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Abstract 22 

Natural selection favors changes that lead to genotypes possessing high fitness. A 23 

conflict arises when several mutations are required for adaptation, but each 24 

mutation is separately deleterious. The process of a population evolving from a 25 

genotype encoding for a local fitness maximum to a higher fitness genotype is 26 

termed an adaptive peak shift. 27 

Here we suggest cooperative behavior as a factor that can facilitate adaptive peak 28 

shifts. We model cooperation in a public goods scenario, wherein each individual 29 

contributes resources that are later equally redistributed among all cooperating 30 

individuals. We use mathematical modeling and stochastic simulations to study the 31 

effect of cooperation on peak shifts in well-mixed populations and structured ones. 32 

Our results show that cooperation can accelerate the rate of complex adaptation. 33 

Furthermore, we show that cooperation increases the population diversity 34 

throughout the peak shift process, thus increasing the robustness of the population 35 

to drastic environmental changes.  36 

Our work could help explain adaptive valley crossing in natural populations and 37 

suggest that the long term evolution of a species depends on its social behavior. 38 

 39 

  40 
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Introduction 41 

Adaptive landscapes, introduced by Seawall Wright in the 1930s (Wright 1932), are a 42 

useful metaphor for the relationship between genotype and fitness. Under this 43 

analogy, fitness is portrayed as a function of genotype, varying between different 44 

allele combinations. Complex traits — which depend on two or more loci — can 45 

produce rugged adaptive landscapes due to fitness interactions between loci. The 46 

simplest instance of a rugged fitness landscape consists of two loci in which 47 

mutations are jointly beneficial but separately deleterious. Adaptive valley crossing, 48 

also known as an adaptive peak shift, has long been an evolutionary conundrum: 49 

how can a population evolve to a higher fitness optimum if it has to "cross" a less fit 50 

genotype on the way? Two main stages are needed for such an evolutionary process 51 

(Michalakis and Slatkin 1996). First, the fitter genotype must appear in the 52 

population. This could happen as a result of sequential mutations in the same 53 

lineage, by recombinant offspring of mutant parents or by migration from another 54 

population. Second, the fitter genotype will have to spread in the population. 55 

However, these two stages have opposing optimal conditions (Weinreich et al. 56 

2005). Mild selection facilitates the first stage of the process: single mutants are 57 

more likely to survive in a mild selection regime, increasing the rate of appearance of 58 

the fitter genotype by recombination or by acquisition of an additional mutation. In 59 

contrast, the second stage is impeded when selection is mild because the fixation 60 

probability of a rare genotype decreases (Eshel 1981).   61 

In contrast to Wright's theory, some researchers have suggested that adaptive 62 

landscapes, which can be extended to various topologies in multidimensional 63 

genotype spaces (Kingman 1978; Kauffman and Weinberger 1989; Neidhart et al. 64 
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2014), might most commonly be single peaked (Bennett 1983; Whitlock 1995, 1997; 65 

Gavrilets 2004). However, these theories cannot account for all adaptive landscape 66 

topologies, and do not exempt evolutionary biologists from a characterization of 67 

evolution on a given rugged adaptive landscape.  68 

Sewall Wright himself was the first to offer a theoretical solution to the adaptive 69 

peak shift problem (Wright 1932). His solution, the Shifting Balance Theory, was 70 

based on a subdivision of the population into small demes in which random genetic 71 

drift can increase the frequency of single deleterious mutants. Then, the second 72 

mutation can appear on the background of the single mutant. Finally, migration and 73 

natural selection can allow the new genotype to expand to other demes. In spite of 74 

its novelty and intuitive nature, the Shifting Balance Theory has been criticized for 75 

the limited range of realistic peak shift scenarios it explains (Coyne et al. 1997, 2000).  76 

Additionally, considerable amounts of research focused on finding unique conditions 77 

which can facilitate adaptive valley crossing: Dividing the population into smaller 78 

subpopulations connected by migration was shown to increase the rate of adaptive 79 

valley crossing, even without Wright's assumptions of increase and decrease in deme 80 

sizes as a function of the beneficial genotypes inhabiting them (Bitbol and Schwab 81 

2014); Furthermore, dividing the population into only two populations connected by 82 

migration, but changing the selection pressure on each population, was also found 83 

to substantially reduce the waiting time for a peak shift (Hadany 2003); Mutation or 84 

recombination rates that increase with low fitness were shown to facilitate peak 85 

shifts, as this entails that less fit individuals can more rapidly adapt and traverse the 86 

fitness valley  (Hadany and Beker 2003; Ram and Hadany 2014); Finally, assortative 87 

mating was also found to increase the rate of adaptive peak shifts in diploid 88 
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populations, as it increases the mating between individuals of the advantageous 89 

genotype, thus preventing recombination from breaking advantageous allele 90 

combinations (Williams and Sarkar 1994). Further theoretical research by Weissman 91 

et al. has established the rate of adaptive valley crossing for sexual (Weissman et al. 92 

2010) and asexual (Weissman et al. 2009) populations under different ranges of 93 

evolutionary forces such as selection, mutation, recombination and population size. 94 

Here we consider an additional factor that can affect the process of crossing 95 

adaptive valleys: cooperative behavior. We show that for a population subdivided 96 

into demes and connected by migration, cooperation between individuals within the 97 

same deme can considerably increase the rate of adaptive peak shifts.  98 

We focus on a public goods form of cooperation (Kagel and Roth 1995): all 99 

individuals within a deme contribute some resources (thus contributing fitness) to 100 

other deme members, and all deme members receive an equal amount of the 101 

redistributed resources. This cooperative behavior reduces the fitness difference 102 

between different genotypes and therefore effectively "smooths" the landscape to 103 

some degree. As a result, less fit mutants are more likely to survive with 104 

cooperation, increasing the rate of appearance of multiple mutants. Cooperation has 105 

an opposite effect on the fixation of the fittest genotype. Precisely because 106 

cooperation smooths the adaptive landscape, it reduces the relative advantage of 107 

the fittest genotype, and with it, its fixation probability. Nevertheless, we show that 108 

for intermediate levels of cooperation, the increase in the rate of appearance of the 109 

fittest genotype outweighs the decrease in its fixation probability, and altogether 110 

shortens the total adaptation time. Furthermore, we find that smoothing the 111 

adaptive landscape serves the cooperative population in another sense: it increases 112 
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the population diversity. This increase in diversity is beneficial in evolutionary terms, 113 

as it can help populations to overcome environmental changes, parasites etc. (Clarke 114 

1979).  115 

Overall, our results show that cooperation affects adaptive peak shifts substantially 116 

and might be an important and overlooked component of complex adaptation.  117 

 118 

Model 119 

We model a population of sexually reproducing haploid individuals, containing two 120 

bi-allelic loci. The ab genotype is the wild type with fitness 1; the fitness of the single 121 

mutant genotypes, 𝐴𝑏 and 𝑎𝐵, is 1 − 𝑠; the fitness of the double mutant  𝐴𝐵 is 122 

1 + 𝑠𝐻. 𝑠 and 𝐻 are the selection coefficients of the single mutant and the relative 123 

advantage of the double mutant, respectively (𝑠 > 0,𝐻 ≥ 1). We assume equal 124 

forward and backward mutation rates for both loci (defined in units of mutations per 125 

generation per locus), and denote them by 𝜇. Recombination occurs with rate 𝑟 per 126 

generation per loci pair. 127 

We model a population composed of 𝑛 demes connected by migration, each of size 128 

𝑘. Thus the total size of the population is 𝑁 = 𝑛 ⋅ 𝑘. Each generation, individuals of 129 

the same deme cooperate.  We model cooperation using a public goods game (Kagel 130 

and Roth 1995): Each individual in the deme contributes a constant fraction c of its 131 

fitness to the deme (0 ≤ 𝑐 ≤ 1), further referred to as the 'cooperation level'; the  132 

contributions are multiplied by a constant 𝑏 and summed (𝑏 ≥ 1); finally, this sum is 133 

equally redistributed between the deme members. Hence, 𝑐 is the cost of 134 

cooperative behavior whereas 𝑏 determines the fold-increase of contributed 135 

resources due to cooperation. After cooperating, individuals migrate to other demes 136 
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with probability 𝑚. Setting 𝑚 = 1 − 1 ⁄ 𝑛  defines a population in which offspring 137 

are uniformly distributed among all demes in every generation; setting 𝑚 = 0 138 

determines each deme to be an effectively isolated population. For simplicity, we 139 

assume that migration to each deme is equiprobable. Finally, mating occurs between 140 

individuals of the newly formed demes. The offspring generation replaces the parent 141 

generation, so that population size remains constant and generations do not 142 

overlap.  143 

 144 

Table 1. Parameters used in the analytical model and the stochastic simulation. 145 

Description Parameter 

Number of demes 𝑛 

Size of each deme 𝑘 

Mutation rate 𝜇 

Recombination rate 𝑟 

Selection coefficient 𝑠 

Double mutant advantage 𝐻 

Fraction of resources 
contributed 

𝑐 

Contributed resources 
multiplier 

𝑏 

Migration rate 𝑚 
 146 

Fitness is determined by an individual’s genotype and the effect of cooperation. We 147 

denote 𝜔𝑖, as the initial fitness of individual 𝑖, determined by his genotype 148 

(𝑎𝑏, 𝐴𝑏, 𝑎𝐵, 𝐴𝐵), and derive the fitness 𝜔𝑖,𝐷 of individual 𝑖 in deme 𝐷, after 149 

considering cooperation: 150 

 151 
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 152 

(𝑒𝑞. 1) 𝜔𝑖,𝐷 = 𝜔𝑖 ⋅ (1 − 𝑐) +
𝑏

𝑘
∑𝜔𝑗 ⋅ 𝑐

𝑗∈𝐷

 

 153 

 154 

Within this framework, we first analyzed the expected waiting time to a peak shift 155 

when each deme contains two individuals (𝑘 = 2) and the population is fully mixed 156 

(𝑚 = 1 − 1 ⁄ 𝑛) using Branching processes analysis (Eshel 1981) (see 157 

Supplementary Information 1). Then, we developed a Wright-Fisher stochastic 158 

simulation to account for general deme sizes (𝑘) and migration rates (𝑚). 159 

Simulations include the effects of natural selection, migration, mating, 160 

recombination, mutation and drift (see Supplementary Information 2). 161 

The simulations comprise three stages. In the first stage a population inhabited by 162 

wild types evolves towards a mutation-selection balance. In the second stage, we 163 

simulate the population until a double mutant appears for the first time. This allows 164 

us to estimate the expected time for the appearance of a double mutant. In the third 165 

stage, the double mutant either goes extinct or fixates in the population (determined 166 

by reaching a frequency of 0.99). From this stage we can estimate the probability 167 

that a double mutant will fixate (see Supplementary Information 2). Combining the 168 

two measures (expected first appearance time and fixation probability) we can 169 

estimate the expected waiting time for the appearance of a double mutant that 170 

fixates (Hadany 2003). We compared simulation results to the analytical 171 

approximation for a fully mixed population (𝑘 = 2,𝑚 = 1 − 1/𝑛  ); they were in 172 

close agreement (Supplementary Information 1c). 173 
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We denote the adaptation time in a population with cooperation level c by τc. The 174 

relative difference between the adaptation time of a cooperative population with 175 

cooperation level c > 0 (τc) and a non-cooperative population (𝜏0) is denoted by 176 

ρ(c) ∶=
𝜏0−τc

𝜏0
.   177 

 178 

Results 179 

A fully mixed population 180 

We start with the special case where demes only have two individuals (𝑘 = 2) and 181 

the population is fully mixed by migration in every generation (𝑚 = 1 − 1 ⁄ 𝑛). We 182 

estimate the relative difference in adaptation time due to cooperation, ρ(c). 183 

Fig. 1 presents ρ(c = 0.6), derived from our approximation (see Model and 184 

Supplementary Information 1), as a function of the selection coefficient, 𝑠,  and the 185 

double mutant advantage, 𝐻. Higher recombination rates restrict the possibility of a 186 

peak shift, as recombination tends to break beneficial gene combinations (Eshel and 187 

Feldman 1970). This is consistent for cooperative behavior as well (Fig. 1, compare A 188 

and B). Cooperation has contrasting effects over the two main stages of the peak 189 

shift. First, it reduces the disadvantage of the single mutants (𝐴𝑏 , 𝑎𝐵), therefore 190 

increasing their survival. As a result, the waiting time for the first double mutant 191 

(𝐴𝐵) shortens in comparison to a non-cooperative population (Fig. 1). On the other 192 

hand, cooperation reduces the benefit of the double mutant, thus decreasing its 193 

survival probability. When selection against the single mutant (𝑠) or the advantage 194 

of the double mutant (𝐻) are high (upper right corners in Fig. 1), the decrease in 195 

waiting time for the double mutant's first appearance is more pronounced than the 196 
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decrease in its fixation probability, resulting in faster adaptation and thus a higher 𝜌 197 

value.  198 

Note that some conditions allow for a peak shift only in a non-cooperative 199 

population, whereas a cooperative population is not expected to cross the adaptive 200 

valley (Fig. 1, black areas). The public goods cooperation, as modeled here, cannot 201 

expand the range of conditions allowing for a peak shift because cooperative 202 

behavior effectively decreases the double mutant advantage (see a formal proof for 203 

a fully mixed population in Supplementary Information 1b). 204 

 205 

Figure 1. Cooperation affects adaptation time in a mixed population. Results are based on analytical 206 

approximations (Supplementary Information 1a). White areas represent parameters where both 207 

cooperatives and non-cooperatives are not expected to achieve a peak shift; black areas are 208 

parameters for which only non-cooperatives are expected to achieve a peak shift; blue areas 209 

represent parameters for which both cooperatives and non-cooperatives achieve a peak shift, but 210 

non-cooperatives accomplish the process faster. Teal to green areas are parameters for which 211 

cooperatives achieve peak shift faster than non-cooperatives, and the colors represent the relative 212 

difference in the expected time to peak shift due to cooperation (ρ). Panels A and B present the 213 

𝝆(𝟎. 𝟔) 

𝒓 = 𝟎. 𝟏 𝒓 = 𝟎. 𝟎𝟏 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 6, 2016. ; https://doi.org/10.1101/062323doi: bioRxiv preprint 

https://doi.org/10.1101/062323


11 
 

results for recombination rates  𝑟 = 0.01, 0.1, respectively. Additional parameters are: N =214 

10,000,  μ = 10−5,  c = 0.6,  b = 1.2. 215 

 216 

A subdivided population 217 

Next we analyzed the rate of adaptation in populations divided into demes 218 

containing more than two individuals (𝑘 > 2). The division to larger demes changes 219 

the frequencies of single and double mutants, rendering our approximation no 220 

longer compatible for the multi-level selection between and within demes. Thus, all 221 

further analysis is based on stochastic simulations (see Model). 222 

First, we examine the effects of selection (𝑠 and 𝐻) on the adaptation time with and 223 

without cooperation. Fig. 2 shows the relative difference in adaptation time due to 224 

cooperation, 𝜌, for populations divided to demes that contain 10 individuals. 225 

Similarly to Fig. 1, 𝜌 is a function of the selection coefficient, 𝑠, on the horizontal 226 

axis, and the double mutant advantage, 𝐻, on the vertical axis. The division of the 227 

population to demes retains the properties exemplified for a mixed population; high 228 

recombination values narrow the range of conditions leading to a peak shift (Fig. 2 229 

compare A and B), and cooperation cannot extend the parameter range enabling the 230 

population to cross the adaptive valley (Fig. 2B, black area).  231 

However, cooperation in a subdivided population accelerates complex adaptation 232 

even more than in a fully-mixed population; i.e., the subdivided population attains 233 

higher ρ values (note the red-yellow hues of Fig. 2 in comparison to Fig. 1; both 234 

figures have the same color scales). 235 
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 236 

Figure 2. Cooperation affects adaptation time in a subdivided population. Results are based on 237 

stochastic simulations (Supplementary Information 2). The x-axis represents the selection coefficient, 238 

𝑠, and the y-axis represents the double mutant advantage, 𝐻. White areas represent parameters 239 

where both cooperatives and non-cooperatives are not expected to achieve a peak shift; black areas 240 

are parameters for which only non-cooperatives are expected to shift a peak; blue areas represent 241 

parameters for which both cooperatives and non-cooperatives achieve a peak shift, but non-242 

cooperatives do so faster. Teal to red areas are parameters for which cooperatives achieve a peak 243 

shift faster than non-cooperatives, and the color represents the average relative difference in the 244 

expected time for a peak shift due to cooperation, ρ, averaged over ≥ 1200 simulations per 245 

parameter set. Panels A and B represent results for low and high recombination rates: 𝑟 = 0.01, 0.1, 246 

respectively. Additional parameter values are 𝑛 = 1,000,  𝑘 = 10,  𝜇 = 10−5,  𝑐 = 0.6,  𝑏 = 1.2,  𝑚 =247 

0.01. 248 

 249 

We investigated the effects of the cooperation levels, 𝑐, and the cooperation benefit 250 

, 𝑏, on the fixation of double mutants. In Fig. 3 we break down the dynamics of the 251 

double mutant fixation to the waiting for the appearance of a double mutant (Fig. 252 

3A), the fixation probability of a double mutant (Fig. 3B), and the overall time to 253 

adaptation (Fig. 3C). For higher benefit produced from contributed resources, 𝑏 254 

𝝆(𝟎. 𝟔) 𝒓 = 𝟎. 𝟏 𝒓 = 𝟎. 𝟎𝟏 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 6, 2016. ; https://doi.org/10.1101/062323doi: bioRxiv preprint 

https://doi.org/10.1101/062323


13 
 

values, the curves of first appearance and fixation probability become steeper (Fig. 255 

3A and B). Higher 𝑏 values effectively diminish the influence of each genotype's 256 

fitness and increase the influence of the pooled fitness. Thus, increasing 𝑏 "smooths" 257 

the adaptive landscape and decreases the waiting time for the appearance of a 258 

double mutant (Fig. 3A). On the other hand, increasing 𝑏 reduces the advantage of 259 

the double mutants and therefore decreases its fixation probability (Fig. 3B). 260 

Although high cooperation levels, 𝑐 values, substantially shorten the waiting time for 261 

appearance of a double mutant, they also reduce its fixation probability. Therefore, 262 

intermediate cooperation levels minimize the adaptation time by striking a balance 263 

between shortening the waiting time for appearance of a double mutant and 264 

decreasing its fixation probability (Fig. 3C).  265 

Of course, when the population is non-cooperative (𝑐 = 0), 𝑏 doesn't affect the 266 

results. With full cooperation (𝑐 = 1), all individuals within a deme have the same 267 

fitness regardless of their genotype, thus yielding the same relative fitness for all 𝑏 268 

values (eq. 1).  269 

 270 

Figure 3. Effect of cooperation on complex adaptation in a subdivided population. The figure shows 271 

simulation results for (A) first appearance of a double mutant; (B) fixation probability of a double 272 
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mutant after appearance; and (C) total adaptation time. Markers show averages of ≥ 5,000 273 

simulations; bars show standard error of the mean. Colors indicate different 𝑏 values (red: 1.2, green: 274 

1.8, blue: 2.4). Additional parameter values: r = 0.  01,  n = 1,000,   k = 10,  μ = 10−5,  m =275 

0.01,  s = 0.05,  H = 5. 276 

 277 

Population diversity 278 

Another interesting facet of the evolutionary process of peak shifts is the population 279 

diversity. A genetically diverse population is more robust to environmental changes 280 

that change genotypes' fitness, and is thus less likely to go extinct due to such 281 

changes (Clarke 1979). In order to measure the genetic diversity we use Shannon’s 282 

Index, normalized by the number of genotypes: 283 

 284 

𝐷 =
−∑ 𝑝𝑖 ln(𝑝𝑖)𝑖

ln(4)
  , where 𝑖 ∈ {𝑎𝑏, 𝐴𝑏, 𝑎𝐵, 𝐴𝐵} 285 

 286 

where 𝑝𝑖 is the frequency of genotype 𝑖 in the entire population. 𝐷 ranges from zero 287 

to one, indicating only one genotype exists or that all genotypes are found in the 288 

population in equal frequencies, respectively.  289 

We define the relative increase in diversity between cooperative and non-290 

cooperative populations to be 𝐷𝑅(𝑐) =
𝐷(𝑐)−𝐷(0)

𝐷(0)
. For diversity analysis, we simulated 291 

the peak shift dynamics for 100,000 generations and recorded the diversity every 292 

100 generations. In Fig. 4 we show the difference in diversity between cooperative 293 

and non-cooperative populations, 𝐷𝑅(𝑐), against varying 𝑠 and 𝐻 values. For all 294 

examined selection coefficients,𝑠 and 𝐻,  cooperation increases the diversity relative 295 
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to a non-cooperative population, usually by more than two-fold (𝐷𝑅(0.6) > 1, Fig. 296 

4A).  297 

During a peak shift, populations reach mutation-selection balance under two 298 

selective regimes: First before the successful double mutant appears and second 299 

after it fixates. The population diversity in the second mutation selection balance is 300 

lower than in the first, since the selective disadvantage of the single mutant 301 

compared to the double mutant is higher than compared to the wild type. 302 

Cooperation reduces the effective disadvantage of single mutants as well as the 303 

advantage of double mutants, and therefore increases diversity both before and 304 

after the peak shift (Fig. 4; Supplementary Information 3). However, when selection 305 

is very weak, this effect diminishes (see Fig. 4, bottom-left corner). When selection is 306 

strong, cooperators achieve a peak shift faster and spend more time in the second 307 

mutation-selection balance, relative to non-cooperators (Supplementary Information 308 

3). Hence, strong selection diminishes the diversity advantage of cooperators (Fig. 309 

4A). Overall, we see that a cooperative population retains, on average, higher 310 

diversity than a non-cooperative population during the entire peak shift process (Fig. 311 

4B, Supplementary Information 3).  312 
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 313 

Figure 4. Effect of cooperation on genetic diversity during a peak shift. (A) The relative increase in 314 

diversity, 𝐷𝑅(0.6), as a function of the selection coefficient, 𝑠, and the double mutant advantage, 𝐻. 315 

Cooperating populations are more diverse throughout the parameter range. Data is averaged over 316 

≥ 200 simulations per parameter set. (B) The average genetic diversity (taken over ≥ 200 317 

simulations) in a cooperative population (blue line) is higher than that of a non-cooperative 318 

population (red line) for selection coefficient 𝑠 = 0.05 and double mutant relative advantage 𝐻 = 5 319 

at almost every time point. Additional parameter values are: n = 1,000,  k = 10,  μ = 10−5, r =320 

0.01,  c = 0.6,  b = 1.2,  m = 0.01. 321 

 322 

Although there is a marked increase in diversity for a cooperative population, the 323 

dynamics of the double mutant’s fixation are similar in cooperative and non-324 

cooperative populations. A peak shift can occur either by a rapid takeover of double 325 

mutants occupying entire demes, or by a gradual increase of the number of double 326 

mutants in each deme. We find that the maximal variance of double mutants among 327 

demes during the peak shift is similar with or without cooperation. However, the 328 

duration of the double mutant takeover in a cooperative population appears to be 329 

more variable than in a non-cooperative one (See Supplementary Information 4), 330 
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suggesting that a metapopulation composed of cooperative populations would be 331 

highly variable over a long period of time. 332 

 333 

Discussion 334 

In this study we have shown that cooperation can be an important factor in the 335 

evolution of complex genotypes. We have found that in a public goods scenario, 336 

cooperative behavior can accelerate a peak shift, relative to non-cooperative 337 

behavior. However, in our model, cooperators can only achieve a peak shift under 338 

conditions enabling so for non-cooperators. Our results indicate that the adaptive 339 

advantage of cooperative behavior increases with the strength of selection, and that 340 

the range of conditions where cooperation is beneficial is expanded for low 341 

recombination rates. The effect of cooperation on fixation time is usually not 342 

monotonous, and intermediate values of cooperation (i.e. not a full investment of 343 

one's resources in cooperative behavior) might be optimal for achieving peak shifts.  344 

Additionally, we examined how cooperation affects genetic diversity. Cooperation 345 

smooths the adaptive landscape by decreasing selection intensity, and therefore 346 

increasing genetic diversity before, during and after a peak shift (Fig. 4 and 347 

Supplementary information 3). 348 

Cooperation is a widespread biological phenomenon, with a vast body of theoretical 349 

literature supporting its evolutionary feasibility (Hamilton 1964; Trivers 1971; 350 

Axelrod and Hamilton 1981; Nowak 2006; West et al. 2007b). The focus of our work 351 

is the effect of cooperation on the dynamics of complex adaptation, rather than the 352 

conditions leading to the emergence of cooperative behavior. Importantly, we note 353 
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that our results hold for population with low relatedness (in a fully mixed population 354 

with migration rate 𝑚 ≈ 1) as well as populations with high relatedness (𝑚 ≪ 1).  355 

Our model assumes that migration is equal between all demes (equivalent to spatial 356 

homogeneity between the demes). This assumption can be violated if migration is 357 

fitness-associated at the individual level. In this case, less fit individuals may be 358 

inclined to migrate more often in order to improve their offspring's genotypes 359 

(Gueijman et al. 2013) and cooperative populations would have lower effective 360 

migration rates than non-cooperative ones. However, we do not expect this to have 361 

a qualitative effect, because the advantage of cooperative populations does not 362 

depend on the level of relatedness. 363 

Recently, Komarova has shown that peak shifts in asexual populations in a spatially 364 

heterogeneous environment can be facilitated by cooperation, when genes affecting 365 

cooperation also determine the fitness, and cooperators directly compete with non-366 

cooperators (Komarova 2014). However, we model the loci determining the fitness 367 

as independent of cooperation, and the results are relevant for peak shifts of genes 368 

that are not directly affected by cooperation. Furthermore, we show that this can 369 

occur for sexual organisms, and even without explicit spatial constraints (e.g. fully 370 

mixed populations; Fig. 1).  371 

Interestingly, cooperative behavior in our model does not change the maximal 372 

between-deme variance of the double mutant distribution (Supplementary 373 

information 4). This implies that the advantage of cooperation does not stem solely 374 

from increased genetic drift. Rather than increasing genetic drift, or bypassing the 375 

adaptive peak, like Wright and Fisher have suggested (Wright 1932; Bennett 1983), 376 

cooperation directly changes the intensity of selection. Nevertheless, cooperation 377 
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changes the variance of the double mutants' duration of fixation (Supplementary 378 

information 4). If different runs of our simulations are viewed as possible outcomes 379 

of independent populations under the same conditions, then the time needed for a 380 

double mutant to spread in these cooperative populations varies substantially. That 381 

some populations lag behind in crossing adaptive valleys might result in competition 382 

between populations or even lead to speciation. The added advantage due to high 383 

genetic diversity in cooperative populations can also influence their survival 384 

probability. Populations might encounter new parasites, predators, or abiotic 385 

environmental changes, against which some of the intermediate genotypes might 386 

have an advantage (Benton 2009). Maintaining intermediate genotypes could in such 387 

cases be a substantial advantage of cooperation.  388 

Multicellular, sexually reproducing organisms are an obvious fit to our assumptions, 389 

if recombination rates between the relevant loci are low and selection is not too 390 

weak. Our model can also be relevant to bacteria, for example, which can face a 391 

peak shift challenge when developing antibiotic resistance (Salverda et al. 2011; de 392 

Visser and Krug 2014). Furthermore, some mutations that confer antibiotic 393 

resistance carry a fitness cost, but can be compensated by additional mutations that 394 

are beneficial in the presence of antibiotics and slightly deleterious in its absence 395 

(Andersson and Hughes 2010). Bacteria carrying both resistance and compensation 396 

mutations in an environment currently without antibiotics would need to cross an 397 

adaptive valley to become non-resistant and uncompensated. Although bacteria do 398 

not reproduce sexually, they can perform some horizontal gene transfer (Ochman et 399 

al. 2000; Thomas and Nielsen 2005), as befitting our model. Bacterial cooperation is 400 

also documented: bacteria often aggregate to produce biofilms or molecules that 401 
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can be considered as public goods (Kreft 2004; West et al. 2007a; Nadell et al. 2008). 402 

Our results suggest that cooperative bacteria may enjoy an additional benefit of 403 

crossing adaptive valleys faster and having increased genetic diversity. Such 404 

knowledge on bacterial population dynamics might be used to devise strategies to 405 

fight antibiotic resistance, as other evolutionary processes are used for predictions 406 

of efficient treatment strategies (Obolski and Hadany 2012; Obolski et al. 2015; 407 

Perron et al. 2015; Caudill and Wares 2016; Obolski et al. 2016).  408 

To conclude, we suggest a possible interplay between evolutionary forces and social 409 

behavior: Cooperative behavior can hasten the appearance of complex genotypes 410 

with increased fitness, which in turn might play a role in maintaining cooperative 411 

populations. 412 

 413 

Acknowledgements 414 

This project was supported by the Israeli Science Foundation 1568/13 (LH), the 415 

Minerva Center for Lab Evolution (LH) and by a fellowship from the Manna Program 416 

in Food Safety and Security (UO). 417 

 418 

References 419 

Andersson, D. I. and D. Hughes. 2010. Antibiotic resistance and its cost: is it possible 420 

to reverse resistance? Nature Reviews Microbiology 8:260-271. 421 

Axelrod, R. and W. D. Hamilton. 1981. The evolution of cooperation. Science 422 

211:1390-1396. 423 

Bennett, J. H  .1983 . Natural selection, heredity, and eugenics: Including selected 424 

correspondence of RA Fisher with Leonard Darwin and others. 425 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 6, 2016. ; https://doi.org/10.1101/062323doi: bioRxiv preprint 

https://doi.org/10.1101/062323


21 
 

Benton, M. J. 2009. The Red Queen and the Court Jester: species diversity and the 426 

role of biotic and abiotic factors through time. Science 323:728-732. 427 

Bitbol, A.-F. and D. J. Schwab. 2014. Quantifying the role of population subdivision in 428 

evolution on rugged fitness landscapes. PLoS computational biology 429 

10:e1003778. 430 

Caudill, L. and J. R. Wares. 2016. The role of mathematical modeling in designing and 431 

evaluating antimicrobial stewardship programs. Current Treatment Options 432 

in Infectious Diseases 8:124-138. 433 

Clarke, B. 1979. The evolution of genetic diversity. Proceedings of the Royal Society 434 

of London B: Biological Sciences 205 :453-474.  435 

Coyne, J. A., N. H. Barton, and M. Turelli. 1997. Perspective: a critique of Sewall 436 

Wright's shifting balance theory of evolution. Evolution:643-671. 437 

Coyne, J. A., N. H. Barton, and M. Turelli. 2000. Is Wright's shifting balance process 438 

important in evolution? Evolution 54:306-317. 439 

de Visser, J. A. G. and J. Krug. 2014. Empirical fitness landscapes and the 440 

predictability of evolution. Nature Reviews Genetics 15:480-490. 441 

Eshel, I. 1981. On the survival probability of a slightly advantageous mutant gene 442 

with a general distribution of progeny size—a branching process model. 443 

Journal of mathematical biology 12:355-362. 444 

Eshel, I. and M. W. Feldman. 1970. On the evolutionary effect of recombination. 445 

Theoretical population biology 1:88-100. 446 

Gavrilets, S  .2004 . Fitness landscapes and the origin of species (MPB-41). Princeton 447 

University Press Princeton, NJ. 448 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 6, 2016. ; https://doi.org/10.1101/062323doi: bioRxiv preprint 

https://doi.org/10.1101/062323


22 
 

Gueijman, A., A. Ayali, Y. Ram, and L. Hadany. 2013. Dispersing away from bad 449 

genotypes: the evolution of Fitness-Associated Dispersal (FAD) in 450 

homogeneous environments. BMC evolutionary biology 13:125. 451 

Hadany, L. 2003. Adaptive peak shifts in a heterogenous environment. Theoretical 452 

population biology 63:41-51. 453 

Hadany, L. and T. Beker. 2003. Fitness‐associated recombination on rugged adaptive 454 

landscapes. Journal of evolutionary biology 16:862-870. 455 

Hamilton, W. 1964. The genetical evolution of social behaviour. I. 456 

Kagel, J. H. and A. E. Roth. 1995. The handbook of experimental economics. 457 

Princeton university press Princeton, NJ. 458 

Kauffman, S. A. and E. D .Weinberger. 1989. The NK model of rugged fitness 459 

landscapes and its application to maturation of the immune response. 460 

Journal of theoretical biology 141:211-245. 461 

Kingman, J. 1978. A simple model for the balance between selection and mutation. 462 

Journal of Applied Probability:1-12. 463 

Komarova, N. L. 2014. Spatial interactions and cooperation can change the speed of 464 

evolution of complex phenotypes. Proceedings of the National Academy of 465 

Sciences 111:10789-10795. 466 

Kreft, J.-U. 2004. Biofilms promote altruism. Microbiology 150:2751-2760. 467 

Michalakis, Y. and M. Slatkin. 1996. Interaction of selection and recombination in the 468 

fixation of negative-epistatic genes. Genetical research 67:257-269. 469 

Nadell, C. D., J. B. Xavier, S. A. Levin, and K. R. Foster. 2008. The evolution of quorum 470 

sensing in bacterial biofilms. PLoS biology 6:e14. 471 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 6, 2016. ; https://doi.org/10.1101/062323doi: bioRxiv preprint 

https://doi.org/10.1101/062323


23 
 

Neidhart, J., I. G. Szendro, and J. Krug. 2014. Adaptation in tunably rugged fitness 472 

landscapes: the rough Mount Fuji model. Genetics 198:699-721. 473 

Nowak, M. A. 2006. Five rules for the evolution of cooperation. science 314:1560-474 

1563. 475 

Obolski, U., E. Dellus-Gur, G. Y. Stein, and L. Hadany. 2016. Antibiotic cross-resistance 476 

in the lab and resistance co-occurrence in the clinic: Discrepancies and 477 

implications in E. coli. Infection, Genetics and Evolution 40:155-161. 478 

Obolski, U. and L. Hadany. 2012. Implications of stress-induced genetic variation for 479 

minimizing multidrug resistance in bacteria. BMC medicine 10:89. 480 

Obolski, U., G. Y. Stein, and L. Hadany. 2015. Antibiotic Restriction Might Facilitate 481 

the Emergence of Multi-drug Resistance. PLoS Comput Biol 11:e1004340. 482 

Ochman, H., J. G. Lawrence, and E. A. Groisman. 2000. Lateral gene transfer and the 483 

nature of bacterial innovation. Nature 405:299-304. 484 

Perron, G. G., R. F. Inglis, P. S. Pennings, and S. Cobey. 2015. Fighting microbial drug 485 

resistance: a primer on the role of evolutionary biology in public health. 486 

Evolutionary applications 8:211-222. 487 

Ram, Y. and L. Hadany. 2014. Stress-induced mutagenesis and complex adaptation. 488 

Proceedings of the Royal Society B: Biological Sciences 281:20141025. 489 

Salverda, M. L., E. Dellus, F. A. Gorter, A. J. Debets, J. Van Der Oost, R. F. Hoekstra, D. 490 

S. Tawfik, and J. A. G. de Visser. 2011. Initial mutations direct alternative 491 

pathways of protein evolution. PLoS Genet 7:e1001321. 492 

Thomas, C. M. and K. M. Nielsen. 2005. Mechanisms of, and barriers to, horizontal 493 

gene transfer between bacteria. Nature reviews microbiology 3:711-721. 494 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 6, 2016. ; https://doi.org/10.1101/062323doi: bioRxiv preprint 

https://doi.org/10.1101/062323


24 
 

Trivers, R. L. 1971. The evolution of reciprocal altruism. Quarterly review of 495 

biology:35-57. 496 

Weinreich, D. M., L. Chao, and P. Phillips. 2005. Rapid evolutionary escape by large 497 

populations from local fitness peaks is likely in nature. Evolution 59:1175-498 

1182. 499 

Weissman, D. B., M. M. Desai, D. S. Fisher, and M. W. Feldman. 2009. The rate at 500 

which asexual populations cross fitness valleys. Theoretical population 501 

biology 75:286-300. 502 

Weissman, D. B., M. W. Feldman, and D. S. Fisher. 2010. The rate of fitness-valley 503 

crossing in sexual populations. Genetics 186:1389-1410. 504 

West, S. A ,.S. P. Diggle, A. Buckling, A. Gardner, and A. S. Griffin. 2007a. The social 505 

lives of microbes. Annual Review of Ecology, Evolution, and Systematics:53-506 

77. 507 

West, S. A., A. S. Griffin, and A. Gardner. 2007b. Evolutionary explanations for 508 

cooperation. Current Biology 17:R661-R672. 509 

Whitlock, M. C. 1995. Variance-induced peak shifts. Evolution:252-259. 510 

Whitlock, M. C. 1997. Founder effects and peak shifts without genetic drift: adaptive 511 

peak shifts occur easily when environments fluctuate slightly. 512 

Evolution:1 044-1048.  513 

Williams, S. M. and S. Sarkar. 1994. Assortative mating and the adaptive landscape. 514 

Evolution:868-875. 515 

Wright, S. 1932. The roles of mutation, inbreeding, crossbreeding and selection in 516 

evolution. Pp. 356-366. Proceedings of the sixth international congress on 517 

genetics. 518 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 6, 2016. ; https://doi.org/10.1101/062323doi: bioRxiv preprint 

https://doi.org/10.1101/062323


25 
 

Supplementary Information 519 

Supplementary Information 1 520 

1a. Analytic approximation 521 

Using Branching processes (Harris 1948) we analyze the probability of a peak shift for 522 

the case of 𝑘 = 2 and 𝑚 = 1 −
1

𝑛
. We define 𝜔𝑥_𝑦 to be the fitness of genotype x, 523 

when genotype y is its partner.  524 

Since the fitness of 𝐴𝑏 and 𝑎𝐵 is the same, and so is their contribution to their 525 

partners we will denote 𝑠𝑚 (single mutant) as either 𝐴𝑏 or 𝑎𝐵. 526 

𝜔𝑠𝑚_𝑎𝑏 = (1 − 𝑠) ⋅ (1 − 𝑐) +
1

2
⋅ 𝑐 ⋅ (1 − 𝑠 + 1) ⋅ 𝑏 

𝜔𝐴𝐵_𝑎𝑏 = (1 + 𝑠𝐻) ⋅ (1 − 𝑐) +
1

2
⋅ 𝑐 ⋅ (1 + 𝑠𝐻 + 1) ⋅ 𝑏 

𝜔𝐴𝐵_𝑠𝑚 = (1 + 𝑠𝐻) ⋅ (1 − 𝑐) +
1

2
⋅ 𝑐 ⋅ (1 + 𝑠𝐻 + 1 − 𝑠) ⋅ 𝑏 

𝜔𝑎𝑏_𝑎𝑏 = (1 − 𝑐) + 𝑐 ⋅ 𝑏 

𝜔𝐴𝐵_𝐴𝐵 = (1 + 𝑠𝐻) ⋅ (1 − 𝑐) + 𝑐 ⋅ 𝑏 ⋅ (1 + 𝑠𝐻) 

𝜔𝑠𝑚_𝑠𝑚 = (1 − 𝑠) ⋅ (1 − 𝑐) + 𝑐 ⋅ 𝑏 ⋅ (1 − 𝑠) 

Since 𝑎𝑏 is the wild type and is the most common genotype, and since the 527 

population is fully mixed, most cooperating couples are of two 𝑎𝑏 individuals. 528 

Therefore the fitness of most individuals is 𝜔𝑎𝑏_𝑎𝑏. 529 

We normalize the fitness of all individuals relative to the most common fitness 530 

𝜔𝑎𝑏_𝑎𝑏 and define: 531 

𝜔𝑠𝑚_𝑎𝑏′ =
𝜔𝑠𝑚_𝑎𝑏
𝜔𝑎𝑏_𝑎𝑏

 

𝜔𝐴𝐵_𝑎𝑏′ =
𝜔𝐴𝐵_𝑎𝑏
𝜔𝑎𝑏_𝑎𝑏
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𝜔𝐴𝐵_𝑠𝑚′ =
𝜔𝐴𝐵_𝑠𝑚
𝜔𝑎𝑏_𝑎𝑏

 

By neglecting terms of the order of 𝜇2 we can say that the partner of an 𝑠𝑚 532 

individual, at the mutation-selection balance, would be 𝑎𝑏. Now we can calculate 𝑠’, 533 

the effective selection coefficient when taking cooperation into account: 534 

𝑠′ = 1 − 𝜔𝑠𝑚_𝑎𝑏′. 535 

We can approximate the probability 𝑞 that an 𝐴𝐵 individual would be formed in the 536 

next generation, given no other 𝐴𝐵 individuals exist in the current generation: 537 

𝑞 = (
𝜇

𝑠′
)
2

⋅ (r + 2 ⋅ s′ + s′2) 

Hence, the probability that the first 𝐴𝐵 individual would appear in the population at 538 

a certain generation, given that it had not appeared earlier is: 539 

1 − (1 − 𝑞)𝑁 

which can be approximated by 𝑞 ⋅ 𝑁, where 𝑁 = 𝑛 ⋅ 𝑘 is the size of the population. 540 

The expected time for appearance of the first 𝐴𝐵 individual (𝑇𝑓𝑖𝑟𝑠𝑡), which is 541 

geometrically distributed, is:  542 

𝐸[𝑇𝑓𝑖𝑟𝑠𝑡] ≈
1

𝑞 ⋅ 𝑁
 

The approximation of the average fitness, marked by 𝜔̅, is: 543 

𝜔̅ = 1 − 2 ⋅ (
μ

s′
) + 2 ⋅ (

μ

s′
) ⋅ (1 − s′) = 1 − 2𝜇 

The progeny of an 𝐴𝐵 individual, marked by 𝑝, is: 544 

𝑝 =

((1 − 𝑟) ⋅ (1 − 2 ⋅ (
𝜇
𝑠′)) + 2 ⋅ (

𝜇
𝑠′)) ⋅ 𝜔𝐴𝐵_𝑎𝑏′

1 − 2𝜇
  

Therefore, if we assume that the number of offspring is Poisson distributed and its 545 

mean is slightly above one (Eshel 1981; Hadany 2003), the probability that an 𝐴𝐵 546 
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genotype would fixate in the population, rather than go extinct, denoted by 𝜋, is 547 

approximated by: 548 

𝜋 ≈
2 ⋅ (𝑝 − 1)

𝑝
 

Thus we can approximate the expected time for appearance of an 𝐴𝐵 individual that 549 

will go to fixation by: 550 

𝐸[𝑇𝑡𝑜𝑡] ≈
𝐸[𝑇𝑓𝑖𝑟𝑠𝑡]

𝜋
 

 551 

1b. Expected progeny analysis for partners:  552 

If the fitness of an 𝐴𝐵 individual is 1 + 𝑠𝐻, and 𝜇 ≪ 𝑠, then the expected number of 553 

the 𝐴𝐵’s offspring which are themselves 𝐴𝐵 is approximated by: 554 

(eq.s1) 𝛼 = (1 − 𝑟)(1 + 𝑠𝐻) 555 

The fitness of an 𝐴𝐵 when its partner is 𝑎𝑏: 556 

 (eq.s2) 𝜔𝐴𝐵_𝑎𝑏 = (1 − 𝑐)(1 + 𝑠𝐻) +
1

2
𝑐𝑏(2 + 𝑠𝐻) 557 

The fitness of a 𝑎𝑏 when its partner is 𝑎𝑏: 558 

 (eq.s3) 𝜔𝑎𝑏_𝑎𝑏 = (1 − 𝑐) + 𝑐𝑏 559 

We normalize the new fitness 560 

(eq.s4) 𝜔𝐴𝐵_𝑎𝑏
′ =

𝜔𝐴𝐵_𝑎𝑏

𝜔𝑎𝑏_𝑎𝑏
=
2(1−𝑐)(1+𝑠𝐻)+𝑐𝑏(2+𝑠𝐻)

2(1−𝑐)+2𝑐𝑏
= 1 +

2(1−𝑐)𝑠ℎ+𝑐𝑏𝑠𝐻

2(1−𝑐+𝑐𝑏)
 561 

Using (eq.s4) and (eq.s1) we get: 562 

 (eq.s5)  𝛼 = (1 − 𝑟) ⋅ (1 +
2(1−𝑐)𝑠𝐻+𝑐𝑏𝑠𝐻

2(1−𝑐+𝑐𝑏)
) 563 

In order for 𝐴𝐵 to fixate, we require that 𝛼 > 1. 564 

Since 0 ≤ 𝑐 ≤ 1 and 𝑏 ≥ 1 we get that the denominator in (eq.s5)  2(1 − 𝑐 + 𝑐𝑏)  is 565 

always positive and therefore we can multiply (eq.s5) and get: 566 
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 (eq.s6) (1 − 𝑟) +
(2(1−𝑐)𝑠𝐻+𝑐𝑏𝑠𝐻)⋅(1−𝑟)

2(1−𝑐+𝑐𝑏)
> 1 567 

  ⇔ (2(1 − 𝑐)𝑠𝐻 + 𝑐𝑏𝑠𝐻) ⋅ (1 − 𝑟) > 2𝑟(1 − 𝑐 + 𝑐𝑏) 568 

  ⇔ 𝑠𝐻 ⋅ (2 − 2𝑐 + 𝑐𝑏)(1 − 𝑟) > 2𝑟(1 − 𝑐 + 𝑐𝑏) 569 

Since 𝑟 < 1 and 𝑐 ≤ 1, we have that  (2 − 2𝑐 + 𝑐𝑏)(1 − 𝑟) > 0 and therefore 570 

 (eq.s7) 𝑠𝐻 >
2𝑟(1−𝑐+𝑐𝑏)

(1−𝑟)(2−2𝑐+𝑐𝑏)
=

𝑟

1−𝑟
⋅
2−2𝑐+2𝑐𝑏

2−2𝑐+𝑐𝑏
=

𝑟

1−𝑟
⋅ (1 +

𝑐𝑏

2−2𝑐+𝑐𝑏
) 571 

Differentiating the right hand side of (eq.s7) with respect to 𝑐 yields: 572 

(eq.s8) 
𝑑(

𝑟

1−𝑟
⋅(1+

𝑐𝑏

2−2𝑐+𝑐𝑏
)) 

𝑑𝑐
=

𝑟

1−𝑟
⋅
𝑏(2−2𝑐+𝑐𝑏)−𝑐𝑏(𝑏−2)

(2−2𝑐+𝑐𝑏)2
=

𝑟

1−𝑟
⋅

2𝑏

(2−2𝑐+𝑐𝑏)2
> 0,573 

∀  0 ≤ 𝑐 ≤ 1, 𝑏 ≥ 1 574 

Therefore 
𝑟

1−𝑟
⋅ (1 +

𝑐𝑏

2−2𝑐+𝑐𝑏
) is monotonically increasing in 𝑐 for all 𝑏 ≥ 1, and 575 

(1 +
𝑐𝑏

2−2𝑐+𝑐𝑏
) = 1 only when 𝑐 = 0. 576 

Thus, any increase in 𝒄 restricts the parameter range enabling 𝑨𝑩’s fixation. 577 

 578 

1c. Comparison between analytical approximation and simulation results 579 

In order to verify our approximations we used stochastic simulations. Fig. S1 shows 580 

the results of the simulation (blue line) and the approximation (red line), for various 581 

cooperation levels. This is shown for the time of first appearance of the double 582 

mutant (Fig. 2A) and the double mutant's fixation probability (Fig. 2B), as a function 583 

of the cooperation level (𝑐). When 𝑐 = 0, we are reduced to the results presented, 584 

and verified against simulations, in (Hadany 2003). We can see that our 585 

approximation is accurate when 𝑐 increases, but it does remain slightly biased.  586 

Note that both the waiting time for appearance of the double mutant and its fixation 587 

probability decrease with 𝑐.  588 
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 589 

Figure S1. Comparison between simulation and analytical approximation in a fully mixed 590 

population. We plot the effect of cooperation on the first appearance of a double mutant and its 591 

fixation. As the level of cooperation increases (x-axis) both the waiting time for appearance of a 592 

double mutant (A) and the fixation probability of a double mutant (B) decrease. We can see that the 593 

analytical approximation and the simulation results are in close agreement. Other parameters are:  594 

𝑠 = 0.05, 𝐻 = 5, 𝑛 = 5,000,  𝑘 = 2,  𝑚 = 1 −
1

𝑛
 𝜇 = 10−5,  𝑟 = 0.01,  𝑏 = 1.2. 

 595 

Supplementary Information 2 – Simulation design 596 

The simulation is composed of a genotype frequencies vector, representing the 597 

structure and composition of the population, and of several functions, each 598 

representing a different process: selection, migration, mating and recombination, 599 

mutation and drift. One generation ends after all functions have been applied and 600 

the population is replaced.   601 

 We initialize the simulation with a population comprised solely of wild type 602 

individuals. Every generation, we apply the selection function and calculate the 603 
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fitness separately for each deme. We calculate the 'donation pool' of every deme 604 

and then derive the new fitness of each individual by (eq. 1) in the main text: 605 

𝜔𝑖,𝐷 = 𝜔𝑖 ⋅ (1 − 𝑐) +
𝑏

𝑘
∑𝜔𝑗 ⋅ 𝑐

𝑗∈𝐷

 

After that we apply the migration function to the fitness-weighted frequencies. The 606 

frequency of genotype 𝑖 in deme 𝐷, after selection and migration (marked as 𝑖𝐷
′ ) is: 607 

(eq.s9) 𝑖𝐷
′ = (1 −𝑚) ⋅ 𝑖𝐷𝜔𝑖,𝐷 + ∑ 𝑖𝑑𝜔𝑖,𝑑 ⋅

𝑚

𝑛−1

𝑛
𝑑≠𝐷  608 

After selection and migration, we apply the mating-recombination function. We 609 

calculate the frequencies of the genotypes in the next generation, within each deme, 610 

according to the frequencies in the parent generation, and the recombination rate, 611 

𝑟. Finally, we apply mutation. 612 

Note that we do not normalize the results after applying the selection function. 613 

Thus, demes with higher mean fitness would export more individuals. 614 

The last phase in each generation is drift, simulated by drawing 𝑘 random numbers 615 

from a multinomial distribution based on the relative genotype frequency in each 616 

deme, and repopulating the demes. We then transform the quantities of every 617 

genotype back into frequencies. After applying all the functions, and initiating the 618 

new frequency vector, the simulation proceeds to the next generation.  619 

 620 

We start each simulation with running 3,000 generations, beginning with a 621 

population composed solely of wild type individuals. At this stage we define the 622 

fitness of genotype AB to be 0 in order to reach mutation selection balance while no 623 

double mutant is yet formed.  624 

 625 
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The parameters we use are 𝑛, 𝑘, 𝑟, 𝜇, 𝑠, ℎ, 𝑏, 𝑐,𝑚, as defined in Table 1 in the main 626 

text. The frequency vector has 4 ⋅ 𝑛 coordinates, where 4 coordinates describe the 627 

frequencies of the different genotypes in a specific deme. For instance, for the 628 

population vector 𝑉, the frequencies of genotypes 𝑎𝑏, 𝐴𝑏, 𝑎𝐵, 𝐴𝐵 in deme 𝑗 are 629 

[𝑉(4𝑗), 𝑉(4𝑗 + 1), 𝑉(4𝑗 + 2), 𝑉(4𝑗 + 3)]. 630 

 631 

1. Fitness 632 

For deme 𝑘 we calculate the pool of fitness donations using matrix product: 633 

𝑝𝑜𝑜𝑙𝑘 = (𝑎𝑏 𝐴𝑏 𝑎𝐵 𝐴𝐵)𝑘 (

1 ⋅ 𝑐 ⋅ 𝑏
(1 − 𝑠) ⋅ 𝑐 ⋅ 𝑏
(1 − 𝑠) ⋅ 𝑐 ⋅ 𝑏
(1 + 𝑠ℎ) ⋅ 𝑐 ⋅ 𝑏

)      634 

After calculating the pool we can calculate the new fitness of every individual, 635 

and by that, the frequency of every genotype after applying selection. The new 636 

frequencies of genotypes in deme 𝑘 would be: 637 

(

𝑎𝑏′

𝐴𝑏′

𝑎𝐵′

𝐴𝐵′

)

𝑘

= (𝑎𝑏 𝐴𝑏 𝑎𝐵 𝐴𝐵)𝑘

(

 

1 ⋅ (1 − 𝑐) + 𝑝𝑜𝑜𝑙𝑘
(1 − 𝑠) ⋅ (1 − 𝑐) + 𝑝𝑜𝑜𝑙𝑘
(1 − 𝑠) ⋅ (1 − 𝑐) + 𝑝𝑜𝑜𝑙𝑘
(1 + 𝑠ℎ) ⋅ (1 − 𝑐) + 𝑝𝑜𝑜𝑙𝑘)

 

⏞                  
𝑁𝑒𝑤 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑒𝑐𝑡𝑜𝑟

 

Where the vector (𝑎𝑏 𝐴𝑏 𝑎𝐵 𝐴𝐵)𝑘 represents the frequencies of the 638 

genotypes in generation 𝑁, and the vector (𝑎𝑏′ 𝐴𝑏′ 𝑎𝐵′ 𝐴𝐵′)𝑘 represents 639 

the frequencies of the genotypes after selection. 640 

 641 

2. Migration 642 
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According to eq.s9, we can define a migration matrix that would simulate the 643 

change in the population composition due to migration. For instance, if there are 644 

3 demes in the population, the matrix would be defined as follows: 645 

(

 
 
 
 
 
 
 
 
 
 

 

1 − 𝑚 0 0 0 𝑚/2 0 0 0 𝑚/2 0 0 0
0 1 − 𝑚 0 0 0 𝑚/2 0 0 0 𝑚/2 0 0
0 0 … 0 0 0 … 0 0 0 𝑚/2 0
0 0 0 … 0 0 0 … 0 0 0 𝑚/2 

𝑚/2 0 0 0 … 0 0 0 … 0 0 0
0 𝑚/2 0 0 0 … 0 0 0 … 0 0
0 0 … 0 0 0 … 0 0 0 𝑚/2 0
0 0 0 … 0 0 0 … 0 0 0 𝑚/2 

𝑚/2 0 0 0 … 0 0 0 … 0 0 0
0 𝑚/2 0 0 0 … 0 0 0 … 0 0
0 0 𝑚/2 0 0 0 𝑚/2 0 0 0 1 −𝑚 0
0 0 0 𝑚/2 0 0 0 𝑚/2 0 0 0 1 −𝑚)

 
 
 
 
 
 
 
 
 
 

 

 646 

3. Mating and recombination 647 

Let 𝑖 ∈ {𝑎𝑏, 𝐴𝑏, 𝑎𝐵, 𝐴𝐵} be the frequency of genotype 𝑖 in a specific deme in 648 

generation 𝑁, and 𝑖′ the frequency of genotype 𝑖 in that same deme in 649 

generation 𝑁 + 1. By this we get: 650 

(

𝑎𝑏′

𝐴𝑏′

𝑎𝐵′

𝐴𝐵′

) =

(

 

𝑎𝑏2 + 𝑎𝑏 ⋅ 𝑎𝐵 + 𝑎𝑏 ⋅ 𝑎𝐵 + 𝑎𝑏 ⋅ 𝐴𝐵 ⋅ (1 − 𝑟) + 𝐴𝑏 ⋅ 𝑎𝐵 ⋅ 𝑟

𝑎𝑏 ⋅ 𝐴𝑏 + 𝐴𝑏2 + 𝑎𝑏 ⋅ 𝐴𝐵 ⋅ 𝑟 + 𝐴𝑏 ⋅ 𝐴𝐵 + 𝐴𝑏 ⋅ 𝑎𝐵 ⋅ (1 − 𝑟)

𝑎𝑏 ⋅ 𝑎𝐵 + 𝑎𝑏 ⋅ 𝐴𝐵 ⋅ 𝑟 + 𝐴𝑏 ⋅ 𝑎𝐵 ⋅ (1 − 𝑟) + 𝑎𝐵2 + 𝑎𝐵 ⋅ 𝐴𝐵

𝑎𝑏 ⋅ 𝐴𝐵 ⋅ (1 − 𝑟) + 𝐴𝑏 ⋅ 𝑎𝐵 ⋅ 𝑟 + 𝐴𝑏 ⋅ 𝐴𝐵 + 𝑎𝐵 ⋅ 𝐴𝐵 + 𝐴𝐵2)

  

 651 

4. Mutation function 652 

The frequency of each genotype after mutation takes place can be written as: 653 

(

𝑎𝑏′
𝐴𝑏′
𝑎𝐵′
𝐴𝐵′

) =  

(

 

(1 − 𝜇)2 𝜇 ⋅ (1 − 𝜇) 𝜇 ⋅ (1 − 𝜇) 𝜇2

𝜇 ⋅ (1 − 𝜇) (1 − 𝜇)2 𝜇2 𝜇 ⋅ (1 − 𝜇)

𝜇 ⋅ (1 − 𝜇) 𝜇2 (1 − 𝜇)2 𝜇 ⋅ (1 − 𝜇)

𝜇2 𝜇 ⋅ (1 − 𝜇) 𝜇 ⋅ (1 − 𝜇) (1 − 𝜇)2 )

 

⏞                                  
𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥

(

𝑎𝑏
𝐴𝑏
𝑎𝐵
𝐴𝐵

) 

 654 
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In this notation, 𝑖 ∈ {𝑎𝑏, 𝐴𝑏, 𝑎𝐵, 𝐴𝐵} represent the frequency of genotype 𝑖 in a 655 

specific deme before mutation and 𝑖′ represents the frequency of genotype 𝑖 in 656 

that same deme after mutation takes place. Since the mutation occurrences are 657 

independent variables, each deme is multiplied by the same matrix. Moreover, 658 

the probability of mutation occurrence is homogenous in time; therefore the 659 

same matrix is valid for the entire simulation. 660 

 661 

Simulations were performed using Python 3.3. When multiple parameter sets were 662 

examined, assignments with random selection of the desired parameter sets were 663 

sent to a computer cluster until the pre-determined number of runs was satisfied for 664 

each parameter set. Hence the statements of 'at least ## simulations' found in the 665 

main text. 666 

 667 

Supplementary Information 3 – Diversity analysis 668 

In order to see the change in genetic diversity as a function of generations, we 669 

plotted the average graph for several parameter sets. For each parameter set, we 670 

chose simulations that ended with fixation of double mutants (limited by 100,000 671 

generations) and calculated the average of two time points: 672 

 𝑇1 – The generation of the first appearance of a double mutant that will 673 

eventually fixate (in contrast with appearance of double mutants that appear 674 

and then extinct). 675 

 𝑇2 – The generation in which the double mutants reached a frequency of 0.99 676 

for the first time. 677 

These two time points divide the process to three phases: 678 
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1. MSB1 – First mutation-selection balance. The time until the first 679 

appearance of a successful double mutant. 680 

2. Takeover – The phase between the first appearance of a successful 681 

double mutant and its fixation. 682 

3. MSB2 – Second mutation-selection balance, after the fixation of the 683 

double mutants. 684 

For simulation 𝑗 let 𝑡1
𝑗
, 𝑡2
𝑗
 be the time of the first appearance of a successful double 685 

mutant and the time of its fixation, respectively. We normalize each generation 𝑖 in 686 

simulation 𝑗  to its relative location within its phase in the following manner: 687 

𝑖′ =

{
 
 
 

 
 
 

𝑖

𝑡1
𝑗
⋅ 𝑇1 𝑖 ≤ 𝑡1

𝑗

𝑇1 +
𝑖 − 𝑡1

𝑗

𝑡2
𝑗
− 𝑡1

𝑗
⋅ (𝑇2 − 𝑇1) 𝑡1

𝑗
< 𝑖 ≤ 𝑡2

𝑗

𝑇1 + 𝑇2 +
𝑖 − 𝑡2

𝑗

100000 − 𝑡2
𝑗
⋅ (100000 − 𝑇2) 𝑡2

𝑗
< 𝑖 ≤ 100,000

 

 688 

After normalization, we smoothed the diversity of the simulations with a 10 689 

generation moving average and plot the results. In the plots presented below, we 690 

show that cooperatives attain higher diversity during the first and the second 691 

mutation-selection balances. In addition, during the takeover cooperatives reach 692 

higher levels of diversity. We can see that occasionally the diversity in a non-693 

cooperative population is higher than in a cooperative population. This happens only 694 

for relatively short periods and mostly when the two populations are not well 695 

synchronized: For example if the cooperative population has already crossed the 696 

valley and is in the second mutation-selection balance (after fixation) while the non-697 
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cooperative population is still in the first stage (see s=0.09, H=9 plot; generations 698 

~10,000-20,000). Nevertheless, as shown in the Fig. 4 in the main text, the average 699 

diversity in the entire process is almost always higher for cooperative populations. 700 

 701 

Figure S2. Mean diversity is higher for cooperative population. For each phase (MSB1, Takeover, 702 

MSB2) the diversity in a cooperative population is higher than in a non-cooperative population. Each 703 

plot is based on at least 180 simulations. Note that the y-axes are broken. 704 

Parameters are: 𝑛 = 1,000,  𝑘 = 10,  𝜇 = 10−5,  𝑟 = 0.01,  𝑐 = 0.6, 𝑏 = 1.2 705 
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Supplementary Information 4 – SD of double mutants between demes 706 

In this section we examined the variation in the number of double mutants between 707 

demes during the fixation process. A peak shift can occur either by a rapid takeover 708 

of double mutants occupying entire demes, or by a gradual increase of the number 709 

of double mutants in each deme. The spread of double mutants in the population 710 

can be expressed by the variance of the number of double mutants between the 711 

demes: 712 

σAB
2 = ∑

(ABD−AB̅̅ ̅̅   )
2

n

n
D=1   713 

Where ABD is the number of double mutants in deme D, and AB̅̅ ̅̅  is the average 714 

number of double mutants per deme (
∑ ABD
n
D=1

n
). 715 

A population composed of demes with a similar number of double mutants would 716 

have low variance, whereas high variance is expected when the population is 717 

composed of demes fully inhabited by double mutants and demes completely devoid 718 

of them. We find that the cooperation level (c) does not influence the maximum 719 

variance attained during a peak shift (compare red to blue curves in the figure), 720 

indicating that the peak of the distribution of double mutants among demes during 721 

the fixation process is similar with or without cooperation. However, the dynamics of 722 

the double mutant spread in a cooperative population are more variable than in a 723 

non-cooperative one. 724 

 725 
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 726 

Figure S3. The change in variance of double mutants across demes during a peak shift. Standard 727 

deviation of the number of double mutants between demes (𝜎𝐷𝑀) is plotted for 100 simulation runs 728 

of a cooperative population (𝑐 = 0.6, blue) and a non-cooperative population (𝑐 = 0, red), under 729 

several sets of selection coefficients: 𝑠 = 0.1, ℎ = 10 (A), 𝑠 = 0.05, ℎ = 5 (B) and 𝑠 = 0.02, ℎ = 2 (C). 730 

Each simulation begins from the first successful double mutant (a double mutant that fixates in the 731 

population) until 99% of the population are double mutants (yielding 𝜎𝐷𝑀 < 1). The dashed line 732 

represents the theoretical boundary of the 𝜎𝐷𝑀 value, attained when half of the demes are inhabited 733 

solely with double mutants, and the other half is empty of double mutants. The qualitative dynamics 734 

are very similar for the different selection coefficients (compare A, B and C) though the scale is 735 

different. Other parameters: 𝑛 = 1,000,  𝑘 = 10,  𝜇 = 10−5,  𝑟 = 0.01,  𝑏 = 1.2. 736 

 737 
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