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1  ABSTRACT
2 Structural mosaic abnormalities are large post-zygotic mutations present in a subset
3 of cells and have been implicated in developmental disorders and cancer. Such
4  mutations have been conventionally assessed in clinical diagnostics using
5 cytogenetic or microarray testing. Modern disease studies rely heavily on exome
6  sequencing, yet an adequate method for the detection of structural mosaicism using
7  targeted sequencing data is lacking. Here, we present a method, called MrMosaic, to
8  detect structural mosaic abnormalities using deviations in allele fraction and read
9  coverage from next generation sequencing data. Whole-exome sequencing (WES)
10  and whole-genome sequencing (WGS) simulations were used to calculate detection
11  performance across a range of mosaic event sizes, types, clonalities, and sequencing
12  depths. The tool was applied to 4,911 patients with undiagnosed developmental
13 disorders, and 11 events in 9 patients were detected. In 8 of 11 cases, mosaicism
14  was observed in saliva but not blood, suggesting that assaying blood alone would
15 miss a large fraction, possibly more than 50%, of mosaic diagnostic chromosomal
16  rearrangements.
17
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INTRODUCTION

Genetic mutations that arise post-zygotically lead to genetic heterogeneity in an
organism, a phenomenon called mosaicism. The detection of mosaic mutations that
are small (single-base or indel) is still a great technical challenge but multi-megabase
(“structural”) mosaic rearrangements are now routinely detected using cytogenetics
and microarray technology (Miller et al. 2010; Biesecker and Spinner 2013). Recent
single nucleotide polymorphism (SNP) microarray-based studies have demonstrated

9  that mosaic structural abnormalities are implicated in developmental disorders
10  (Conlin et al. 2010; King et al. 2015), increase in incidence with age (Forsberg et al.
11  2012), and predispose to hematological malignancies in adults (Jacobs et al. 2012;
12 Laurie et al. 2012).
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14  Modern SNP microarray technology is well suited for detecting mosaicism because
15 probe density is high (often above 1 million sites per genome) and probes generate
16 allele ratio data with high signal to noise ratio. SNP microarray platforms assess two
17  metrics useful for mosaicism detection: 1) b allele frequency (BAF): the fraction of
18 the alleles at a locus representing the less-common allele and 2) log R ratio (LRR): a
19  measure of copy-number, based on the log ratio of signal intensity compared to a
20 reference. These metrics are affected differently depending on the nature of the
21  structural abnormality: whereas copy-neutral (loss of heterozygosity; LOH)
22 mosaicism results in a deviation of BAF alone, copy-number (gain or loss) mosaicism
23  additionally alters the LRR. Absolute deviation from genotype-expected BAF (e.g. 0.5
24  for AB genotype), called B-deviation (Bgey), OCcurs in mosaic regions when the locus
25  has a mixture of genotypes from wild type and mosaic tissue. Several software tools
26  (Partek® Genomics Suite, lllumina® cnvPartition, BAFsegmentation (Staaf et al.
27  2008), and Mosaic Alteration Detection (MAD) (Gonzalez et al. 2011)) harness this
28  deviation as a mosaic signal. MAD is open source and has been recently used in
29  several large SNP-based mosaicism projects (Forsberg et al. 2012; Jacobs et al. 2012;
30 Forsberg et al. 2014); it identifies mosaic segments using aberrations in Bgey and then
31 labels aberrant segments as copy-loss, copy-gain, or copy-neutral events based on
32 the alteration of the LRR from baseline, a deviation referred to here as copy-
33  deviation, or Cgey.

35 Developmental disorders (DD) are often caused by rare, small (SNV and indel)
36  mutations, genetic variation which is not easily captured using microarray (King et al.
37  2014). Therefore, to achieve a more comprehensive assessment of pathogenic
38  mutations, rare disease studies rely heavily on targeted sequencing of the protein-
39  coding regions (‘exons’) of the genome, an approach called whole-exome sequencing
40  (WES) (Koboldt et al. 2013). Indeed, sequencing of the whole genome (WGS) offers
41  several advantages compared to WES, including greater breadth of the genome and
42  more consistent coverage of exons (Meynert et al. 2014). However, WGS is not
43  currently as widely used as WES for rare disease studies due to higher costs, so this
44  work focuses primarily on exome-sequencing data.

46 In addition to small-scale variation, forms of large-scale ‘structural variation’,
47  including copy-number (Lee et al. 2007) and copy-neutral variation (uniparental


https://doi.org/10.1101/062620
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/062620; this version posted July 7, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.

disomy (UPD)) (Yamazawa et al. 2010), are also important causes of DD. CNV burden
analysis of nearly 16,000 children with DD (Cooper et al. 2011) demonstrated that
nearly all CNVs greater than 2 Mb are likely pathogenic (odds ratios for CNVs of 1.5
Mb and 3 Mb were 20 and 50, respectively), and that deletion events are more often
penetrant than duplication events. UPD events are only present in about 1 in 3,500
healthy individuals (Robinson 2000), but are enriched in children with DD (King et al.
2014), and may result in highly penetrant imprinting disorders, recessive diseases, or
may be associated with chromosomal mosaicism (Eggermann et al. 2015). Low-

9  clonality mosaicism is difficult to observe in karyotyping, as inspection of at least 10
10 cells is required to exclude 26% mosaicism with 95% confidence (Hook 1977), and is
11  also difficult to observe in microarray analysis, as the detection sensitivity of mosaic
12 duplications by SNP microarray with about 1 million probes for events of at least 2
13  Mb in size is limited to events of at least 20% clonality (Gonzdlez et al. 2011). The
14  median average clonality in recent SNP-based studies of DD for mosaic aneuploidy
15 was 40% (Conlin et al. 2010), and for mosaic structural variation (2 Mb and greater),
16  was 44% (King et al. 2015). Among children investigated with clinical diagnostic
17  testing, the frequency of autosomal mosaic copy-neutral events was 0.24% (12 in
18 5,000) (Bruno et al. 2011) and the frequency of autosomal mosaic copy-number
19 events was 0.35% (36 in 10,362) (Pham et al. 2014). Combining these frequencies
20  yields a combined frequency among cases of 0.59% of mosaic structural variation.
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22  The detection of large-scale mutations from WES data is challenging because input
23  data are derived using sparse sampling of the genome, as targeted regions typically
24  cover only about 2% of the genome (Meynert et al. 2014), and sequence read depth
25  at exons is biased by enrichment efficiency and other factors (Plagnol et al. 2012).
26  Despite these limitations, exome-based software tools have been successfully
27 engineered to detect large-scale constitutive mutations, including copy-number
28  variation (Magi et al. 2013; Sathirapongsasuti et al. 2011; Krumm et al. 2012;
29  Backenroth et al. 2014; Fromer et al. 2012) and copy-neutral variation (bcftools roh
30 (Narasimhan et al. 2016) and UPDio (King et al. 2014)). These tools are relatively
31 insensitive to mosaic abnormalities, however, because they typically rely on single
32 metrics, such as copy-number change (rather than copy-number and allele-fraction),
33  oron genotype, which is not well assessed in mosaic state. Specialized methods have
34  been developed for the analysis of cancer exomes where tumor and normal tissue
35 can be isolated (Lonigro et al. 2011; Amarasinghe et al. 2014) or, in the context of a
36  parent-fetus trio, for fetal DNA in maternal plasma (Rampasek et al. 2014). However,
37 a method to detect copy-number and copy-neutral mosaicism from an individual’s
38 exome (or genome) is lacking, but if available, could further extend the capacity of
39 sequence-based analyses.

41 We developed MrMosaic, a method that detects structural mosaicism using joint
42  analysis of Bgey and Cgey in targeted or whole-genome sequencing data (Figure 1). We
43  used simulations to demonstrate the superior performance of MrMosaic compared
44  to the MAD algorithm. We also applied MrMosaic to analyze WES data from 4,911
45  children with developmental disorders and identified 11 structural mosaic events in
46  9individuals, 6 of whom exhibited tissue-specific mosaicism.
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2
3 Figure 1: Detecting structural mosaicism using MrMosaic: A) Exome data are stored in a BAM file
4 from which allele fraction (left column) and coverage (right column) are measured at polymorphic
5 positions within or near target regions. A simulated mosaic deletion is depicted. B) The raw data,
6 consisting of BAFs and normalized coverage are plotted for a simulated mosaic deletion. C) Absolute
7 deviation of BAF (Bdev) and normalized coverage (Cdev) at heterozygous sites are analyzed. D) Mann
8 Whitney U Tests are performed separately for Bdev and Cdev, comparing the signal detected in sliding
9 windows in this chromosome, compared with a randomly selected chromosome for background. E)

10 The test statistics are depicted on the log scale. The p values of the Mann Whitney U Tests are
11 combined and segmented (black lines). Segments passing the Mscore significance threshold are
12 plotted in blue.

14  RESULTS

16  We developed a new computational method, MrMosaic, to detect structural mosaic
17  abnormalities from high-throughput sequence data (Methods). In summary, this
18 method identifies chromosomal segments with elevated deviations in allelic
19  proportion and copy number, relative to randomly selected sites on other
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1  chromosomes from the same data (Figure 1). Initially, measures of deviation of
2 allelic proportion (Bgey) and copy number (Cgev) are computed from the WES/WGS
3  data at well-covered known polymorphic SNVs. Whereas Bgey is only assessed at
4  heterozygous sites, Cqey integrates information from flanking non-heterozygous sites
5 toreduce noise. The statistical significance of the observed Bgey, and Cgey are assessed
6  separately, using non-parametric testing, and the resultant p values are
7  subsequently combined and then segmented using the GADA algorithm (Pique-Regi
8 et al. 2008). We devised a confidence score, the Mscore, to curate putative
9  detections of mosaic segments, by integrating metrics that discriminate between
10  true positive and false positive mosaic detections (Methods).
11
12  Simulations
13
14  We performed simulations (Methods) to explore the performance of MrMosaic for
15 three different classes of structural mosaicism: gains, losses and LOH, in several
16  contexts. The variation in performance across mosaicism of different sizes, clonalities
17  and sequencing coverage is summarised in Figure 2, for both WES and WGS data.
18
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20 Figure 2: Simulation performance summarised by AUC: We measured the average precision (area
21 under the precision recall curve) for MrMosaic implemented on whole-genome (WG) simulations
22 (panels A,C,E), and MrMosaic & MAD implemented on whole-exome (WE) simulations (panels B,D,F).
23 The depth, size, and coverage measured for WGS and WES simulations were selected to accentuate
24 informative differences in performance. AUC across size: Simulated events of 50% clonality were

25 studied for WGS (A) and WES (B) simulations. Whereas for WES simulations, simulated exome depth
26 was 75x depth, for WGS simulations it was 30x depth. MrMosaic on whole-genome data (WG-MrM)
27 outperforms MrMosaic on exome data (WE-MrM), which outperforms MAD on exome data (WE-
28 MAD). AUC across clonality: Whereas for WES (C) simulations the simulated size and coverage was 5
29 Mb & 75x, for WGS (D) simulations it was 100 kb & 30x. AUC across average coverage: Simulated events
30 of 50% were studied for both WES (E) and WGS (F) simulations. Whereas for WES simulations, simulated event
31 size was 5 Mb, for WGS simulations it was 100 kb.

32 Across all measured categories, mosaic duplications were more difficult to identify
33 than deletion or LOH events, especially at lower (25%) clonality (Supplementary
34  Figure 1). We suspected that the most likely explanation for this lower sensitivity is
35  that duplications result in the smallest deviation of Bge,, compared with deletion and
36  LOH events (Supplementary Figure 2) and that the Cge, signal is masked by sampling
37 noise at low clonality. To further explore the effect of including C4ey in addition to
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Bgev, We investigated the performance of MrMosaic using Bgey alone compared with
joint analysis of Bgey and Cgey. This analysis showed substantially improved detection
of copy-number events above lower clonality, while only a marginally decreased
performance of LOH detection (Supplementary Figure 3), consistent with the
intuition that Cgey yields a valuable net signal when clonality is above the Cgey Noise
floor.

O NONUTL D WD -

Simulation performance increased with larger event size (Figure 2A). WES simulation

9  analysis demonstrated high area under the precision-recall curve (AUC) for all events
10 at least 10 Mb in size and at least 50% in clonality; and, for deletion and loss of
11  heterozygosity (LOH) events at least 5 Mb in size. MrMosaic performed favourably
12 compared to MAD in all measured categories. Results for WGS simulations
13  demonstrated an AUC of about 0.9 for 100 kb LOH and loss events, and greater than
14  0.95 for all megabase-size events. Larger events were assayed by more positions,
15 and whole-genome simulations interrogated nearly 50-fold more sites than exome
16  data (Supplementary Table 1).

18  Detection performance in simulations increased between 25% and 75% clonality
19  (Figure 2B). The WES and WGS clonality performance results were measured at 5 Mb
20 and 100 kb sizes, respectively, as events at these sizes were most sensitive to
21  changes in clonality (Supplementary Figs. 4 and 5). Previous studies of children with
22 DD have reported a median mosaicism of approximately 40% mosaicism and
23 detection performance is strong for detecting mosaicism at this clonality at the
24  studied sizes. As clonality increases, the mosaicism is present in a greater proportion
25  of cells, resulting in a greater signal of detection.

27  Simulation performance increases with respect to sequencing coverage (Figure 2C).
28 The WES and WGS performance with respect to sequencing coverage were assessed
29  for events of 50% clonality, using 5 Mb events for the WES simulations, and 100 kb
30 events for the WGS simulations. WES simulations demonstrated a marginal
31 improvement of detection performance at higher coverage, which was notable for
32  mid-clonality gains (Supplementary Figure 4). Previous work has suggested that 75x
33  average coverage in WES data is sufficient for constitutive copy-number analysis33
34 and these coverage simulations demonstrated that this exome coverage is also
35 sufficient for the detection of mosaic structural abnormalities. In the WGS results,
36 AUC rose dramatically between 15x and 20x for LOH and loss events and between
37  25x and 30x for gains. AUC was above about 0.9 for LOH and loss events at 30x
38 depth, a standard sequencing depth used in WGS disease studies. Nearly all
39  structural mosaic events of 100 kb and 50% clonality were detected (Supplementary
40  Figure 5) and average coverage of 20x was sufficient to detect nearly all 50%
41 clonality deletion and LOH events at 100 kb, while detection performance of gains
42  improved at 30x and 40x (Supplementary Figure 6). This improved performance as
43  coverage increases results primarily from sampling variance (‘noise’) decreasing
44  (correlation r = -0.95; Supplementary Figure 7), with an additional minor
45  contribution from more sites (more signals) passing the minimal depth threshold for
46  consideration (Supplementary Table 1).
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1  Detections in 4911 case exomes
2
3  We generated WES data for 4,911 children with undiagnosed developmental
4 disorders. DNA was collected from either blood (n=1652), saliva (n=3246) or both
5 (n=13), and sequenced to a median average coverage of 90X. Analysis for structural
6  mosaicism identified 11 mosaic abnormalities among 9 individuals, a frequency of
7  0.18%. The detections consisted of five losses (median size: 13 Mb, median clonality:
8  46%), four gains (median size: 25 Mb, median clonality: 55%), and two LOHs (median
9  size: 50 Mb, median clonality: 26%) (Figure 3, Table 1, Supplementary Figs. 8-18).
10
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12 Figure 3: Structural mosaicism detected from exome data: Structural Mosaicism Detected by
13 MrMosaic in the DDD study. Black and red dots represent copy-number and allele fraction,
14 respectively. Cdev and Bdev are plotted in black and red trend lines. The blue line represents
15 statistically significant segmented detections passing a threshold. Different classes of events are
16 found: A) Mosaic gains, B) mosaic losses, C) mixed copy-number, and D) loss-of-heterozygosity

17 events

18  Previous analysis of a subset (1,226 of 4,911) of these samples by SNP microarray
19 identified 10 events (King et al. 2015), while exome analysis yielded 8 events. Of the
20  two events not detected by exome but detected by SNP microarray, one of the
21 missed events was a 4 Mb duplication below 25% clonality. The other missed event
22 was an LOH event with low sequencing depth (33x, one of the lowest of our study -
23 Supplementary Figure 19); low depth results in higher sampling variance and lower
24  statistical significance of deviations in allelic proportion and copy number
25  (Supplementary Figure 7). Given the high clonality (about 75%) of this event, it may
26  have been detected using constitutive (genotype-based) UPD analysis (although, as
27  paternal data were not available for this sample, it was not analysed by our trio-
28  based UPD detection pipeline (King et al. 2014)).

29
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Table 1: Detections by exome and validation by SNP microarray: The 11 mosaic abnormalities detected in
the 9 samples with exome data were validated using SNP microarray chips. All exome detections
were validated in at least one tissue. In the majority of cases (8 of 11), the mutation was detected in
only one of two assayed tissues, and in all such cases, the mutation was detected in saliva but not in
blood. Clonality was calculated from Bdev using Equation 2 (see Supplementary Table 5) and ranged
from 17% to 68%. This calculation is based on the assumption that the mosaic event is an alteration
of a single allele. However, this calculated clonality is an overestimate for one of the events which
was found (by previous FISH analysis4) to be a mosaic tetrasomy, and two others were are suspected
to also be rearrangements of multiple alleles (another gain of chromosome 12p and one gain of
chromosome 18p, thought to reflect mosaic tetrasomy 18).

Exome Detections SNP Validation
DecipherlD chr type (G;tcal::}ﬂ (G:g:37) bdev 12r tissue clonality CI::I?VI;W cllc))lr:.I:y

265800 12 gain 988,894 33,535,510 0.201 0.140 saliva 1.34 0.68° absent
261373 12 gain 283,642 33,535,289 0.131 0.262 saliva 0.72 0.45° absent
273553 18 gain 670,541 18,534,702 0.186 0.185 saliva 1.18 0.6° absent
259003 22 loss 42,912,136 50,717,129 0.131 -0.129 blood 0.42 0.54 0.34
274013 10 loss 121,717,932 134,916,366 0.159 -0.324 saliva 0.48 0.44 absent
274600 18 loss 48,458,662 76,870,586 0.190 -0.434 saliva 0.55 0.49 absent
260462 18 loss 662,103 2,740,714 0.171 -0.339 saliva 0.51 0.46 absent
260462* 18 gain 12,702,610 15,323,214 0.118 0.263 saliva 0.41 0.5 absent
260462 18 loss 48,466,843 74,962,645 0.153 -0.345 saliva 0.47 0.45 absent
257978 5 LOH 146,077,526 179,731,635 0.167 -0.002 blood 0.33 0.24 0.26
274396 11 LOH 66,834,252 134,126,612 0.255 -0.0047 saliva 0.51 0.28 0.17

@adjusted tetrasomy clonality.

*located in peri-centromeric region and detected during post hoc analysis.
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Validation of the 11 mosaic abnormalities using SNP microarrays on DNA derived from both
blood and saliva successfully detected all abnormalities in at least one tissue (Table 1).
Notably, six of the seven mosaic copy-number mutations detected by MrMosaic in exome
data had been undetected by both clinical and high-resolution aCGH investigation of the
same tissue, despite most events being at least 5 Mb in size and exhibiting 50% clonality
(Supplementary Table 2). Examination of the raw aCGH data in one case (Supplementary
Figure 17) showed that only small fragments of one of the events were detected but these
called segments were individually much smaller than the actual event.

Detection of the mosaic events was largely dependent on the assayed tissue. Out of the 11
mosaic events, 3 were detected in blood and in saliva samples while the remaining eight
were only observed in saliva (Table 1, Supplementary Figures 8-18). There were 2
abnormalities detected from 1,652 blood samples and 9 detected from 3,246 saliva
samples, a non-significant proportional difference (p > 0.05, Fisher’s exact test). One of the
mosaic events detected in both blood and saliva was an LOH-type event, remarkable for
having a gradient of increasing clonality toward the telomere (Supplementary Figs. 16 and
19). This gradient of increasing clonality along the chromosome is compatible with LOH-
mediated mosaic reversion, characterised by distinct cell populations carrying partially
overlapping independent LOH events, as reported recently (Choate et al. 2015).
Nevertheless, despite generation and analysis of high-depth (~400x) WES data for this
sample, and the identification of several strong candidate genes, including CEP57 (the cause
of mosaic aneuploidy syndrome (Snape et al. 2011)) in the reversion-localised region, no
plausibly pathogenic rare (below 1% minor allele frequency) coding sequence variants were
identified (Supplementary Table 4).

We assessed the pathogenicity of the events detected in these nine children based on
overlap with known genomic disorders and diseases of imprinting (Supplementary
Material). The mosaic events identified in seven of nine children were considered definitely
pathogenic on the basis of being multi-megabase CNVs that overlap known genomic-
disorder regions. The reversion mosaic event was considered indicative of a likely
pathogenic mutation as the presence of multiple overlapping mosaic clones suggests strong
and on-going negative selection against a deleterious allele. One LOH event was of
uncertain pathogenicity as no rare loss-of-function or functional variants were detected
(Supplementary Table 4).

Empirical evaluation of detection of mosaicism from WGS data

We selected one sample with three mosaic abnormalities detected on a single chromosome
to demonstrate MrMosaic performance on whole-genome sequence data and to investigate
the structure of the mosaic rearrangement. MrMosaic easily detected these multi-
megabase mosaic events, found with Mscores of 36, 117, and 32. The presence of three
mosaic events of similar clonality on the same chromosome is suggestive of a complex
chromosomal rearrangement. Analysis of the WGS read pair data using Breakdancer (Chen
et al. 2009) identified read-pairs mapping across the centromere and evidence of a
breakpoint spanning from the g-arm deletion to the centromere. Ring chromosomes are
associated with bi-terminal deletions (Guilherme et al. 2011) and inverted duplications
(Knijnenburg et al. 2007) and we suspected that the underlying abnormality in this child is a

10
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1 ring chromosome, although we were unable to access the cellular material required to
2 generate the cytogenetic data to prove this hypothesis (Supplementary Figure 21).
3

11


https://doi.org/10.1101/062620
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/062620; this version posted July 7, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

OO N UTL D WD -

AR OB D B D DR WW W W WWWWWWNDNDNDNDNDNDNDNNNRRRRRRRR R} @3
NUT D WINN R, OV AONOULPE WINNRFRODVONONTUPE WINEFR OOVONOULDSE WDN - O

under aCC-BY-NC-ND 4.0 International license.

DISCUSSION

Structural mosaic abnormalities are multi-megabase, post-zygotic mutations that have
previously been associated with developmental disorders (Conlin et al. 2010; King et al.
2015). This work introduces a novel method to detect these mutations from next generation
sequencing data.

In an extensive simulation study we show adequate power to detect abnormalities in WES
and WGS data across a large, clinically relevant range of size and clonality in different types
of mosaic structural variation. We also compare our method to the popular array-based
mosaic detection method, MAD, and show a substantial boost in performance, which
derives primarily from the joint analysis of allelic proportion and copy-number deviations.
Simulation results suggested that exome sequencing data can be used to identify many of
the known clinical mosaic duplications involving chromosome-arm events, such as 12p and
18p mosaic tetrasomy as MrMosaic easily detected events of this size.

We used MrMosaic to uncover pathogenic structural mosaicism in a large exome study of
children with undiagnosed developmental disorders. Applying our method to the exome
data of 4,911 enrolled children, we identified nine individuals with structural mosaicism; the
majority of these mutations were considered pathogenic. In this WES-based analysis we
recovered 8 of the 10 abnormalities previously detected in a subset of 1,226 samples
previously analysed with SNP genotyping chip data suggesting that exome-analysis alone is
sensitive to detecting large-scale mosaicism. One of the missed abnormalities was likely
undetected because the exome data were of low depth, which increases the variance of
measured Bgey and Cgey. Most of the detected mosaic copy number abnormalities had
escaped detection by previous aCGH analysis. This demonstrates that detection of mosaic
events requires assay of tissue containing the abnormality and tailored methods with
sufficient sensitivity for mosaicism.

The overall frequency of mosaicism detected in this study, 0.18%, is lower and significantly
different (p < 10™, binomial test) from the 0.59% structural mosaicism frequency estimated
from previous studies. One likely explanation for the discrepancy in these frequencies is
ascertainment bias, as some classes of structural mosaicism (e.g. mosaic trisomies) are likely
to have been diagnosed by prior diagnostic testing (e.g. karyotype or microarray) and not
enrolled into the DDD study. Another component of this discordance may be due to
decreased sensitivity, as mosaicism smaller than 2 Mb is challenging to detect by exome and
these small events account for ~25% (9/36) of mosaic copy number events described
previously (Pham et al. 2014).

In one sample we observed a gradient of mosaicism, a phenomenon likely associated with
mosaic reversion of a de novo mutation inducing genome instability. Analysis of the mosaic
LOH region with high-depth exome data did not identify a strong candidate coding variant
and a further WGS-based search for candidate pathogenic de novo mutations is on-going.
Whole genome sequencing data were generated for one individual with three mosaic
abnormalities on the same chromosome. Analysis of these data recapitulated the mosaic
events and analysis of read pair analysis identified a pericentromeric inversion and

12


https://doi.org/10.1101/062620
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/062620; this version posted July 7, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

OO N UTL D WD -

BB OB D B DR DR DR WW W W WWWWWWNNNDNNNNNNNRRRRRRRRPER;RR,
NOUTLD WN R, O OVWONOUTDE WN R, O UOUONOUTLE WN R, O OVONOUTLDEDE WN RO

under aCC-BY-NC-ND 4.0 International license.

supported the hypothesis of an underlying complex chromosomal rearrangement, likely a
ring chromosome.

As expected, whole genome analysis had superior performance compared to exome
analysis, which was likely due to a combination of advantages of whole-genome data,
including higher density of assayed sites (by nearly 50 fold) and more consistent coverage
across sites, compared to exome coverage, which is subject to exome bait hybridisation
biases. Compared to whole genome data, the exome data had higher average coverage (75x
to 25x) for sites within targeted regions compared to the whole genome data and while
simulation results showed increasing performance with higher depth sequence data, this
effect was outweighed by the greater density of sites in whole genome data.

Although the general performance of the method is adequate in many clinically-relevant
cases, some classes of event prove more difficult to detect. For example, low clonality
mosaic gains generate the smallest deviation in Bgey and Cqey compared to other types of
events, explaining their comparatively poor detection sensitivity in simulations, and the
failure to detect one mosaic duplication found using SNP data but not in exome data. More
lenient detection thresholds may be preferred to increase detection sensitivity if clinical
suspicion of mosaic duplication exists. Increasing the clonality of mosaicism by the biopsy of
affected tissue, as is performed when pigmentary mosaicism provides evidence of
underlying mosaicism (Woods et al. 1994), should also theoretically improve detection.
Given the size and clonality of the two missed events and the simulation results from whole
genome sequencing, both events would likely have been detected had they been analysed
using higher depth WES or WGS, which are likely to become more common in the future.

The majority of the mosaic events we observed in saliva-derived DNA were not observed in
blood. The samples with these abnormalities were recruited into our study because they
remained undiagnosed after assessment by clinical laboratories of blood-derived DNA failed
to detect the mosaic abnormalities we detected in saliva. DNA derived from saliva has a
mixed origin, mainly lymphocytes (derived from mesoderm) and epithelium (derived from
epiderm) (Endler et al. 1999); therefore the events detected in saliva, but not blood, are
believed to reflect epithelial mosaicism. There are two possible explanations for the
disparity in tissue distribution we observed: first, that the epithelium-derived mutational
events occurred late, i.e. after the differentiation of lymphocytes and epithelial cells, or
second, that these events occurred early, i.e. prior to the split between lymphocytes and
epithelial cells with subsequent removal from blood cell lineages by purifying selection.
Several lines of evidence suggest the second explanation is more likely: 1) existing
precedent, as the second phenomenon has been directly observed in Pallister-Killian
syndrome, where the percentage of abnormal cells decreases with age in blood but not
fibroblasts (Conlin et al. 2012), and tissue-limited mosaicism has been observed in mosaic
tetrasomies of chromosomes 5p, 8p, 9p and 18p (Choo et al. 2002) ; 2) the clonality of
events observed in both blood and saliva is not greater than the clonality of events in only
saliva, which would be expected if events seen across tissue arose earlier in development; 3)
both observed LOH events are shared between tissues but only 1 of 9 CNV events are
shared between tissues, perhaps suggesting increased pathogenicity of CNV events
compared to copy-neutral events, thus more likely to be negatively selected in blood. Given
these considerations underlying the disparity in tissue-type, and the observation that the
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majority of observed abnormalities were detected in saliva but not blood, it is possible that,
compared to the sampling of saliva, the sampling of blood could lead to a substantial loss of
power, possibly less than 50% power, to detect pathogenic structural mosaicism, resulting
in missed diagnoses. Studying the saliva tissue in these children permitted the identification
of their mosaic abnormalities and ended for them and their families, their quest for
diagnosis.

Additional work is required to investigate for which developmental disorders tissue-limited
mosaicism is common. Another intriguing question regarding tissue distribution is the
relationship between clonality and pathogenicity. While mosaicism limited to a small
number of cells is unlikely to cause developmental disorders, it is conceivable that low-level
mosaicism present in a vulnerable tissue, such as white matter neurons, may have clinical
consequences. More work is needed to address this question, including more extensive
analysis of the tissue distribution of mosaicism, for example, by analysing diverse tissues
sampled from all three germ layers, and assays with improved resolution, allowing single or
oligo-cell sequencing. The availability of more sensitive detection methods will improve the
detection of a larger fraction of events limited to a single tissue.

Next generation sequencing, in the form of exome and genome sequencing, can be
harnessed to detect a wide range of mutations, including, as presented here, mosaic
structural abnormalities. Given that sequencing costs continue to decline and the
multifaceted detection capabilities of exome data, it may be that exome sequencing will
supersede microarray technology as a first-line test for developmental disorders.
Widespread incorporation of high-depth exome and whole genome sequencing will
revolutionise our understanding of the extent of mosaicism in the body and better define
the relationship of mosaicism and disease.
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METHODS
MrMosaic

Implementing mosaic detection requires generating an input file and executing the
algorithm; the latter consists of several steps: statistical testing, segmentation, filtering, and
results visualisation. ‘BAF’ is used below as an alias for ‘non-reference proportion’. The input
data for MrMosaic consist of genomic loci with measured Bge, values, Cgey values, and
genotypes, stored in a tab-delimited file. The loci selected were di-allelic single-nucleotide
polymorphic (1%-99% MAFs among European individuals in the UK10K** project) autosomal
positions. For exome analysis, only loci overlapping targeted regions of the exome design
were used. At these loci, Bgev and Cgey Values were calculated as described in the following
two paragraphs.

Bgev Values were generated using the following method: the identity of the alleles at each
locus is extracted using fast_pileup function in the perl module Bio::DB::Sam (Stajich et al.
2002), using high-quality reads (removal criteria: below base quality Q10, below mapping
quality Q10, improper pairs, soft- or hard-clipped reads) and BAF was calculated as the
number of reference bases divided by the total of reference bases and non-reference bases.
Heterozygous sites were defined as loci with a BAF between 0.06 and 0.94, inclusive. The
Bqev is calculated at heterozygous sites as the absolute difference between the BAF and 0.5.
Only loci with sufficient read coverage (at least 7 reads) are used for analysis.

Cqev Values were generated using the following method: read depths from each target
region was collected, the log; ratio for that target region was calculated by comparing its
read depth to a reference read depth, where the reference value was defined as the median
read depth among the distribution of read depths at that target region from dozens of
highly correlated samples. This log, ratio was normalised based on several covariates
pertaining to each target region (covariates included were: GC-content, hybridisation
melting temperature, delta free energy (Fitzgerald et al. 2014)). Lastly, using the Aberration
Detection Algorithm v2 (ADM2) method by Agilent® a final error-weighted value, is
produced, which we use as the Cgqey value.

The statistical testing step of the MrMosaic algorithm begins by data smoothing, using a
rolling median (width of 5) across heterozygote and homozygous sites, so as to utilize the
depth information in homozygous sites to reduce variance. From this point forward, only
heterozygote sites are considered, as mosaic abnormalities do not affect B4ey of homozygous
loci. Statistical testing assesses whether a given locus is significantly deviated from the Bgey
and Cgey means given the null hypothesis of no chromosomal abnormality. At every
heterozygote site we compute two Mann Whitney U tests, one for Bgey and one for Cgey,
testing the alternative hypothesis that the distribution of the metric in the neighborhood of
the chosen site is greater (has a higher median rank)than the distribution of the
background. We use 10,000 randomly selected sites, from all autosomes excluding the
current chromosome, as the background population. In order to account for non-uniform
spacing of the data points we apply a distance-weighted resampling scheme, to down-
weight distant points from the chosen site. The tri-cube distance, inspired by Loess
smoothing, was chosen as a decay function for the resampling weights and considers data
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points up to 0.5 Mb upstream and downstream of the given position. An equal number of
data points is then sampled around the chosen site and from the background (n=100) and
the Mann-Whitney U test is performed. Finally, we combine the p values of the two
statistical tests (one for Bgey and Cqey) for every position using Fisher’s Omnibus method.

The segmentation step operates on the combined p value generated above. Segmentation is
performed using the GADA algorithm (Gonzalez et al. 2011), using the parameters values as
follows: SBL step: maxit of 1e7; Backward Elimination step: T value of 10 and MinSegLen
value of 15. This step generates contiguous segments of putative chromosomal
abnormalities. Segments in close proximity (within 1Mb) that show the same signal
direction (loss, gain, LOH) are merged to reduce over-segmentation.

The filtering step is required to assess which of the segments generated above are likely
reflective of true mosaicism. While testing MrMosaic in exome simulation analyses we
observed that true-positive detections (those overlapping simulated events) tended to be
larger (greater number of probes) and have stronger evidence of deviation (GADA
amplification value) than putative segments that did not overlap simulated regions (i.e.
false-positive, spurious calls) (Supplementary Figs. 22-24). We captured these two features
in a scoring metric calculated from the cumulative empirical distribution functions for
‘number of probes’ and ‘GADA amplification value’ of false-positive segments, and assessed
the composite probability that a given segment comes from these distributions, such that:
Mscore = abs(-logx(x) + -loga(y)) where x and y refer to these empirical cumulative
distribution functions. Thus, the Mscore is a quality-control metric derived by combining the
size and signal-strength of detections. We used the Mscore to filter those events least likely
to represent false positives. We selected events with an Mscore of 8 or greater for analysis
because we observed that this appeared to provide a good balance between sensitivity and
specificity (Supplementary Figure 24).

The visualisation step generates a detection table and detection plots. The detection table
consists of mosaic abnormalities detected and contains the following data: chromosome,
start_position, end_position, log2ratio_of_segment, bdev_of segment, clonality, type,
number_of probes, GADA_amplification, p_val_nprobes, p_val_GADA_amplification,
Mscore. Event clonality was calculated by assessing the type of mosaic event based on LRR
and converting the bge, value to clonality based on the type of event (Supplementary
Table®). The detection plots are png files showing the loci and BAF and Cge, data for each
chromosome in which a mosaic abnormality is detected, as well as a genome-wide lattice
plot using the data for all chromosomes.

MrMosaic is primarily written in the R language, available as an open source tool at
https://github.com/asifrim/mrmosaic. The algorithm can be used in multi-threaded mode to
facilitate whole genome analysis. Analysis of a single whole exome using a single thread was
completed in 15 minutes when tested using a single core of an Intel Xeon 2.67Ghz processor
and 500 Mb of RAM. Whole genome analysis using 24 cores required 30 Gb of RAM and 7
hours. Whole genome analysis can be substantially shortened if the number of sliding
windows is reduced or the window size is increased.
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Simulating Mosaicism

We devised a series of simulation experiments to assess MrMosaic performance for various
events, across type (LOH, gains, losses), clonalities, sequencing depths, platforms (whole-
exome (WE) and whole-genome (WG)) and to compare performance to the MAD method.
We compared performance to a modified version of MAD we adapted to enable more
flexible execution in a parallel-computing environment, but identical with respect to
statistical methods.

The simulation method consisted of these steps: (1) loci selection, (2) calculating depth at
these loci, (3) parameter space and number of trials, (4) adjusting read depth in simulated
regions, (5) calculating final real depth, (6) selecting sites based on minimum depth, (7)
calculating relative copy-number, (8) assigning genotypes, (9) calculating the BAF for each
site, (10) calculating performance. Steps 1-3 differed between the WES and WGS
simulations and are described first below. The remaining steps 4-10 were executed
consistently for WES and WGS simulations and are described next.

For WES simulations, loci selection (1) was based on di-allelic single nucleotide polymorphic
positions (between 1% and 99% UK10K (Walter et al. 2015) European minor allele
frequency) in the V3 version of the target-region design. To calculate depth at these loci (2),
at each locus j, baseline sequence read depth (DP) for these sites was defined as the
median of the read depth distribution among 100 parental exomes for each site, considering
only high-quality reads (mapQ >= 10, baseQ >=10, properly mapped read-pairs), where
parental exomes had a mean average sequencing output of 67x (calculated where x was the
number of QC-passed & mapped reads without read-duplicates * 75 bp read length / 96 Mb
targeted bp). The parameter space (3) consisted of the following: target average sequencing
coverage (in x) € {50, 75, 100}, event clonality m € {0.25, 0.375, 0.5, 0.75}, type € {loss, gain,
LOH}, and size € {2e6, 5e6, 1e7, 2e7}. Two hundred trials (4) were conducted per parameter
combination for a total of 36,000 simulations.

For WGS simulations, the loci selection (1) was based on di-allelci single nucleotide
polymorphic (1% - 99% European MAFs from the 1000 genomes project (Abecasis et al.
2012) May-2013 release) autosomal positions. To calculate depth at these loci (2), we
calculated a scaling factor for each locus based on the median read depth of the first two
median absolute deviations of the distribution of coverage for that site seen across 2,500
low-coverage samples in the 1000 genomes project (Abecasis et al. 2012). A site-specific
scaling factor was calculated as the deviation of each site’s read depth from the average
read depth across all polymorphic positions. Simulation depth was defined at each site as
the desired simulation coverage multiplied by site-specific scaling factor. The parameter
space (3) consisted of two experiments: 1) average genome coverage of 25x, event clonality
m € {0.25, 0.375, 0.5, 0.75}, type {loss, gain, LOH}, and size (Mb) € {1e5, 2e6, 5e6}; and 2) 5
Mb 50% clonality event captured at average genome coverages (in x) € {30, 40, 50, 60} for
the three mosaic types {loss, gain, LOH}. One hundred trials (4) were conducted per WGS
simulation.

The remaining simulations steps 4-10 described below were performed consistently for WES
and WGS simulations. For each simulation a single mosaic event was introduced into each
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simulation trial. The adjustment of read depth in simulated regions (4) was performed using
a scaling factor based on the type and clonality of the simulated event, m, while sites not
overlapping copy-number simulated events would not undergo this scaling step
(Supplementary Table 4). To calculate the final simulated read depth (5) for each site i
(SDP;), we sampled from a Poisson distribution with A; equal to the scaled read depth. Only
positions with a final read depth (6) of at least 7 were included for analysis. Relative copy-
number (7) was defined as log, of the ratio of the final read depth to the baseline read
depth.

The assignment of genotypes (8) (AA, AB, or BB) at each position i was randomly determined
based on the site’s minor allele frequency, which was used in a multinomial function with
probabilities corresponding to Hardy Weinberg-assumed genotype proportions (p?, 2pa, q°).
To calculating the BAF for each heterozygote at site i (9), we adjusted the expected
heterozygote proportion of 0.5 with respect to the chosen event type and clonality, and
sampling from a binomial distribution given this adjusted proportion and the simulated read
depth at i. BAFs for homozygote reference (AA) and non-reference (BB) sites were chosen
by sampling from a binomial distribution with p=0.01 or p=0.99 respectively and the
simulated read depth at /.

MrMosaic and MAD were applied on the simulated WES and WGS samples generated by the
above procedure and performance was measured using precision-recall metrics (10). A
‘success’ in a trial was considered a detection overlapping the simulated mosaic event.
Precision was calculated as the number of successes divided by the number of detections.
Recall was defined as the proportion of trials with a success.

Description of Samples & Sequencing

The samples used in this analysis derived from the Deciphering Developmental Disorders
study, a proband two-parent trio-based investigation of children with undiagnosed
developmental disorders from the UK and Ireland (King et al. 2015; Firth and Wright 2011;
Wright et al. 2014, Fitzgerald et al. 2014). DNA was extracted from blood and saliva and was
processed at the Wellcome Trust Sanger Institute by array CGH and exome sequencing.
There were 4,926 DNA samples analysed in this study from 4,911 children, as some children
were analysed using both blood and saliva. The majority, 3,260 of 4,926 (66%) of the DNA
samples were extracted from saliva.

DNA was enriched using a Agilent® exome kit, based on the Agilent Sanger Exome V3 or V5
backbone and augmented with 5 Mb of additional custom content (Agilent Human All Exon
V3+/ V5+, ELID # C0338371). An ‘extended target region’ workspace was defined by padding
the 5’ and 3’ termini of each target region by 100-bp yielding a total analyzed genome size
of approximately 90 Mb. Sequencing was performed using the lllumina® HiSeq 2500
platform with a target of at least 50x mean coverage using paired-end sequence reads of
75-bp read-length. Measured exome coverage ranged from 14x to 155x with a mean of 69x
(Supplementary Figure 24). Alignment to the reference genome GRCh37-hs37d was
performed by bwa version 0.5.9 (Li and Durbin 2009) and saved in BAM-format files (Li et al.
2009).
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Additionally, two exome samples were processed post hoc from saliva after SNP genotyping
chip analysis showed mosaicism was present in saliva but absent in blood. These two exome
samples and the exome sample with suspected revertant mosaicism were processed
separately from the exome experiment described in the previous paragraph. For these three
exomes, the Agilent Sanger Exome V5 target kit was used, and sequence depth ranged from
387x - 455x coverage (reads = {465,522,627, 483,098,826, 549,766,632} * 75bp read-length
/ 90e6 target-region-size). The sample with suspected underlying mosaic reversion had
549,224,891 QC-passed & mapped reads, and 57,165,328 duplicates, and therefore had a
mapped read coverage of 410x ((549,224,891-57,165,328)) * 75 / 90e6).

For the sample for which whole genome sequencing data were generated, sequencing was
performed using an lllumina® X-Ten sequencing machine. Library fragments of 450-bp
insert-size were used and paired-end 151-bp read-length sequence reads were generated.
Alignment to the reference genome GRCh37-hs37d was performed by bwa mem®*’ version
0.7.12. Average coverage was calculated using samtools flagstat as the number of QC-
passed mapped-reads without duplicates using 151 bp read-lengths in a 3Gb genome:
(616,151,282 —124,325,581) * 151 / 3e9 = 24.8x. Rearrangement analysis was carried out
using Breakdancer v1.0 (Chen et al. 2009).

Additional filtering implemented in addition to Mscore quality score

Some events with very high Mscores appeared to represent real, but constitutive,
abnormalities. There were two failure modes we identified: constitutive duplications and
homozygosity by descent (HBD). Constitutive duplications genuinely produce strong signals
in MrMosaic, but also constitutive deletion and ROH events may produce putative
detections if individual probes had mapping artefacts that resulted in spurious signals. We
used bcftools roh (manuscript in preparation) to identify and filter HBD regions and flagged
as suspicious events with greater than 25% reciprocal overlap with CNVs detected through
constitutive copy-number detection. In addition, we observed several recurrent putative
detections, especially prevalent in pericentromeric and acrocentric regions that appeared
spurious on the basis of inconsistencies between BAF and LRR, and we filtered such
systematic errors by filtering putative mosaic events seen in more than 2.5% of samples.

SNP genotyping chip validation

llumina® HumanOmniExpress-24 Beadchips (713,014 markers) were used. lllumina
GenomeStudio software was used to generate log R ratio and BAF metrics and lllumina®
Gencall software was used to calculate genotypes. Structural mosaic detection was
performed using MAD (Gonzdlez et al. 2011). Initial mosaic events were merged if events
were within 1 Mb, and were the same type (loss, gain, or LOH) of mosaic event. Results
were plotted using custom R code.
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DATA ACCESS

MrMosaic source code can be found here:
https://github.com/asifrim/mrmosaic

The complete raw exome sequencing data is publicly available on the European Genome-
phenome Archive (EGA) after Data Access Committee (DAC) approval. The study accession
ID is: EGAS00001000775.
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