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Abstract4

The interplay between parasites and their hosts is found in all kinds of species and plays an im-5

portant role in understanding the principles of evolution and coevolution. Usually, the different6

genotypes of hosts and parasites oscillate in their abundances. The well-established theory of7

oscillatory Red Queen dynamics proposes an ongoing change in frequencies of the different types8

within each species. So far, it is unclear in which way Red Queen dynamics persists with more9

than two types of hosts and parasites. In our analysis, an arbitrary number of types within two10

species are examined in a deterministic framework with constant or changing population size. This11

general framework allows for analytical solutions for internal fixed points and their stability. For12

more than two species, apparently chaotic dynamics has been reported. Here we show that even13

for two species, once more than two types are considered per species, irregular dynamics in their14

frequencies can be observed in the long run. The nature of the dynamics depends strongly on the15

initial configuration of the system; the usual regular Red Queen oscillations are only observed in16

some parts of the parameter region.17

Keywords: coevolution, multiple types, mathematical model, population size, stability, Red18

Queen, chaos19
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1 Introduction20

Studying host-parasite coevolution using mathematical models has lead to substantial advances21

in our understanding of the dynamics of the interaction. For example hypothesising the role of22

reciprocal selection between the antagonistic species in the evolution of virulence and tolerance.23

We specifically focus on the Red Queen hypothesis (van Valen, 1973; Stenseth and Maynard Smith,24

1984; Dieckmann et al., 1995; Clay and Kover, 1996; Salathé et al., 2008). The hypothesis has25

been used in a broad context, leading to multiple definitions (Brockhurst et al., 2014; Rabajante26

et al., 2015). According to Van Valen, the maintenance of biodiversity is possible as long as the27

species displace each other, or when the resource distribution changes over time (van Valen, 1973).28

However, the different definitions are underlined by the presence of the typical dynamics expected29

within a species, namely Red Queen oscillations. These oscillations imply an interaction where the30

increase in the relative abundance of a a certain type within a species indicates an equal decrease31

in relative abundance of another type (Maynard Smith, 1976; Van Valen, 1977). In the context of32

hosts and parasites, indications for such oscillations in densities have been empirically confirmed for33

e.g. in dormant stages of the water flea Daphnia magna from pond sediments (Decaestecker et al.,34

2007) and freshwater snails Potamopyrgus antipodarum (Koskella and Lively, 2009). However,35

while it is already difficult to analyse these dynamics experimentally over a single cycle, the long36

term dynamics of such systems is challenging.37

The co-evolution of hosts and parasites has for example been used to explain sexual reproduc-38

tion (Lively, 2010). However, when multilocus genetics is at play, features of co-evolution models,39

such as the maintenance of polymorphism and evolution of sex, depend on the exact interactions40

patterns (Frank, 1993a; Parker, 1996; Frank, 1996; Sasaki, 2000; Metzger et al., 2016). Exploring a41

variety of interaction patterns between multiple types of hosts and parasites, we show that short-42

term oscillations as the ones observed experimentally can be recovered in virtually all of these43

models, but one has to be very careful in extrapolating this kind of dynamics over a wider time44

horizon.45

Mathematical models of host-parasite interactions with two types have been extensively anal-46
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ysed. A specific experiment in Daphnia magna (Carius et al., 2001) showed considerable variation47

in hosts (susceptibility) and parasites (infectiousness) of nine distinct types, which illustrates the48

necessity of considering models with more than two types. A recent model (Rabajante et al.,49

2015) based on ordinary differential equations numerically explored different numbers of types.50

The result strengthened the theory of the oscillatory Red Queen dynamics. In such numerical51

models, a broader exploration of the parameter space can lead to more general results and show52

the robustness of models. Here, we take a different approach and ask how complicated a model53

can become before the regular frequency dependent oscillations are lost? To tackle this question,54

we used analytical tools in addition to numerical integration.55

Another aspect to be considered is the impact of population size (Papkou et al., 2016): A host56

population suffering from intense parasite pressure should decrease in absolute size. Similarly,57

a parasite population not finding sufficient hosts should decrease in absolute size. Recently, the58

impact of such changing population sizes was studied for two types (Gokhale et al., 2013; Song59

et al., 2015), including matching alleles (Frank, 1993b) or the gene-for-gene type of interactions60

(Flor, 1955; Engelstädter, 2015; Agrawal and Lively, 2002). By adjusting the birth rates of hosts61

and death rates of parasites to include frequency dependence, we can impose a constant population62

size. Such a transformation makes the underlying model identical to replicator dynamics (Taylor63

and Jonker, 1978; Hofbauer and Sigmund, 1998; Schuster and Sigmund, 1983).64

Here, we extend the two approaches with changing and constant population size to an arbitrary65

number of types of hosts and parasites. As a simple example, we first consider the matching allele66

model: Each host can only be infected by its specific parasite type, and each parasite can only67

affect the one matching host. Next, cross-infectivity is incorporated so that two genetically similar68

parasites (neighbours to the focal parasite) can additionally infect a particular host in an equally69

robust manner and vice versa: each parasite can infect not only one host but also two more closely70

related hosts. Finally, a general model where different infectivity magnitudes are realised for each71

parasite type is analysed.72
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2 Model73

2.1 Interactions between hosts and parasites74

The number of parasites affecting a focal host (and vice versa) and the strength of the interactions75

are key components for models of host-parasite coevolution. Three possible models are depicted76

in Table 1, where fitness effects are collected in a matrix, which intuitively describes the influence77

of each type within one species on each type within the other species. Assuming n types of hosts78

and n types of parasites, MH describes the average loss of fitness hosts suffer from specific parasite79

types and MP describes the average gain of fitness parasites extract from the interaction. For80

example
(
MH

)
2,4

is the fitness loss that host 2 suffers from parasite type 4. On the other hand,81 (
MP

)
4,2

is what parasite 4 gains from host 2.82

83

To introduce host-parasite dynamics, we focus on the matching allele model first (Grosberg and84

Hart, 2000; Carius et al., 2001), where only fixed pairs of hosts and parasites can directly interact85

with each other (Tab. 1, Matching alleles). Interactions with all other partners are neutral and do86

not influence fitness. In a cross-infection model, it is instead assumed that neighbouring parasite87

types are genotypically or phenotypically similar in their infectiveness (Tab. 1, Cross-infection).88

This also applies to each host and its neighbours which have not developed resistance and are89

therefore susceptible to a specific parasite type which now benefits from three host types. In our90

model, we assume that cross-infectivity follows periodic boundary conditions where types 1 and n91

can also interact with three types of the other species. Finally, in our most general model hosts92

have a positive effect αi on parasites which have a negative effect −cαi with c > 0 on the hosts93

(Tab. 1, General infection). Every diagonal has a different value, which leads to n interaction94

parameters. This means that parasite i has the same effect −cαi on host i + k as parasite j on95

host j + k. Further, host i has the same but positive effect αi−k on parasite i− k. The restriction96

MH = −c ·
(
MP

)>
ensures a scaled effect of the interaction partners. In this way we can for97

example envision a scenario in which there are matching hosts and parasites (the main diagonal)98

and the effect they exert on each other declines with distance between them, α1 > α2 > α3 > . . ..99
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Model MP MH

Matching alleles


+1 0 · · · 0
0 +1 · · · 0
...

...
. . .

...
0 0 · · · +1



−1 0 · · · 0
0 −1 · · · 0
...

...
. . .

...
0 0 · · · −1



Cross-infection



+1 +1 0 0 · · · +1
+1 +1 +1 0 · · · 0
0 +1 +1 +1 · · · 0
...

...
...

...
. . .

...
0 0 · · · +1 +1 +1

+1 0 · · · 0 +1 +1





−1 −1 0 0 · · · −1
−1 −1 −1 0 · · · 0
0 −1 −1 −1 · · · 0
...

...
...

...
. . .

...
0 0 · · · −1 −1 −1
−1 0 · · · 0 −1 −1



General infection


α1 α2 · · · αn−1 αn
αn α1 α2 . . . αn−1
... αn α1 . . .

...

α3
...

...
. . . α2

α2 α3 · · · αn α1




−cα1 −cαn · · · −cα3 −cα2

−cα2 −cα1 −cαn . . . −cα3
... −cα2 −cα1 . . .

...

−cαn−1
...

...
. . . −cαn

−cαn −cαn−1 · · · −cα2 −cα1


Table 1: Interaction models: MP is the parasite’s (row) gain achieved by a specific host (col-
umn). MH is the host’s (row) loss by a parasite (column).

We stress that these matrices are not chosen to represent a particular biological system. Instead,100

our approach is to consider more complex models beyond the gene for gene or matching allele101

models and to analyse their dynamics. The fitness effects represented in the matrices now have to102

be included in our models. We start with a changing population size approach and then turn to103

constant population size.104

2.2 Changing population size105

The classical Lotka–Volterra dynamics are usually employed to describe predator-prey systems

where the prey reproduces at a constant rate and the predator dies at a constant rate (Lotka, 1925;

Volterra, 1928). This allows the population size to change. The predator density is influenced by

the abundance of prey and the prey density is influenced by the abundance of predators. The

same concept can be applied to host-parasite systems. We assume n different types of hosts and

n different types of parasites. The hosts have a constant birth-rate bh and a death rate that is
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determined by the interactions with the parasite. Conversely, we assume a constant parasite death-

rate dp, but a birth rate that depends on the interactions with the hosts. With these assumptions

the change of host (hi) and parasite (pi) abundance in time can be formulated as

ḣi = hi
(
fHi + bh

)
and ṗi = pi

(
fPi − dp

)
. (1)

The fitness values fHi and fPi are defined by the interaction matrix and the abundances of the106

types.107

Instead of immediately numerically exploring the dynamics for particular parameter sets, we108

first aim to obtain some general insight. On the boundaries of the state space, we have one fixed109

point where hosts and parasites are extinct, hi = pi = 0 for all i. In the absence of parasites, the110

host population will continue to increase in size, whereas a parasite population is not viable in the111

absence of hosts. In terms of co-existence, it is more interesting to consider potential interior fixed112

points.113

For the matching allele model, we have a fixed point where all hosts and parasites have equal114

abundances, p∗i = h∗i = n−1 for all i. In this case, the equations completely decouple and each115

host-parasite pair can evolve independently . Thus, the fixed point is neutrally stable, as for the116

case of a single host and a single parasite.117

For the cross-infection model, a host suffers from three parasite types and each parasite type118

benefits from three host types. The internal fixed point is now h∗i = dp
3

and p∗i = bh
3

. For the119

general model, we obtain h∗i = dp∑n
i=1 αi

and p∗i = bh
c
∑n

i=1 αi
. In both cases, we again find neutral120

stability (see supplementary material).121

In addition, the symmetry of the system leads to a constant of motion. For all three models,

the constant of motion is given by (Plank, 1995; Hofbauer and Sigmund, 1998),

H =
n∑
i=1

hi −
n∑
i=1

h∗i log hi + c

n∑
i=1

pi + c

n∑
i=1

p∗i log pi. (2)

This implies that the dynamics effectively takes place in a space which has one dimension less.122
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2.3 Constant population size123

As before we assume n different types of hosts and n different types of parasites. The relative

abundance of host type i is hi, the relative abundance of parasite type i is pi (i = 1, . . . , n). With

h and p we denote the vectors of the relative abundances. Thus, we have
∑n

i=1 hi = 1 as well as∑n
i=1 pi = 1. We assume that the relative abundances change according to the replicator dynamics

(Hofbauer and Sigmund, 1998),

ḣi = hi(t)
(
fHi − f̄H

)
and ṗi = pi

(
fPi − f̄P

)
(3)

where fHi =
(
MHp

)
i

is the host fitness for type i and f̄H = hMHp is the average fitness of the124

host population. Similarly, fPi =
(
MPh

)
i

is the parasite fitness for type i and f̄P = pMPh is the125

average fitness of the parasite population.126

For example, a system with two hosts and two parasites (n = 2) where matching hosts and

parasites have an influence of α1 = 1 and mismatching pairs exert a smaller fitness effect α2 = 0.3

with a twofold impact on the host c = 2 would be a system of four differential equations,

ḣ1 =h1 (−2p1 − 0.6p2 − [h1 (−2p1 − 0.6p2) + h2 (−0.6p1 − 2p2)]) (4)

ḣ2 =h2 (−0.6p1 − 2p2 − [h1 (−2p1 − 0.6p2) + h2 (−0.6p1 − 2p2)]) (5)

ṗ1 =p1 (+1h1 + 0.3h2 − [p1 (+1h1 + 0.3h2) + p2 (+0.3h1 + 1h2)]) (6)

ṗ1 =p1 (+0.3h1 + 1h2 − [p1 (+1h1 + 0.3h2) + p2 (+0.3h1 + 1h2)]) . (7)

Again, this model can now be solved numerically to generate trajectories depending on the initial127

values of p1 and h1 (which determine p2 = 1− p1 and h2 = 1− h1). However, this approach would128

only lead to insights about particular parameter sets. Thus, here we take a different and – in our129

opinion – a more powerful approach and look at general properties of the system.130

The replicator dynamics Eq. (3) has fixed points on the edge of the state space, e.g. h1 = p1 = 1131

and hi = pi = 0 for i > 1. However, these fixed points are unstable for a generic parameter choice,132

which means that a small perturbation from this point drives the system away. There is an133
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additional fixed point where all types have equal abundance, p∗i = h∗i = n−1 for all i. This arises134

from the symmetry of the interaction matrices we consider, but the fixed point can also be verified135

directly in Eq. (3).136

The dynamics of the system depends crucially on the stability of the interior fixed point, which137

can be attracting, repelling or neutrally stable. For the matching allele model, the interior fixed138

point is neutrally stable for any number of types (see supplementary material), which implies that139

a small perturbation from the fixed point does not lead back to it, neither does it increase the140

distance. In terms of the cross infection models, it is substantially harder to prove this, but in the141

supplementary material we show that at least for n ≤ 6, the fixed point remains neutrally stable.142

Also for the general model, an analysis is intricate. For n = 3, we can show that the fixed point143

remains neutrally stable if the interaction strength decreases with the distance between host and144

parasite type.145

There is a constant of motion, as recognized previously (Hofbauer, 1996)

H =
n∑
i=1

log hi + c
n∑
i=1

log pi. (8)

The existence of such a quantity arises from the symmetry of the system and implies that effectively,146

the system has one free variable less. However, as we show below, it does not imply any regularity147

of the dynamics.148

2.4 Irregular dynamics in the most simple model149

While the general properties discussed above lead to a first insight, e.g. the fact that there is150

always an interior fixed point and that it is neutrally stable, they do not give insights beyond the151

fact that the dynamics is oscillatory. Close to the fixed point, one would expect regular oscillations,152

but it remains unclear what happens if we leave the vicinity of the fixed point.153

It turns out that in spite of the constants of motion and neutral stability, the trajectories of host154

and parasite abundances through time can become irregular and non-periodic. This can already155

be observed in a three type matching allele model with constant population size, cf. Fig. 1. This156

surprising result even for the simplest model we consider led us to examine this particular model157
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more thoroughly.158
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Figure 1: Matching allele replicator dynamics with three types: Trajectory of all host
and parasite types for a 3-type matching allele replicator dynamics system, Eqs. (3), with initial
conditions h (0) = (0.5, 0.01, 0.49)> and p (0) = (0.5, 0.25, 0.25)>. Numerical integration with
python’s built-in odeint function.

Because of the constant population size, a third type has a relative abundance determined by159

the abundance of the other two types. For each species the dimensions reduce from three to two.160

It is therefore possible to show the dynamics for one species in a 3-simplex (Figure 2), where each161

vertex represents the sole existence of one type, the edges correspond to a coexistence of two types162

and the interior is a state where no type is extinct. For balanced initial conditions close to the163

center of the simplex, trajectories are confined to orbits around the interior fixed point. For more164

extreme initial conditions, starting close to the edge of the simplex, this is no longer true. The165

trajectory is no longer limited to regular orbits, but nearly fills out the whole simplex, going from166

conditions close to extinction of one type (edges of simplex) to a near balance of all types (close167

to the interior fixed point).168

To analyse the regularity of the dynamics further, we visualised trajectories of different initial169

conditions in Poincaré sections to check for chaotic behaviour (Strogatz, 2000). Plotting Poincaré170

sections is a method to analyse dynamic properties of high dimensional systems. This is imple-171

mented by plotting trajectories in a two-dimensional area under certain restrictions (see Fig. 3).172

Periodic trajectories pass through the section in a periodic way, drawing circles or other closed173
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h1 h2

h3

h(0) = (0. 50,  0. 01,  0. 49)

a

h1 h2

h3

h(0) = (0. 50,  0. 20,  0. 30)

b

Figure 2: Matching allele replicator dynamics with three types. Host 3-simplex for
a 3-type matching allele replicator dynamics system with initial conditions given by h (0) and
p (0) = (0.5, 0.25, 0.25)> indicated as a black dot. Panel (a) corresponds to the initial condition
from Fig. 1. Time is represented in the colour gradient going from purple to blue, green and yellow.
For initial conditions close to the interior fixed point, the dynamics remains regular (b), but for
initial conditions closer to the edges, irregular dynamics emerges (a). Numerical integration was
performed using python’s built in odeint function. Plotted for 10000 (a) and 5000 (b) generations.
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trajectories. Chaotic trajectories have a much less ordered path and thus scatter over a larger174

part of the section. In Sato et al. (2002) chaotic behaviour and large positive Lyapunov exponents175

were found for several initial conditions in a two-person rock-paper-scissors learning game. This is176

formally closely related to a replicator dynamics host-parasite system with three types. We utilised177

this approach for our matching allele model and numerically evaluated several initial conditions.178

As expected from the neutrally stable fixed points, closed and periodic trajectories are found in179

Figure 3 for most initial conditions. For initial conditions close to the edge of the state space, the180

trajectories become visibly scattered.181

Figure 3: Poincaré sections for a 3-type matching allele replicator dynamics system:
The Poincaré sections with restrictions |h2−h1 +p2−p1| ≤ 0.001 ((a), following Sato et al. (2002))
and | log h1h2h3 − log p1p2p3| ≤ 0.001 (b) are plotted. The horizontal and vertical axes are the
host type 1, h1 and parasite type 2, p2 respectively. Initial conditions for h(0) are as stated in the
legend and p(0) = (0.5, 0.25, 0.25)>. For initial conditions closer to the fixed point (dark green,
blue, purple, see also Fig. 2 b), the trajectories show periodic behaviour in a higher dimension.
For extreme initial conditions, close to the edge of the state space (yellow, light green, see also
Fig. 2 a), the trajectories become chaotic and show a wide spread over the state space. Numerical
integration was performed using python’s built in odeint function, for 50000 generations.

3 Discussion182

Stenseth and Maynard Smith (1984) as well as Nordbotten and Stenseth (2016) showed that183
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only trophic +/− interactions (as opposed to mutualism +/+ or competition −/−) promote Red184

Queen dynamics independent of abiotic factors. This justifies our study of these dynamics in a185

simple framework without abiotic influence or other types of interactions than trophic. Red Queen186

dynamics have been repeatedly reported to occur in models with two types, often because two187

alleles were in focus in the matching allele or gene-for-gene model (Schmid-Hempel and Jokela,188

2002; Frank, 1993b; Flor, 1956; Agrawal and Lively, 2002; Song et al., 2015). A clear focus on189

multiple types has, to our knowledge, not been extensively analysed before. Yet, examples from190

observed biological systems clearly motivate the need for including this aspect into theoretical191

studies (Carius et al., 2001; Koskella and Lively, 2009; Luijckx et al., 2014). Rabajante et al.192

(2015) numerically investigated such host-parasite systems with multiple types. We study host-193

parasite coevolution with three successively complicated interaction matrices in frameworks with194

more than two types where both constant and changing population size models can be justified195

(MacArthur, 1970).196

We allow for n different interaction parameters in the most general payoff matrix. It is an197

advantage to be able to calculate specific outcomes with analytically derived statements and not198

have to rely entirely on numerical integration with fixed parameters and fixed initial conditions.199

For the same reason, we focus on a deterministic framework, allowing broad predictions. Eventu-200

ally, one also has to include stochastic effects, which can have decisive impact on coevolutionary201

dynamics, in particular when the dynamics reaches the edges of the state space where extinction202

is likely (Gokhale et al., 2013). Also to explore signatures of genomic selection, such as selective203

sweeps or balancing selection, this is necessary (Tellier et al., 2014).204

The presence of neutrally stable fixed points and constants of motion may lead to the belief205

that Red Queen dynamics exist on stable, regular orbits around the interior fixed point. These are206

also often shown to illustrate this kind of dynamics. The fixed points are neither repelling, thereby207

forbidding a coexistence of this type, nor attracting and, therefore, leading to a stable equilibrium.208

A neutrally stable fixed point and the consequent concentric circles, spheres or higher dimensional209

circulations around the point mean that the system is constantly changing, and yet, stationary in210

this change. Formulating constants of motions or Hamiltonians underlines this principle. However,211
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the stability of a fixed point only holds locally and a constant of motion is a purely mathematical212

constraint. In general, the neutral stability supports the notion of Red Queen cycling. To under-213

stand this kind of dynamics in more detail, we have focused on the simplest possible dynamics and214

not attempted to construct a model for a concrete biological scenario. It is possible to consider215

more complex dynamics with stable or unstable interior fixed points or even limit cycles. However,216

our goal is to illustrate that even these simple models, which often form the basis for investigations217

of host parasite coevolution, can show a dynamics which is much richer than one would expect218

from verbal arguments or numerical considerations of such systems close to interior fixed points.219

Simple models built on differential equations have been famously known to show chaotic proper-220

ties in the sense that close by starting conditions can lead to very diverse outcome, thus restricting221

the predictability of the dynamics to very short time horizons (Lorenz, 1963; May, 1976; Hamilton222

et al., 1990; Hassell et al., 1991; Schuster, 1995; Sato et al., 2002). It thus comes as no surprise that223

a system of multiple interacting species can lead to chaos in some parts of the parameter space224

(May and Leonard, 1975; Smale, 1976). Recently Duarte et al. (2015) found chaos in a food chain225

model with three species resulting in Red Queen dynamics. There is general interest in increasing226

the number of species in the analysis (Liow et al., 2011; Dercole et al., 2010). However, to our227

knowledge, chaos has never been linked to Red Queen dynamics in a two-species model.228

For multiple (three and more) types, we found that trajectories starting further away from the229

interior fixed point can show such chaotic behaviour. Chaotic fluctuations of host and parasite230

abundances, therefore, become possible in parts of the parameter space. A new type can be231

introduced to a system exhibiting typical Red Queen oscillations, e.g. via mutation or migration.232

While the mutant appears at low frequencies, the system shifts to an edge in a higher dimension.233

Our analysis predicts that this might often lead to chaotic dynamics rather than to stasis or the234

persistence of regular Red Queen oscillations. The typical, Red Queen dynamics is thought to235

consist of regular sinusoid-like oscillations of the frequencies of the different types within host and236

parasite populations with short periods and one or few amplitudes. We are now facing highly237

irregular trajectories without periodic re-occurrence and different magnitudes of maxima in each238

cycle. With our model, we propose that in addition to the concepts of stasis or regular Red Queen239
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cycling a third scenario - chaotic Red Queen dynamics - is possible and likely. Chaos, then, would240

be especially rampant in the presence of low levels of standing genetic variation, mutations and241

migration. Moreover, it would in particular occur for very large populations, where the typical242

intuition of evolutionary biologists is to expect regular deterministic dynamics.243
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