworks. 460 

Rank correlation allows for a comparison of how well the different frameworks correspond 461 

across all levels of risk assignment, but a potentially more useful comparison is of how well 462 

they agree in identifying a species as high risk, based on the assumption that assessments 463 

will primarily be run to identify the species most vulnerable to climate change. To compare 464 

agreement on just high risk species, the risk categories were further simplified to a binary, 465 

‘low and medium’ versus ‘high’ categorisation. Cohen’s kappa, a measure of inter-rater 466 

reliability, was calculated to compare agreement between frameworks. The prevalence and 467 

bias-adjusted Cohn’s kappa (PABAK)44 was used due to the relatively low frequency of 468 

species scoring as high risk. 469 

Principal component analysis (PCA) was used to examine how much of the variation in risk 470 

assignment was influenced by certain frameworks and to identify whether frameworks of the 471 

same general type (trait, trend) showed similar patterns in risk category assignment. Risk 472 

category outputs from each framework for the 10,000 simulated species were used in this 473 

analysis. 474 

We predicted that all species at high risk due to climate change should have seen 475 

population/distribution decreases, whilst species identified as low risk may have increased, 476 

decreased or not changed their population/distribution if factors other than climate are 477 

driving the changes. We therefore used quantile regression to validate framework 478 

performance, with change in distribution or abundance as the response variable and 479 

framework risk categorisation (Low/Medium/High) as the predictive factor45. This allowed us 480 

to consider trends in the upper quartiles of distribution/population change instead of just the 481 

mean, which would identify if the majority of high risk species are declining as we would 482 

expect if a framework is performing well.  Both the 0.50 and 0.75 quantiles were considered 483 

in the analysis, and the models were tested for significance against a null model using an 484 

ANOVA.   485 
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Figures 

 

Figure 1. Frequency distribution of high risk classifications for a} simulated species and b).real species assessed with historic data. 
The number of risk assessment frameworks under which each simulated or real species was classified as high risk.  
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Figure 2. Correlation matrix showing spearman rank correlation coefficients (rs) for each of the 12 frameworks, pairwise against the 
others and the Red List outputs for the simulated species. The matrix is a visual representation of the rs value (see x axis for range), with 
darker blue indicating a stronger positive correlation; using output data for the 10,000 simulated species. The correlations between each of the 
climate change risk assessment frameworks and the simulated Red List risk category are shown in the bottom row of the matrix.  Reference 
numbers are as in Table 1.  
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Figure 3. Principal component biplot. The first two principal components obtained by applying principal components analysis to the risk 
category outputs from the 12 frameworks for the 10,000 simulated species.  Reference numbers are as in Table 1. 
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Figure 4. Validation boxplots showing logged change in bird distribution against simplified risk category for each of the 12 risk 
assessment frameworks. Red lines show a significant trend in the 0.50 quantile and green lines show a significant trend in the 0.75 quantile.  
Assessments are for 218 British bird and butterfly species. 
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Figure 5. Validation boxplots showing a) logged change in bird distribution, b) logged change in bird population and c) logged 
change in butterfly population, against modal simplified risk category from across all 12 risk assessment frameworks. 
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Table 1. Summary vulnerability framework information. Overall vulnerability equation used by each framework, broad methodology type, 
taxonomic group(s) used to test the framework, and geographic scale at which the framework was tested. The Pearce-Higgins et al. 2015 
framework is a simplified version of the Thomas et al. 2011 framework, excluding exacerbating factors and including only trend data. 

 

General vulnerability equation Framework 
Methodology 

type 
Taxon Locality 

Exposure x sensitivity 

Gardali et al. 2012
12

 Trait Birds California State 

Young et al. 2012
18

 Hybrid 
Molluscs, Fish, Amphibians, Birds, 

Mammals 
Nevada State 

Moyle et al. 2013
19

 Hybrid Freshwater fish California State 

Garnett et al. 2013
21

 Hybrid Birds Australia 

Thomas et al. 2011
15

 Trend Birds, Plants, Invertebrates,  Great Britain 

Pearce-Higgins et al. 2015
17

 Trend Birds, Plants, Invertebrates Great Britain 

Exposure x sensitivity x conservation status Triviño et al. 2013
16

 Trend Birds Iberian Peninsula 

Exposure x sensitivity x adaptive capacity 
Chin et al. 2010

10
 Trait Chondrichthyan fish Great Barrier Reef 

Foden et al. 2013
13

 Trait Birds, Amphibians and Corals Global 

Exposure + sensitivity 
Barrows et al. 2014

14
 Trait Plants, Mammals, Reptiles, Birds Joshua Tree National Park 

Heikkinen et al. 2010
20

 Hybrid Butterflies Europe 

Exposure + sensitivity + adaptive capacity Arribas et al. 2012
11

 Trait Water beetles Iberian Peninsula 
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Table 2. Risk assessment output for exemplar real species. Low (white), Medium (grey) and High (black) risk category outputs for each of 
the 18 exemplar species assessed using all 12 climate change vulnerability assessment frameworks. Assessments were carried out at the 
Great Britain scale, based upon contemporary data, with modelled future distributions based upon a medium emission scenario (A1B projection 
for 2070-2099).  

Birds 
Chin Gardali Foden Barrows Arribas Young Moyle Heikkinen Garnett Thomas 

Pearce-

Higgins 
Triviño 

Black grouse (Tetrao tetrix)             

Capercaillie (Tetrao urogallus)             

Black-throated diver (Gavia arctica)             

Common scoter (Melanitta nigra)             

Red-throated diver (Gavia stellata)             

Slavonian grebe (Podiceps auritus)             

Bittern (Botaurus stellaris)             

Dartford warbler (Sylvia undata)             

Nightjar (Caprimulgus europaeus)             

Stone curlew (Burhinus oedicnemus)             

Woodlark (Lullula arborea)             

Butterflies             

Large heath (Coenonympha tullia)             

Mountain ringlet (Erebia epiphron)             

Northern brown argus (Aricia 

artaxerxes)             

Scotch argus (Erebia aethiops)             

Adonis blue (Polyommatus bellargus)             

Large blue (Maculina arion)             

Silver-spotted skipper (Hesperia comma)             
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Table 3. Summary validation trends. The direction of the trend in either distribution or abundance change for birds and butterflies from Low 
risk species to high risk species, with a negative trend indicating the framework is performing as expected and a positive trend indicating poor 
framework performance. Significant trends are denoted with *. The frameworks are ranked first by number of significant negative trends and 
then by number of non-significant negative trends. 

Framework 

Methodology 

Type 

Bird distribution trend 

direction 

Bird population trend 

direction 

Butterfly population trend 

direction 

Correct 

significant 

trends 

Correct 

non-

significant 

trends 

Rank 

0.50 quantile 0.75 quantile 0.50 quantile 0.75 quantile 0.50 quantile 0.75 quantile 

Thomas et al. 2011
15

 Trend -* -* - - - - 2 4 1 

Pearce-Higgins et al. 2015
17

 Trend - -* - + - + 1 3 2 

Young et al. 2012
18

 Hybrid - - - - - - 0 6 3.5 

Barrows et al. 2014
14

 Trait - - - - - - 0 6 3.5 

Garnett et al. 2013
21

 Hybrid - - - + - - 0 5 5 

Arribas et al. 2012
11

 Trait - - + + - - 0 4 6.5 

Triviño et al. 2013
16

 Trend - + - - - + 0 4 6.5 

Gardali et al. 2012
12

 Trait - - + - + + 0 3 8.5 

Chin et al. 2010
10

 Trait - - + - + + 0 3 8.5 

Moyle et al. 2013
19

 Hybrid + + + + - - 0 2 10 

Foden et al. 2013
13

 Trait + +* + + - - 0 2 11 

Heikkinen et al. 2010
20

 Hybrid + +* + +* + + 0 0 12 
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