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SUMMARY 

 

To better understand the role of cis regulatory elements in neuropsychiatric disorders we applied 

ATAC-seq to neuronal and non-neuronal nuclei isolated from frozen postmortem human brain. Most 

of the identified open chromatin regions (OCRs) are differentially accessible between neurons and 

non-neurons, and show enrichment with known cell type markers, promoters and enhancers. Relative 

to those of non-neurons, neuronal OCRs are more evolutionarily conserved and are enriched in distal 

regulatory elements. Our data reveals sex differences in chromatin accessibility and identifies novel 

OCRs that escape X chromosome inactivation, with implications for intellectual disability. 

Transcription factor footprinting analysis identifies differences in the regulome between neuronal and 

non-neuronal cells and ascribes putative functional roles to 16 non-coding schizophrenia risk variants. 

These results represent the first analysis of cell-type-specific OCRs and TF binding sites in 

postmortem human brain and further our understanding of the regulome and the impact of 

neuropsychiatric disease-associated genetic risk variants. 
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INTRODUCTION 

 

Epigenetic modification of chromatin, including its 3-dimensional structure, plays a central role in the 

regulation of gene expression and is essential for development and the maintenance of cell identity 

and function (Fullard et al.). A large proportion of neuropsychiatric disease-associated loci, such as 

those in schizophrenia (SCZ) (PGC-SCZ, 2014) and Alzheimer’s disease (AD) (Lambert et al., 2013), 

are non-coding and, as such, have no impact on the structure of proteins. Instead, these non-coding 

risk variants are thought to exert their effects by altering the function of cis regulatory elements 

(CREs) required for the correct spatiotemporal expression of genes (Maurano et al., 2012; Roadmap 

Epigenomics et al., 2015; Roussos et al., 2014; Trynka et al., 2013). Importantly, cis regulation of 

gene expression is often specific for tissue and even cell type (Maurano et al., 2012; Roadmap 

Epigenomics et al., 2015). Correspondingly, disease-associated loci have been shown to be enriched 

for CREs in tissues and cells relevant to the pathophysiology of disease (Maurano et al., 2012; 

Roussos et al., 2014; Trynka et al., 2013). 

 

Employing existing epigenome data to further our understanding of neuropsychiatric diseases is 

hindered by the fact that much of the epigenomic landscape remains unexplored in the relevant cells: 

The Encyclopedia of DNA Elements (ENCODE) consortium (Bernstein et al., 2012; Maurano et al., 

2012), Roadmap Epigenomics Mapping Consortium (REMC) (Roadmap Epigenomics et al., 2015; 

Zhu et al., 2013), and FANTOM5 (Andersson et al., 2014) all focused on actively dividing cells or 

used only homogenate brain tissue. A limitation to the latter approach is that the resultant data was 

derived from a mixture of markedly different cells such as neurons, microglia, oligodendrocytes, and 

astrocytes. Because CRE-mediated epigenetic regulation shows cell-type specificity (Maurano et al., 

2012; Roadmap Epigenomics et al., 2015), the study of mixed cell populations can fail to detect cell-

type-specific signals. Furthermore, in studies using homogenized brain tissue, the proportion of each 

cell type contributing to the assay is undetermined, further increasing sample-to-sample variability. 

 

Here we present, to our knowledge, the first cell-type-specific map of OCRs in human frontopolar 

prefrontal cortex. We used the Assay for Transposase Accessible Chromatin followed by sequencing 

(ATAC-seq) to map open chromatin regions (OCRs) (Buenrostro et al., 2013). We generated and 

analyzed 3.1 billion reads from 2 broad cell types (neuronal and non-neuronal) isolated from frozen 

postmortem tissue of persons with no known neuro- or psycho-pathology by fluorescence-activated 

nuclear sorting (FANS) in 8 samples, and identified thousands of cell-type specific OCRs. We further 

identified several OCRs that escape X chromosome inactivation in a cell-type specific manner and 
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are implicated in X-linked intellectual disability. Additionally, we inferred transcription factor (TF) 

binding using footprinting to interrogate cell-type differences in the regulation of gene expression. 

Finally, a number of the OCRs and TF binding sites identified by ATAC-seq coincide with known SCZ 

risk loci, allowing us to pin-point the likely causative SNP therein and providing evidence for a 

putative mechanism by which these variants contribute to the etiology of SCZ.  

 

RESULTS 

 

Profiling chromatin accessibility in Neuronal and non-Neuronal Cells 

We assessed the landscape of OCRs in neuronal and non-neuronal nuclei derived from frozen 

postmortem frontopolar prefrontal cortex [Brodmann area 10 (BA10)] of eight samples (Figure 1A). 

We chose BA10 as it is a brain region that is important for cognition (Gilbert et al., 2006) and has 

been associated with neuropsychiatric diseases (Takizawa et al.). For each sample, ATAC-seq was 

performed on 50,000 neuronal (NeuN positive) and non-neuronal (NeuN negative) nuclei isolated by 

FANS (Supplemental Experimental Procedures). To control for potential sample confounds, we 

used samples from a single brain bank isolated from individuals with similar genetic background (all 

Caucasians) that had not been diagnosed with neurological or psychiatric conditions at the time of 

death (Table 1) and evidenced no discernable neuropathology upon detailed postmortem 

examination (Purohit et al., 1998). To control for potential experimental factors, all steps were 

performed at one site and samples were randomized prior to FANS and sequencing. We assessed 

the effects of technical variability on ATAC-seq profiles by comparing the results obtained from 

triplicates derived from one neuronal and one non-neuronal sample isolated from BA10. We found a 

high concordance of read coverage (number of reads) among replicates, within genomic bins of 

1000bp (average Pearson Correlation Coefficient R (PCC) = 0.97) (Figure S1A and A’).  

[ insert Table 1 about here ] 

The average number of uniquely mapped and non-duplicated paired-end reads per sample was 54.8 

million, with low mitochondrial DNA contamination (average 0.7% of the mapped reads) (Table S1). 

There was no significant difference in the number of reads among neuronal (50.7 million reads) and 

non-neuronal (58.8 million reads) samples (Student's t-test P = 0.5). We applied the irreproducible 

discovery rate (IDR) approach in the technical replicates and chose MACS2 as the best peak-calling 

algorithm (Figure S1B) with P = 4.7 x 10-6 as the MACS2 cutoff for calling peaks at IDR 5% (Figure 

S1B’). Using these parameters, the average number of called peaks per sample was 47,911, with no 
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difference between neuronal (50,483 peaks) and non-neuronal (45,338 peaks) samples (Student's t-

test P = 0.6). (Table S1). A total of 72,033 and 68,606 peaks were defined when the filtered peaks 

called from neuronal and non-neuronal samples, respectively, were combined (Figure S1C and C’). 

Approximately one third of neuronal and non-neuronal peaks overlapped (Figure 1B).  

[ insert Figure 1 about here ] 

 

For quantitative analysis of differences among neuronal and non-neuronal samples, we generated a 

matrix of mapped reads using a final consensus of 115,021 peaks (Supplemental Experimental 

Procedures). Unsupervised hierarchical clustering of the normalized mapped reads in each peak 

region identified a clear distinction between neuronal and non-neuronal samples. (Figure 1C). 

Exploratory analysis identified confounds (age at death, gender and postmortem interval) as 

significant predictors of chromatin accessibility (Figure S1D and E). Following data normalization of 

read counts for each peak, a quasi-likelihood negative binomial generalized model, adjusting for 

confounds, was performed (Supplemental Experimental Procedures). We identified 60,653 

differentially modified OCRs (adjusted false discovery rate (FDR) < 0.01, Figure 1D, Table S2). 

Among these, 33,054 were neuronal and 27,599 were non-neuronal, with a moderate to large 

average fold change (FC) (median FC 2.19; range 1.46-15.86, Figure 1E). For example, a neuron-

specific regulatory region (chr1:159110612-159112536; log2FC = 2.89, P = 2.76 x 10-23, adjusted P = 

9.01 x 10-11) is positioned ~29kb upstream of CADM3 (Cell adhesion molecule 3), a gene that is 

highly expressed in cortical pyramidal cells (Zeisel et al., 2015) (Figure 1F). A non-neuronal region 

(chr18:3447649-3448767; log2FC = -3.99, P = 6.46 x 10-14, adjusted P = 4.13 x 10-11) is positioned 

within the transcription start site (TSS) of the shorter TGIF1 (TGFB-Induced Factor Homeobox 1) 

isoform, a gene with high expression in microglia (Zhang et al., 2014) associated with 

Holoprosencephaly-4 (OMIM: 142946) (Figure 1G).  

 

Annotation of the Cell-type Specific Regulome in Neuronal and non-Neuronal Cells 

We analyzed the distribution of all and differentially accessible elements (neuronal and non-neuronal) 

as a function of the distance from the nearest TSS. For all three categories (all, neuronal and non-

neuronal) we observed an enrichment of OCRs proximal to TSSs (Figure 2A). Relative to all OCRs, 

we observed a depletion of neuronal OCRs (OR = 0.7, P = 9.8x10-39) and an enrichment of non-

neuronal OCRs (OR = 1.3, P = 1.2x10-37) in the vicinity of TSSs (Figure 2B). There was, however, 

enrichment for neuronal OCRs located 10kb – 100kb downstream of TSSs (OR = 1.3, P = 1.3x10-127). 

Next, we examined the enrichment of all and differentially accessible elements in terms of genomic 
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features. In agreement with our findings that neuronal accessible regions are relatively depleted in the 

proximity of TSSs, we identified a depletion for neuronal OCRs located in promoters (OR =0.7, P = 

8.2 x 10-113) and an enrichment in intronic regions (OR =1.2, P = 6.5 x 10-130) (Figure 2C), when 

compared to non-neurons. Overall, relative to non-neuronal OCRs, the differentially accessible 

regions of neurons are enriched for distal regulatory elements, suggesting a more important role for 

long-range regulation of gene expression in neurons.  

 

We next examined if the identified OCR regions were under evolutionary constraint as evidenced by 

higher Genomic Evolutionary Rate Profiling (GERP) scores (Cooper et al., 2005). When averaging 

across the OCRs, we found a peak in the GERP score coinciding with the center of the OCR for both 

the neuronal and non-neuronal cells (Figure 2D). Interestingly, neuronal OCRs exhibit markedly 

higher GERP scores than non-neuronal OCRs (0.26 vs 0.14, p = 7.7 x 10-14 in a two-sided t test). To 

further explore this observation, and to correct for potential confounders, we stratified the analysis 

based on OCRs found in exons, promoters, introns, and intergenic regions (Figure S2). Compared to 

non-neuronal OCRs, neurons show higher GERP score in intergenic and promoter regions (two-sided 

t test p < 2.2 x 10-16 for both comparisons), respectively. Therefore, it appears that neuronal OCRs in 

distal and proximal regulatory regions are under stronger functional constraint than those of other 

brain cells.  

 

We compared the ATAC-seq peaks with published histone modification data from homogenates of 

human prefrontal cortex (Roadmap Epigenomics et al., 2015) (Figure 2E). The ATAC-seq peaks (all 

peaks or cell type-specific peaks) showed enrichment for active and poised promoters and active and 

repressed enhancers. No enrichment for transcribed, polycomb-repressed or heterochromatin regions 

was observed. Systematic comparison of cell-type specific OCRs with published regulatory 

sequences for enhancers and promoters across multiple tissues showed a strong enrichment in 

neuronal OCRs for brain-related enhancers and promoters (Figure S3A and S3B). Convincingly, the 

strongest enrichment across all enhancers for neuronal OCRs was observed for prefrontal cortex. 

The non-neuronal OCRs show lower specificity for brain related enhancers and promoters. Finally, a 

comparison with DNase I hypersensitivity sequencing (DHS-seq) regions across 39 tissues show that 

brain is the most enriched tissue in our data set (Figure S3C).  Overall, the analysis shows our cell-

type-specific ATAC-seq data is enriched with previously annotated regulatory sequences for 

promoters, enhancers and OCRs in human brain tissue. 

 

[ insert Figure 2 about here ] 
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To further explore the identified OCRs, we conducted pathway analysis by annotating peaks to 

proximal genes. In this analysis, neuronal peaks showed a significant enrichment for the terms 

synaptic transmission, cell-cell signaling, and cellular morphogenesis (Figure 2F), whereas non-

neuronal peaks were enriched for pathways related to protein kinase binding and telencephalon 

development. Next, we examined the overlap between genes proximal to the differentially accessible 

elements and cell type-specific markers derived from mouse brain studies (Zeisel et al., 2015; Zhang 

et al., 2014). We detected a highly significant overlap between the set of the predicted human 

neuronal genes and the set of cell type-specific genes for neurons (Zhang et al., 2014) (P = 2.5 x 10-

33) or pyramidal cells (S1 pyramidal markers: P = 6.2 x 10-8; CA1 pyramidal markers: P = 8.4 x 10-11) 

and interneurons(Zeisel et al., 2015) (P = 9.5 x 10-7) in the mouse brain (Figure 2G). For non-

neuronal OCRs, we observed a strong enrichment for oligodendrocytes (P < 1.5 x 10-7) and 

astrocytes (P < 1.8 x 10-9) in both studies (Zeisel et al., 2015; Zhang et al., 2014).  

 

 

Sex-Specific chromatin accessibility in Neuronal and non-Neuronal Cells 

Although females have two X chromosomes and males only one, most of the genes on this 

chromosome show similar levels of expression across sexes. This widespread dosage compensation 

results from a phenomenon called X chromosome inactivation (XCI), which involves XIST and other 

long non-coding RNAs (Lee and Bartolomei, 2013). However, a subset of X-linked genes escape XCI 

through a poorly understood mechanism, and for some genes this occurs in a tissue and cell type 

specific manner (Deng et al., 2014). Using our OCR data we were able to interrogate such XCI 

escapees along with other gender-specific variations in chromatin structure as described below.  

 

Not surprisingly, the majority of differential OCRs between males and females mapped to the sex 

chromosomes (Figure 3A and Table S3).  For neuronal cells, 225 out of 343 gender specific OCRs 

(66%), at FDR 1%, mapped to the sex chromosomes compared to 291 out of 347 OCRs (84%) at 

FDR 1% in non-neuronal cells (Figure 3B). Only male subjects showed signal for neuronal and non-

neuronal OCRs on the Y chromosome, accounting for all accessible regions for the Y chromosome 

(Figure 3A and 3B). The majority of OCRs on the X chromosome are inactivated in females and only 

3.9% (154 out of 3,947 regions) are more accessible compared to males (Figure 3A and 3B), 

indicating the presence of OCRs on both copies of the X chromosome. Pathway analysis of female- 

and male-biased accessible regions showed significant enrichment for gender-specific biological 
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processes and molecular functions (Figure 3C). Interestingly, female-biased OCRs showed 

enrichment for gene sets related to intellectual disability and autism.  

[ insert Figure 3 about here ] 

 

We identified 45 neuronal and 133 non-neuronal OCRs associated, respectively, with 28 and 62 

genes that escape XCI (Figure 3D). Of these 90 genes, only nine were common, indicating cell type-

specific XCI in human brain cells. The most significant OCR in both neuronal and non-neuronal cells 

is in the promoter region of XIST, an X-encoded gene that, as previously mentioned, plays a central 

role in XCI and is only active in cells of females (Figure 3D and 3E). Out of the 81 genes we predict 

to escape XCI in neuronal and non-neuronal cells, a subset of 13 genes – 9 neuronal, 1 non-neuronal 

and 3 in both – are genes known, or have been predicted previously, to escape XCI (Qu et al.; Zhang 

et al., 2013) (Figure 3F), including FIRRE, a nuclear-organization lncRNA that interacts with, and 

influences, higher-order nuclear architecture across chromosomes (Hacisuleyman et al., 2014; Yang 

et al., 2015). In agreement with previous ATAC-seq data in human CD4+ T cells (Qu et al.), we 

identified nine FIRRE enhancers in introns 2–12 which are active in female non-neuronal cells, while 

only 4 are active in female neuronal cells, indicating a larger number of non-neuronal OCRs that 

escape XCI relative to neuronal cells (Figure 3E). We then examined if any of the genes identified as 

escaping XCI have been implicated in X-linked intellectual disability (XLID category from HUGO Gene 

Nomenclature Committee). Of the 81 genes predicted to escape XCI in neuronal and non-neuronal 

cells, 10 have previously been associated with XLID (Figure 3G), consisting of 3 known escapee 

genes (KDM5C, USP9X and HCFC1) (Figure 3E) and 7 novel genes, including the glutamate 

ionotropic receptor AMPA type subunit 3 (GRIA3). Overall, these results reveal sex differences in 

chromatin accessibility and identify novel, cell-type specific, OCRs that escape XCI and are in 

proximity to XLID-associated genes. 

 

Cell-type Specific Transcription factor binding and gene regulation  

As most transcription factors (TFs) bind preferentially to open chromatin (Thurman et al., 2012) it is of 

interest to analyze such regions with regard to TF binding. We did so with a set of 432 motifs 

representing 864 TFs aggregated from multiple databases (Weirauch et al., 2014) (Supplemental 

Experimental Procedures). Out of these motifs, 179 show a fold enrichment of binding sites ≥ 1.25 

in the peaks of either the neuronal or the non-neuronal samples compared to the genomic 

background. We chose to primarily focus on these motifs. In addition to being enriched in motif 

binding sites, the shape of the reads within ATAC-peaks can also be used to infer TF binding, as 
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illustrated for the TF CTCF (Figure 4A). Here, the binding sites are surrounded by a characteristic 

pattern of transposition insertion while the actual binding site shows a “footprint” as the bound TF 

sterically protects the DNA from transposase integration (Buenrostro et al., 2013; Neph et al., 2012).  

 

To exploit the pattern of transposition insertion in order to improve TF binding prediction, we applied 

the protein interaction quantitation (PIQ) (Sherwood et al., 2014) framework, which, for each motif, 

learns the pattern of transposition insertion in the vicinity of potential binding sites. To measure the 

relative importance of each TF in the neuronal and non-neuronal samples, we used the output of PIQ 

to calculate motif scores (Supplemental Experimental Procedures) and compared them against 

each other (Figure 4B). We note that similar results to the one described below could be obtained by 

comparing the enrichment of motifs in the ATAC-seq peaks regardless of footprinting (Figure S4). To 

quantify the difference between the two cell types, we used the ratio of the motif scores to categorize 

the motifs as showing probable, or definite, cell-type specificity (Figure 4B, Table S4, Table S5).  

 

The most prominent cell-type-specific TF differences was observed for promoter-depleted TFs. The 

TFs most specific for neurons were the FOS/JUN families (which together form the AP1-complex), 

showing a 2.7-fold higher motif score in neuronal cells. These TFs also showed greater than two-fold 

enrichment in neuronal peaks with, conversely, a slight depletion in peaks of non-neurons (Table S5). 

The RFX-family represented the next-most neuronal specific TF motif. These findings complement a 

recent study that identified these two groups of TFs as central regulators of excitatory neuronal 

function (Mo et al., 2015). For non-neuronal cells, the two most specific motifs were ONECUT1/2/3 

and PAX3/7, of which the latter has the most established role in brain function (Baldwin et al., 1995; 

Seo et al., 1998). We further note that the TF motifs specific to either the neuronal or non-neuronal 

cells appear to fall into distinct families. For instance, the Basic helix-loop-helix (bHLH) family seems 

to be primarily active in neuronal cells whereas the homeodomain/sox TF families seem to be 

predominantly non-neuronal (Table S4). On the other hand, several motifs of general TFs are 

identified mostly in promoter regions and show a high motif score and enrichment in both cell types 

(Figure 4B). We provide an illustrative example of cell type-specific TF binding sites for TRPM3 

(Transient Receptor Potential Cation Channel, Subfamily M, Member 3), where two CTCF sites are 

predicted only in neuronal samples (Figure 4C). 

 

[ insert Figure 4 about here ] 

Based on their relative proximity to TF binding sites identified by ATACseq, we next examined the 
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likelihood that the TFs were regulating the same or different genes in the neuronal and non-neuronal 

samples. We did this by calculating the regulatory divergence (Qu et al., 2015) between these two 

cell types (Supplemental Experimental Procedures). The two most divergent motifs jointly 

represented the neurogenin and neuroD TF families (Figure 4D). These TFs are, therefore, predicted 

to regulate a different set of genes in neuronal and non-neuronal cells. At the other end of the 

spectrum, the least divergent TFs consisted of many general TFs, including NFYB and NFYA (Table 

S5). As an alternative approach, we applied the concept of regulatory divergence to identify genes 

that showed either a similar or a dissimilar pattern of TF regulation in the two cell types. Several 

genes with marked regulatory differences between neurons and non-neurons were identified (Figure 

4E). To ensure that these estimated gene regulatory divergences were not erroneously driven by 

multiple overlapping, similar motifs, we created a non-redundant set of motifs, each with less than 

25% overlap to any other motif, and re-ran the analysis using these. This yielded highly similar results 

(data not shown). The most divergently regulated gene was SYT1, which encodes Synaptotagmin 1, 

a neuronally expressed protein known to mediate synaptic vesicle exocytosis (Lee et al., 2010). 

Pathway analysis of the top 1000 most divergently regulated genes showed significant enrichment for 

biological processes related to G-protein coupled receptor activity (Figure 4F). 

 

Enrichment of SCZ risk loci for OCRs and TF binding sites 

We sought to determine if the genomic regions corresponding to identified OCRs contain common 

risk variants detected through genome wide association studies (GWAS). As an initial analysis, we 

tested if the identified OCRs were enriched in risk loci for SCZ (PGC-SCZ, 2014), Alzheimer’s 

disease (AD) (Lambert et al., 2013) and non-neuropsychiatric diseases, including inflammatory bowel 

disease (Liu et al., 2015), rheumatoid arthritis (Okada et al., 2014), coronary artery disease 

(Consortium, 2015) and lipid traits (Global Lipids Genetics, 2013). For the analysis, described below, 

the level of enrichment of each functional annotation with GWAS traits was estimated using an 

empirical Bayes approach (Pickrell, 2014). We found enrichment for SCZ and neuronal [log2 

enrichment (95% Confidence Interval or 95CI)  = 2.11 (1.21 - 2.73)] and non-neuronal [log2 

enrichment (95CI)  = 1.57 (0.01 - 2.38] OCRs (Figure S5A). This is consistent with the tissue specific 

enrichment of OCRs with relevant diseases (Maurano et al., 2012; Roussos et al., 2014). In addition, 

compared to non-neuronal OCRs, we found a stronger enrichment in neuronal OCRs, thereby 

providing additional support for neurons as the functional unit affected by SCZ susceptibility loci. 

 

Given the significant enrichment of OCRs with SCZ loci, we next tested whether OCRs within specific 

genic annotations are more enriched in SCZ. The most enriched annotations were neuronal introns 
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[log2 enrichment (95CI) = 2.95 (2.10 - 3.55)] and non-neuronal promoters [log2 enrichment (95CI) = 

3.33 (2.38 - 3.98)] (Figure S5B). These two annotations were used to build a combined model. We 

then used this combined model in a statistical approach to reweigh the SCZ GWAS and identify the 

functional variant underlying each disease-associated locus (Supplementary Experimental 

Procedures). This yielded 29 SNPs that localize within 20 out of the 108 GWAS SCZ loci as the most 

likely candidates to be the causal polymorphisms in each region (Table S6 OCR model). For 19 out 

of the 20 GWAS SCZ loci, the functional SNP is not the GWAS index SNP. We found a substantial 

increase of ~10 folds for the likelihood (estimated based on the fitted empirical prior probability) of a 

functional SNP (average prior = 0.38%) to be the causal polymorphism in this region compared to the 

index GWAS SNP (average prior = 0.036%). We note, however, that the likelihood of the functional 

SNPs in each region is low (all priors < 1%). For 13 out of the 20 SCZ risk loci, we also identified an 

effect of the putative functional SNP on gene expression using expression quantitative trait analysis 

from the CommonMind Consortium (Fromer et al., 2016).   

 

We then examined the enrichment of predicted TF sites within SCZ risk loci and identified 15 TFs 

(single TF model) derived mostly from neuronal (11 TFs) compared to non-neuronal (4 TFs) cells that 

were enriched with SCZ genetic variants (Figure 5A). These annotations were combined in a joint 

model, using cross-validation to overcome overfitting in the model (Supplementary Experimental 

Procedures). Our best-fitting model included 4 TFs (combined TF model) ZSCAN10, 

NANOG/NANOGP1, CEBPZ and ZNF354C, all of which were specific to neuronal cells (Figure 5A). 

The single and combined TF models were used to reweigh the SCZ GWAS and identified 7 SNPs 

that localize within 6 out of the 108 GWAS SCZ loci as the candidates most likely to be the causal 

polymorphisms in each region (Table S6 TF model). In this analysis, none of the functional SNPs 

were the GWAS index SNP. We found a substantial increase of ~100 folds for likelihood (estimated 

based on the fitted empirical prior probability) of a functional SNP (average prior = 1.91%) to be the 

causal polymorphism in this region compared to the index GWAS SNP (average prior = 0.019%). For 

3 out of the 6 SCZ risk loci, we also identified an effect of the putative functional SNP on gene 

expression using expression quantitative trait analysis from the CommonMind Consortium (Fromer et 

al., 2016).   

 

[ insert Figure 5 about here ] 
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Figure 5B shows the distribution of the prior probability of functional SNPs across the 108 GWAS 

SCZ loci. Compared to the neuronal introns and non-neuronal promoters combined model, the TF 

models (single and combined) include multiple functional SNPs with high likelihood (priors > 1%) in 

SCZ loci (Figure 5B). A subset of variants has additional support for a functional role, affecting gene 

expression abundance of specific transcripts. Figure 5C shows an illustrative example for a locus 

near the SNX19 gene, where the combined TF model identified rs10750450 as the most likely causal 

variant in this region. This SNP has a P value of 2.19 x 10-12, which is close to the level of significance 

of the index SNP of that locus (rs10791097; P = 1.56 x 10-12). However, this SNP falls in the proximity 

of 2 TF binding sites (ZSCAN10 and ZNF354C), leading the model to assign a prior (14.58%) that is 

almost three orders of magnitude higher than the prior of the index SNP (0.02%). Overall, using the 

cell type-specific OCR and TF data, we assign a putative functional role for 20 and 6 SCZ risk loci (25 

loci in total), respectively. Furthermore, we provide evidence that, compared to OCR, TF analysis 

defines a smaller number of risk loci with but with higher priors.  

 

 

Finally, a recent study showed that synonymous, rare de novo mutations in SCZ, but not Autism 

spectrum disorders (ASD), are enriched for frontal cortex-derived DNase I hypersensitivity sites 

(Takata et al., 2016). We examined whether the ATAC-seq peaks are enriched in SCZ and ASD de 

novo synonymous mutations. Sixteen out of 228 de novo SCZ variants overlapped with an ATAC-seq 

peak in either neuron or non-neuronal cells compared to 4 out of 154 variants found in controls, which 

represents a significant enrichment (OR (95CI) = 2.83 (0.93 - 8.64); one-sided Fisher's exact test P = 

0.044) (Table S7). No significant enrichment was seen for the peaks specific to the neuronal (one-

sided Fisher's exact test P = 0.54) and non-neuronal cells (one-sided Fisher's exact test P = 0.21), 

potentially due to a lack of power. Similar to previous findings (Takata et al., 2016), we found no 

enrichment for ASD variants (one-sided Fisher's exact test P = 0.41). Our results are consistent with 

the original study (Takata et al., 2016) and provide additional evidence that synonymous de novo 

mutations might play a significant role in SCZ by altering OCRs.  

 

 

DISCUSSION 

 

Recent genetic studies have implicated numerous common risk variants in SCZ (PGC-SCZ, 2014). 

One of the next challenges is to further understand the biological mechanisms of the large number, 

and diversity, of genes that are associated with SCZ. To that end, we need to generate additional 
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data capturing putative molecular processes that are relevant to the development of the disease. The 

majority of SCZ risk variants is found within non-coding regions of the genome and is predicted to 

disrupt the function of CREs. We further explored the SCZ genetic architecture by leveraging, for the 

first time to our knowledge, cell type-specific OCRs mapped in human brain tissue. While, SCZ-

associated abnormalities have been demonstrated in neuronal and non-neuronal cells (Insel, 2010; 

Roussos and Haroutunian, 2014), here we demonstrate that SCZ risk variants show a higher 

enrichment in neuronal OCRs. This is consistent with genetic findings implicating genes that 

participate in neuronal function and synaptic transmission in the etiology of SCZ (Fromer et al., 2014; 

PGC-SCZ, 2014; Purcell et al., 2014).  

 

To further refine the OCRs, we performed TF digital footprinting analysis, which provides higher 

resolution of the functional genomic regions (from ~1kb average OCR size to ~10bp for TF binding 

site) and assigns a potential functional role based on known TF. Using the TF compared to the OCR 

data, we found a substantial increase of ~5 folds for likelihood of a functional SNP to be the causal 

polymorphism in certain SCZ risk regions. In addition, we identified a subset of TFs that are highly 

enriched in SCZ loci, including ZSCAN10, NANOG/NANOGP1, CEBPZ and ZNF354C, all of which 

were specific to neuronal cells. While little is known about the function of CEBPZ and ZNF354C, both 

NANOG and ZSCAN10 have been shown to play a role in the maintenance of pluripotency in 

embryonic stem cells (ESCs). NANOG is a downstream target of ZSCAN10 transcriptional activity 

(Wang et al., 2007) and NANOG expression is thought to be restricted to ESCs, becoming 

progressively down-regulated during differentiation and embryonic development (Mitsui et al., 2003; 

Thomson et al., 2011). This raises the question as to why we detect TF footprints for developmental 

genes in neurons of the adult brain? While it is possible that NANOG and ZSCAN10 have, heretofore 

unknown, roles in postmitotic neurons, recent evidence suggests that pro-neural TF footprints can be 

maintained over time to ensure proper neuronal and glial differentiation. As such, we may be 

detecting the impression left by a protein on the structure of DNA, several decades after the fact 

(Ziller et al., 2015). To that end, there is evidence supporting a role for ZSCAN10 in maintaining a 

multipotent progenitor cell population in mid-gestation embryos and adult organs (Kraus et al., 2014). 

 

The SCZ risk regions are frequently large and often contain multiple implicated SNPs due to local 

linkage disequilibrium patterns. In order to be able to understand these associations mechanistically, 

it is important to develop strategies for honing in on regions and SNPs more likely to have functional 

effects. We applied our TF footprinting models to reweigh the SCZ GWAS and identified the variants 

that have a putative functional role for 6 out of the 108 GWAS SCZ risk loci, none of which is the 
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index SNP identified by GWAS. One such example is a locus adjacent to the SNX19 gene where the 

index SNP for this locus was identified as rs10791097. Our combined TF model identified a different 

SNP, rs10750450, as the most likely causal variant in this region, due to its proximity to binding sites 

for ZSCAN10 and ZNF354C in neuronal cells. This SNP is an eQTL for the SNX19 transcript in the 

human brain (based on CMC data), but also in multiple other tissues based on the GTEx data 

(http://www.gtexportal.org/). Interestingly, SNX19 was recently identified as one (out of two genes) 

whose expression level was associated with SCZ (Zhu et al., 2016). Here we add to the growing 

evidence that upregulation of SNX19 increases the risk of SCZ by localizing the functional regulatory 

region in a specific cell type. 

Although we observed an increased frequency of accessible elements for both cell-types in proximity 

to transcription start sites (TSSs), distal regulatory regions appear to play a more critical role in 

neurons when compared to non-neurons. This finding compliments a previous study suggesting that, 

compared to non-neurons, neuron specific methylated regions tend to be located distally from TSSs 

and are enriched within predicted enhancer elements (Kozlenkov et al., 2014). Furthermore, while 

both neuronal and non-neuronal OCRs are evolutionary conserved, those of neurons appear to be 

under stronger functional constraint than other brain cells. We also observe cell-type differences in 

the regulation of gene expression between the two cell types. Promoter-depleted TFs showed the 

most marked differences between cells. Based on our analysis, the TFs with higher binding affinity for 

neurons were among the FOS/JUN (Raivich and Behrens, 2006) and bHLH families (Ross et al., 

2003) whereas PAX3/7 (Monsoro-Burq, 2015) and the homeodomain/sox (Reiprich and Wegner, 

2015) TF families display non-neuronal preference.  

 

XCI involves the heterochromatic silencing of one copy of the X chromosome in the cells of female 

mammals. A subset of X-linked genes escape XCI and, for some genes, this occurs in a tissue and 

cell type specific manner (Deng et al., 2014). X�linked forms of intellectual disability are 3.5 times 

more common than autosomal forms. ID and autism are more prevalent in males. Females are 

thought to be protected from disease due to having a mixture of cells expressing different sets of X-

linked genes through XCI skewing or escape (Deng et al., 2014). The proportion of X�linked genes 

expressed in the brain is significantly higher than in other somatic tissues and approximately 100 

human X�linked genes associated with intellectual disability have been identified (Deng et al., 2014). 

Interestingly, the effects of these mutations are more variable in females due to genes that escape 

XCI. Using our OCR data, we implicate cell-type specific OCRs in XCI, including regions that have 

been previously associated with XLID.  
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Our study is not without limitations, including a relatively small sample size, and these results warrant 

further validation in future studies. As is the case with most postmortem studies, the current 

observations could be partially attributed to technical and clinical covariates, including postmortem 

interval and agonal state. In addition, we chose to focus on a discreet region of the brain and, due to 

the limitations of working with frozen postmortem tissue, and the loss of cytoplasmic markers upon 

thawing, restricted our analysis to the study of two broad populations of cells – neurons and non-

neurons. The study of different regions of the brain coupled with the application of additional cell-type 

specific nuclear markers e.g. (Kozlenkov et al., 2015) would broaden the scope of our approach to 

reach a more thorough understanding of the means by which CREs influence brain function and 

disease.  

 

We have generated the first, cell-type-specific, open chromatin maps of human postmortem brain. 

This has allowed us to identify specific patterns of gene regulation in neuronal and non-neuronal cells 

and to assign functional roles to non-coding SCZ risk variants. 

 

 

EXPERIMENTAL PROCEDURES 

See also Supplemental Experimental Procedures. 

 

Brain Samples and ATAC-seq libraries 

Brain tissue specimens were obtained from the NIH Brain and Tissue Repository at Icahn School of 

Medicine at Mount Sinai and JJ Peters VA Medical Center. We processed 50mg of tissue from the 

frontopolar prefrontal cortex of 8 controls (Table 1). DAPI positive neuronal (NeuN+) and non-

neuronal (NeuN-) nuclei were sorted using a FACSAria flow cytometer (BD Biosciences). ATAC-seq 

reactions were performed using an established protocol (Buenrostro et al., 2013) with minor 

modifications. Libraries were amplified for a total of 9–14 cycles and were quantified by Qubit HS 

DNA kit (Life technologies) and by quantitiative PCR (KAPA Biosystems Cat#KK4873) prior to 

sequencing. Libraries were sequenced on Hi-Seq2500 (Illumina) obtaining 2x50 paired-end reads. 

 

Data processing and differential analysis 

Reads were mapped to the gender appropriate reference genome hg19 using STAR aligner (Dobin et 

al., 2013) version 2.5.0. For each sample, this produced a coordinate-sorted BAM file of mapped 
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paired-end reads. We excluded reads that: (1) mapped to more than one locus; (2) were duplicated; 

and/or (3) mapped to the mitochondrial genome. Peaks were called using MACS2 v2.1 (Zhang et al., 

2008). Peak sets across cell types were consolidated into two single lists by union operations of 

peaks that were present in at least two libraries. The final consensus set of 115,021 peaks was 

generated by combining the neuronal and non-neuronal peaks. We used the featureCounts function 

from the Rsubread package (Liao et al., 2014) to generate a sample-by-peak read count matrix (16 

samples by 151,021 peak regions). We used the edgeR package (Robinson et al., 2010) to model the 

normalized read counts using negative binomial (NB) distributions including cell type, gender, age of 

death and PMI as covariates. A quasi-likelihood (QL) F-test was conducted for each OCR using the 

glmQLFTest function (Lund et al., 2012). p-values were then adjusted for multiple hypothesis testing 

using false discovery rate (FDR) below, or at, 1%. 

 

Transcription factor analysis 

All transcription factor motifs representing human transcription factors were downloaded from the 

meta-database CIS-BP 1.02 (Weirauch et al., 2014). PIQ (Sherwood et al., 2014) was then used to 

predict transcription factor binding sites from the genome sequence. Using the PIQ genome-wide 

predicted TF binding sites, we calculated the relative occurrence of motifs within the peaks ("peak 

enrichments") as: motifs in ATAC-peaks per bp divided by motifs in the genome per genome size. For 

each motif, we retained only binding sites that were within the ATAC-seq peaks and passed the 

default purity cut-off (70%). 

 

Integrating functional annotations with GWAS 

To integrate functional annotations and GWAS results, we used the fGWAS software (Pickrell, 2014), 

which implements an empirical Bayesian framework to identify genomic annotations that are 

enriched, or depleted, for loci influencing a trait. This algorithm estimates the prior probability that a 

given block contains an association and the conditional prior probability that a given SNP in the block 

is causal, based on the presence of functional annotations. We performed two different models that 

considered OCRs (OCR model) or TF binding sites (TF model). Functional SNPs were further 

explored using expression quantitative trait loci (eQTLs) from prefrontal cortex (Fromer et al., 2016).  
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FIGURE LEGENDS 

 

Figure 1. Differential analysis of chromatin accessibility in neuronal and non-neuronal cells 

(A) Schematic outline of study design. (B) Venn diagram showing the overlap of neuronal and non-

neuronal OCRs. (C) Unsupervised hierarchical clustering of ATAC-seq data. The normalized read 

count matrix across 151,021 peak regions is shown. (D) Volcano plot showing the distribution of -

log10 p-value and log2 fold-change of differential chromatin accessibility analysis across 151,021 

OCRs. (E) Distribution of log2 fold-change of differential chromatin accessibility analysis for 33,054 

neuronal and 27,599 non-neuronal OCRs. Averaged cell-type and gender-specific ATAC-seq signals 

at (F) CADM3 and (G) TGIF1 gene loci. Positive and negative logFC indicate neuronal and non-

neuronal differential signals, respectively. Red box indicates the significant differentially accessible 

region in (F) neuronal and (G) non-neuronal cells.  

 

Figure 2. Annotation of the neuronal and non-neuronal regulome  

(A) Average read count frequency of OCRs in TSS regions. Confidence interval estimated by 

bootstrap method. (B) Distribution of all peaks and differential OCRs relative to TSS. (C) Distribution 

of genomic features of all and differential OCRs. (D) Average GERP score as a function of distance 

from the center of [-1000bp, 1000bp] of all peaks and differential OCRs. Curves and their 95% 

confidence intervals are calculated on a 50 bp sliding window. (E) Enrichment of all peaks and 

differential OCRs in various human prefrontal brain tissue chromatin states. (F) Gene Ontology terms 

for differential OCRs enriched in neuronal (dark red) and non-neuronal (dark green) samples. (G) 

Enrichment of differential OCRs for neuronal (dark red) and non-neuronal (dark green) cell type-

specific markers. 

 

Figure 3. Gender-specific regulome in neuronal and non-neuronal cells 

(A) Association of gender-specific regulatory activity in neuronal (left) and non-neuronal cells (right). 

Left: Bivariate clustering of samples (columns) and OCRs (rows) depicts the gender-specific 

regulatory activity in neuronal and non-neuronal samples, as marked by the dark green (female) and 

blue (male) horizontal bar at top. Color scale indicates relative ATAC-seq signal as indicated. Middle: 

bar graph indicates regulatory elements on autosomes (orange), chromosomes X (chrX; green) and 

Y (chrY; blue). Right: FDR of significance for each regulatory element. (B) Venn diagrams showing 

the distribution of gender specific differential OCRs in neuronal and non-neuronal samples for 

elements on chromosomes Y (left) and X (right). (C) Gene Ontology terms enriched in female (dark 

green) and male (blue) differential OCRs. (D) Scatterplot showing the distribution of gender-specific 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 7, 2016. ; https://doi.org/10.1101/062513doi: bioRxiv preprint 

https://doi.org/10.1101/062513
http://creativecommons.org/licenses/by/4.0/


 23

regulatory activity in neuronal and non-neuronal cells across 3,947 OCRs on chromosome X. The x-

axis and y-axis indicate the -log10 FDR from the gender-specific differential analysis. Both (blue 

color) indicates OCRs that have FDR < 1% in both neuronal and non-neuronal samples; Neuronal 

(dark red) indicate significant OCRs only in neuronal cells and log2 fold chance > 1.25; non-Neuronal 

(forest green) indicate significant OCRs only in non-neuronal cells and log2 fold chance > 1.25. (E) 

Averaged cell-type and gender-specific ATAC-seq signals at XIST, FIRRE, KDM5C, HCFC1 and 

USP9X gene loci. Peaks indicate the position of OCRs; neuronal and non-neuronal peaks indicate 

gender-specific differential accessible regulatory elements at FDR 1%. (F) Venn diagram showing the 

intersection of genes predicted to escape chromosome X inactivation (XCI) in neuronal and non-

neuronal samples and known escapee genes from two previous studies (Zhang et al and Qu et al). 

Gene symbols are presented for genes that have been reported previously and those that have been 

associated with X-linked intellectual disability (XLID) are highlighted (red). (G) Venn diagram showing 

the intersection of genes predicted to escape XCI in neuronal and non-neuronal samples and genes 

that have been associated with XLID. Known escapee genes based on Zhang et al and Qu et al 

studies are highlighted (green). 

 

Figure 4. Transcription factor and gene regulome in neuronal and non-neuronal cells 

(A) The average transposase insertion probability at all predicted binding CTCF binding sites within 

neuronal and non-neuronal OCRs. (B) Motif scores in neuronal and non-neuronal cells. Based on the 

ratio of the motif scores between the two samples, the cell-type specificity of the motifs is categorized 

as probable (≥1.25) and definite (≥1.5). Motifs with an enrichment of matches within motifs compared 

to the genomic background of less than 1.25 were categorized with “no enrichment”. Based on the 

relative occurrence of motifs in promoter peaks compared to all peaks, the motifs were categorized as 

promoter depleted (≤1/1.25) or enriched (≥1.25). We highlight the most enriched motifs for all TFs 

(Left panel). A zoomed version (Gray box) is illustrated on the right panel. Here, the most cell-type 

specific TFs are highlighted, listing only the most significant TF of each TF-family. (C) Two CTCF 

predicted sites near the 3’ and 5’ ends of the TRPM3 gene were detected only in neuronal cells. The 

exact location of the CTCF binding motif for the 5’-CTCF and 3’-CTCF binding sites is illustrated on 

the right. (D) The regulatory divergence of TF targets between the neuronal and non-neuronal 

samples. (E) The regulatory divergence of genes between the neuronal and non-neuronal samples. 

(F) Gene Ontology terms enriched in the top 1000 most divergently regulated genes.  

 

Figure 5. Integration of OCRs and TF binding sites with SCZ risk variants 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 7, 2016. ; https://doi.org/10.1101/062513doi: bioRxiv preprint 

https://doi.org/10.1101/062513
http://creativecommons.org/licenses/by/4.0/


 24

(A) Enrichment of predicted TF sites within SCZ risk loci from neuronal and non-neuronal cells using 

a single TF model (top panel) and a joint model (bottom panel). The maximum-likelihood estimates 

and 95% confidence intervals of the enrichment parameter for each TF is illustrated. Annotations are 

ranked based on the improvement of the likelihood of the model (at the top are those that improved 

the likelihood the most). The number in parenthesis is the likelihood of the model for each TF (single 

model) or the combined model. (B) Circos plot showing the distribution of the fitted empirical prior 

probability that each SNP is the causal one in the 108 SCZ risk loci based on the OCR or TF (single 

and combined) models. The different layers of the circus plot show (from inside to outside) are:  

PGC2 SCZ risk loci (layer 1): the 108 loci SCZ loci and the level of significance for the index SNP of 

each locus is provided. Green lines illustrate loci with -log10 P value ≤ 10, blue lines show loci with -

log10 P value between 10 and 15 and red lines show loci with -log10 P value > 15. Fitted empirical 

prior probabilities for the OCR (layer 2) and TF (layer 3) models: SNPs with prior ≤ 0.002 are in light 

orange background and light blue dots; SNPs with 0.002 < prior ≤ 0.01 are in orange background and 

blue dots; SNPs with prior > 0.01 are in dark orange background and dark blue dots. Only the TF 

model detects functional SNPs with prior > 0.01. In layer 4, we illustrate whether a PGC2 locus has a 

functional SNP with a posterior probability of association (PPA) > 0.1 that overlaps an OCR or TF 

binding site. Red and green fonts are OCRs and TFs derived from the neuronal and non-neuronal 

cells, respectively. The green box indicates the locus detected by the combined model further 

illustrated in panel (C) Layer 5 shows genes with an eQTL effect for the functional SNPs. (C) 

Regional plot surrounding the SNX19 locus. The top panel shows a plot of the r2 and P values for 

association with SCZ, including the index (rs10791097) and the functional (rs10750450) SNP. In the 

middle panel (Prior TF) is the fitted empirical prior probability based on the TF combined model and 

the positions of the TFs for this region. The overlap of the SNP with the binding sites of ZSCAN10 

and ZNF354C are illustrated. In the lower panel (Prior OCR) is the fitted empirical prior probability 

and position of the OCR model. Note the difference in the fitted empirical prior probability among the 

TF and OCR model for the functional SNP (in gray box).  
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TABLE LEGENDS 
Table 1. Clinical characteristics of the postmortem cohort used in this study.  

 

     Sample Gender Age of death 

(years) 

Postmortem 

interval (hours) 

Brain weight 

(grams) 

Tobacco 

use 

Cause of death Hypertension Diabetes (Insulin 

dependent) 

Diabetes (Non 

insulin dependent) 

S1 Female 85 5 1128 No Cardio respiratory failure No No No 

S2 Male 64 23.3 1238 Yes Cardio respiratory failure Yes No No 

S3 Male 79 13 1130 Yes Lung cancer No No No 

S4 Male 75 5 1276 No Myocardial infarction  Yes No Yes 

S5 Female 90 5.9 984 No Cardio respiratory failure Yes No Yes 

S6 Female 90 1.8 876 No Atrial fibrillation  Yes No No 

S7 Female 85 8 1040 No Cardio respiratory failure Yes No No 

S8 Male 93 3.5 1104 No Cardio respiratory failure Yes No No 

         All samples were Caucasians based on ancestry analysis of genome-wide genotyping markers.  

None of the samples had a history of alcohol or other illicit substances abuse. 

None of the samples were taking neuropsychiatric medications, including benzodiazepines, anticonvulsants,  

antipsychotics (typical or atypical), antidepressants or lithium. .
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