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Abstract—Using a variety of techniques including Topic
Modeling, Principal Component Analysis and Bi-clustering, we
explore electronic patient records in the form of unstructured
clinical notes and genetic mutation test results. Our ultimate
goal is to gain insight into a unique body of clinical data,
specifically regarding the topics discussed within the note
content and relationships between patient clinical notes and
their underlying genetics.
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I. INTRODUCTION

Unstructured medical text notes contain a variety of infor-
mation regarding patients and their care. Text data includes
details such as family history, physician’s care plans, and
current symptoms. Much of this information cannot be
found anywhere else in a patient’s Electronic Health Record
(EHR). By employing generative topic models tailored to
this source of rich patient data we can gain a deeper
understanding of these patients. Analyzing the correlations
between patient clinical text and genetic testing results could
reveal unexpected patterns.

In this work, we describe our exploration of a largely
untapped set of EHRs containing patients’ initial consult
clinical notes and the genetic mutations in those patients’
tumors. We begin by using topic modeling to characterize the
entire corpus of notes. Then we apply principal component
analysis to further reduce the dimensionality of patient note
content, and use the first two principal components to search
for possible interesting clusters amongst patients. Finally, we
attempt to uncover correlations between patient notes and
gene mutations in those patients’ tumors.

II. RELATED WORK

The recent note of [1] is most similar to our work. There,
various dimensionality reduction techniques were used to
obtain a latent representation of patient state from clinical
text analysis in an Intensive Care Unit setting. The study
showed that vanilla unsupervised latent dirichlet allocation
(LDA) [2] outperforms its supervised counterparts sLDA [3]
and MedLDA [4] in a high-dimensional setting, which is the

common case when attempting to represent the complexities
inherent in patient data. This motivates our usage of vanilla
LDA with more than 50 topics. In their work the focus
was on studying predictability of clinical events such as
sepsis based on the latent representations, while our setting is
more exploratory, i.e. visualizing the data to find trends and
studying correlations between genetic variables and latent
patient states. Another difference may be that we went to
great lengths to preprocess the notes (see Section IV-A),
which they also motivate as a future need to build better
representations.

In other related work, the promise of topic models
to create abstractions from medication combination was
studied [5]. Similarly, the interactions between herbs used
in traditional Chinese medicine for given symptoms were
analyzed in [6] using variants of LDA. However, clinical
text mining using topic models is a crowded field, already. In
other work [7], topic model representations of unstructured
clinical text are used to classify and represent radiology
reports. In a more general setting, biomedical text has been
probed for relations between headings and content in using
topic models and adaptations like Topic-Concept models
in [8]. Other applications of similar models have been the
exploration of recreational drug discussions [9] and, relevant
to clinical practice, clinical case retrieval [10]. One key
difference of our work to all of the above is the focus
on cancer patient notes and the association to biological
variables like genetics.

III. DATA DESCRIPTION

A. The Darwin Database

Darwin is a self-service reporting and analytics tool
developed and maintained by Memorial Sloan-Kettering
Cancer Center (MSKCC) which contains information on
over 900 labeled data fields across 30 data subject areas.
Over 1.3 million unique patients records have been added to
date with information spanning back three decades. Darwin
was created to help meet the increasing data demands of
MSKCC’s research and clinical staff (see Fig. 1).

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 6, 2016. ; https://doi.org/10.1101/062307doi: bioRxiv preprint 

https://doi.org/10.1101/062307
http://creativecommons.org/licenses/by-nc/4.0/


Figure 1. The user interface of the Darwin reporting system.

B. Data Selection

Due to the Health Insurance Portability and Accountabil-
ity Act (HIPAA), patient data is strictly regulated. HIPAA’s
“minimum necessary standard” requires medical entities to
limit the disclosure of protected health information [11]. In
order to comply with this regulation we selected a subset of
patients and data fields from the EHR database to focus on
in this first exploration.

Our dataset consists of 5,605 de-identified patient records
for whom we could access both initial consult notes, and at
least one genetic mutation test result from a common testing
panel named Sequenom [12]. Since we wished to examine
possible correlations between patient text and mutations, we
chose these patients specifically because of the existence of
their Sequenom gene mutation results.

The clinical notes are in the form of unstructured free
text, and the Sequenom results are formatted as columns of
discrete mutation “Positive” or “Negative” test results for
each patient record.

IV. METHODOLOGY

A. Data Preparation

Data pre-processing is an essential step before applying
any downstream data mining or machine learning tech-
niques. Irrelevant, noisy and unreliable data makes knowl-
edge discovery more difficult and increases the likelihood of
producing misleading results [13].

In order to improve the quality of our analysis, we took
several steps to prepare our raw patient data into a more con-
sistent and regular dataset. For the medical text we removed
stopwords, applied negation detection, stemmed each term,
and separated the content into logical subsections before
starting our topic modeling. For the genetic testing results,
we discarded sparsely documented mutations, patients with
contradictory results, and duplicate patient entries.

CHIEF COMPLAINT: Ms. NAME is a AGE-year-old woman who presents with newly 
diagnosed stage IV metastatic non-small cell lung carcinoma here for 
further treatment options. 
 
HISTORY OF PRESENT ILLNESS: Here today for evaluation. She developed 
dyspnea and was found to have a right sided pleural effusion on chest x-
ray. Thoracentesis cytology was indicative of malignant cells consistent 
with adenocarcinoma. 
 
She underwent a CT scan of the chest that demonstrated a left lower lung 
nodule measuring 1.2cm. A CT scan of the abdomen and pelvis was negative 
in detail. 
 
PAST MEDICAL HISTORY: Hypertension, kidney stones. Breast lump removed 
DATE, hysterectomy DATE, cesarean section DATE. Right leg surgery after an 
accident. Hyperlipidemia. 
 
SOCIAL HISTORY: No history of alcohol or tobacco use. Patient lives alone 
in Manhattan. She has two adult children who live nearby. She works at a 
law firm. 
 
FAMILY HISTORY: No family history in first-degree relatives. History of 
esophageal cancer in aunt, melanoma in uncle. Father died of heart attack 
at AGE.  
 
REVIEW OF SYSTEMS: She denies weight loss, headaches, dizziness. Has 
dyspnea on exertion but no SOB at rest. No changes in urination pattern. 
 
PHYSICAL EXAMINATION: 
 
GENERAL:    In no acute distress, well appearing. 
LUNGS:   Decreased breath sounds on the left. 
ABDOMEN:   Soft, nontender. Bowel sounds present 
 
IMPRESSION & PLAN: The patient is a AGE-year-old woman without history of 
smoking now with recently diagnosed stage IV non-small cell lung 
adenocarcinoma with malignant pleural effusion. During this visit we 
discussed the extent of disease and role of palliative systemic 
chemotherapy. Her cancer is incurable. I suggest that she undergo a biopsy 
of the left lower lung mass to obtain more tissue for EGFR mutational 
testing. She may be a candidate for targeted oral therapy. If not found to 
have EGFR mutation then a platinum doublet may be used. She will return 
after the biopsy to discuss final treatment options. In general, we also 
discussed the prognosis related to stage IV non-small cell lung carcinoma. 
 

Figure 2. A Sample Clinical Note

1) Clinical Text Preparation: First we removed extremely
common stopwords with little contextual value such as ’the’,
’and’, and ’it’. We started compiling our list of stopwords
from an existing list of common English stopwords1 and
added in new ones that were more specific to our dataset
such as keywords for redacted information like ’DATE’,
’INSTITUTION’ and ’NAME’.

Next we performed negation detection on our text because
the presence or absence of symptoms and behaviors is one
of the most fundamental pieces of information available
in clinical notes. To capture this concept we first replaced
verbose negative phrases with the word “no” to reduce
variability in the data. Then, if a negating phrase or word
appeared at the beginning of a list it was applied to the
entire list. Lastly, in order to retain the negated state of
a given word, we linked negative identifiers to the words
they negated to be treated as their own distinct terms. For
example, “no history of tobacco, drugs, alcohol” becomes
“no tobacco no drugs no alcohol”.

In order to avoid duplication of concepts, we chose to
treat similar words as one concept. For example, “compute”,
“computing”, “computes”, and “computed” would all be
treated as instances of one word group with the stem “com-
put”. To make the resulting text easier to read, when building
our document vocabulary we treated all instances of a
particular word-stem as instances of the first word identified
by that stem. We implemented this stemming process using

1http://www.ranks.nl/resources/stopwords.html
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Figure 3. Sample Topic Model Results - the word clouds represent topics
which were generated over the entire body of documents, the highlighted
words in the text show which words from this note are attributed to the
matching colored topic. Line thickness indicates the percentage of text
attributed to that topic.

the python stemming package’s Porter2 algorithm2.
Clinical note content varies dramatically from physician

to physician, institution to institution, and sometimes just
day to day. This problem is further compounded by the
fact that medical terminology is not standardized. There
are a plethora of synonyms, acronyms and abbreviations
as well as spelling errors. While we considered using a
medical dictionary like the Unified Medical Language Sys-
tem (UMLS) [14], to standardize the document language,
we eventually abandoned that idea as often abbreviations
and acronyms stand for multiple different concepts, and
because we did not want to lose detail by treating more
specific terms as instances of their parent concept (for exam-
ple, “adenocarcinoma” contains more contextual information
than “carcinoma”).

One of the only consistencies in note content across differ-
ent patients and physicians was the basic outline. Commonly,
clinical notes are composed of several distinct sections:
Chief Complaint (CC), History of Present Illness (HPI),
Past Medical History (PMH), Family History (FHx), Social
History (SHx), Review of Systems and Physical (ROS) and
the physician’s Impressions and Plan (IMP) (see Fig. 2).
Since different sections focus on different information and
share contextual similarities from one patient to the next, we
decided to examine each section individually. We corrected
for common spelling errors and variations in labeling these
sections, and then used a rule-based system to divide the

2https://pypi.python.org/pypi/stemming/1.0

Figure 4. Graphical Model Representation of LDA

notes into these components.
2) Sequenom Preparation: Each patient had at least one

genetic test result, though not all patients had the entire
panel’s results loaded into the EHR database. To reduce the
likelihood of generating biased results, we chose to examine
those genetic mutations for which at least 1000 patient
results existed, and which identified 5 or more patients as
“positive”. We removed from consideration patients with
contradictory records (both positive and negative test results
recorded). Last, duplicate entries were removed.

B. Topic Modeling

Topic models are a class of statistical models used in nat-
ural language processing to reveal the underlying thematic
structure of a large body of documents [2]. The intuition
behind topic modeling algorithms is that a document dis-
cussing a certain concept is more likely to contain language
associated with that concept. Intuitively, if a document is
80% about lung cancer and 20% about alternative medicine,
then approximately 80% of the terms in that document will
be related to lung cancer and approximately 20% of the
terms will be related to alternative medicine (see Fig. 3).
A topic is simply a distribution of terms over a vocabulary,
allowing each document to be described as a distribution
over topics.

One of the most commonly used unsupervised topic
modeling algorithms is latent Dirichlet allocation (LDA)
[15]. LDA resembles a generative process that assembles
a document collection D = {dm}m∈{1...M} using a fixed
vocabulary W , subject to some unknown probability distri-
butions including the distribution of topic k over vocabulary
(denoted as Φ = {φk}, k ∈ {1, . . . ,K}) and the distribu-
tion of the mth document over all K topics (denoted as
Θ = {θm},m ∈ {1, . . . ,M}). LDA can be represented as
a probabilistic graphical model in Fig. 4, where z is a topic
assignment vector for words w, and α and β are prior
parameters. This model also corresponds to Eq. (1) which
clearly describes the generative process: for document m,
first the distribution of topics over vocabulary Φ and the
distribution of document over topics θm are sampled from
prior β and α, respectively; then the topic assignment z
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Figure 5. Topic modeling output with ten topics for the Impressions &
Plan section of this corpus of patient notes. Each word cloud represents
one topic discovered using LDA. A topic is a distribution over words;
here, relative word size shows the relative weight of a given word within
the topic distribution.

for each word is generated from θm; and finally the exact
words w are generated according to their respective topic
assignment z as well as the distribution of topics over the
vocabulary Φ.

p(w, z, θm,Φ|α, β) = p(Φ|β)p(θm|α)p(z|θm)p(w|Φ, z).
(1)

To extract Φ and Θ that are of our interest, we can use
maximum log-likelihood estimation over D. Unfortunately,
the discrete variable z causes this inference to be intractable
in practice. This issue has been solved using collapsed
Gibbs sampling [16], an algorithm for inference in LDA.
Specifically, we used LDA with collapsed Gibbs sampling
as implemented in the GraphLab Topic Modeling toolkit [17]
for our experiments.

C. Principal Component Analysis and Clustering

In principal component analysis (PCA), a dataset is
orthogonally transformed into linearly uncorrelated bases.
These new bases, referred to as ’principal components’ are
defined such that the first principal component describes as
much of the variability within the data as possible. Each
following principal component is defined to be orthogonal to
the preceding components to explain the maximum possible
remaining variance.

Figure 6. Topic Stability: Topics concerning ’melanoma’ and ’BRAF’
appear in every LDA output for the Impressions & Plan note section. These
topics grow from a single broad category when LDA produces 10 Topics
to more detailed word groups as more topics are computed.

Our goal in applying PCA to the topic distributions, Θ,
was to reduce the dimensionality of our data sufficiently to
be able to visualize all the patients simultaneously, and to
see if patients could be grouped in some logical manner this
way. We accomplished this aim by calculating and plotting
the first two principal components for each section and
topics group, and examining those plots for clusters using a
meanshift clustering algorithm [18].

D. Mutation Correlation and Bi-clustering

We selected this group of patient’s clinical notes from
the EHR database specifically because these patients all had
genetic mutation test results. One goal of this exploration
was to see what relationships, if any, exist between the
text of a patient’s notes and their subsequent genetic testing
results. In order to explore these possible relationships, we
examined each set of mutation results as they related to
each topic in several ways. First, for every combination of
mutation and topic, we computed the Pearson’s correlation
coefficient between the patients’ mutation results and the
percentage of their notes attributed to the given topic. We
then ranked these coefficients by their absolute value from
largest to smallest, and compared the results of the strongest
correlations. Finally, we used the algorithm from [19] to
discover and visualize possible bi-clusters within the most
highly correlated topics and mutations.
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Figure 7. Left: The first two principal components, colored by meanshift
clustering on History of Present Illness (HPI) for 80 Topics. Each cluster
is described by the average topic distribution over patients. The resulting
combination of topics is defined by a distribution of the top ten most
common words from each component-topic. Right: Plot of the same first
two principal components colored and defined by patient ICD site codes.
Note the broad similarity of note-topic clusters, and groups seen by coloring
those points via patient’s separately documented site code.

V. RESULTS

A. Extracting and Visualizing Topics

1) LDA for Topic extraction: We trained multi-scale topic
models on each of the main note sections, generating groups
of 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200 and 300
topics for each section to provide an assortment of topic
results for analysis. We then examined the resulting word
clouds as a first-step sanity check to determine the quality of
our extracted topics. The results of the LDA topic modeling
appear to be descriptive, readable and reflective of the body
of patients (Fig. 5).

2) Topic Stability: While selecting different numbers of
total topics generated a variety of results for analysis, we
discovered that in most sections a few dominant topics
would appear in every set of topic groups. This topic stability
persisted from an initial broad category in the 10 topic
range to more granular sub-categories on the 300 topics side
(Fig. 6).

3) Principal Component Analysis and Clustering: During
billing for hospital services, cancer patients are assigned
an International Classification of Diseases (ICD) Site Code
describing the location of their tumors, infections and other
injuries. In order to verify the clusters discovered via PCA,
we decided to plot the patient points colored by their site
codes. Since site code descriptions can be very specific

Figure 8. Chief Complaint Topic Clusters and Site Codes. Unlike Fig. 7,
here patient topic clusters do not seem to re-appear when patients are
colored by site code. By examining the first two principal components of
patient topic distributions we can reveal clusters of patient concern that are
not immediately obvious from other metrics like billing site codes (such as
preoperative risk assessment in red above).

(ex: SKIN, LEG/HIP) or relatively vague (ex: SKIN, NOS),
we grouped together site codes by broad general location
and show the most common results. Sometimes, the PCA
clusters we discovered were descriptive of location-specific
cancers such as Melanoma or Colon Cancer. As expected,
we discovered that these topic clusters strongly resembles
their site code plots (Fig. 7).

Interestingly, principal component clusters of other sec-
tions described trends of patient concern that were less
readily observable from raw patient statistics. For example,
in the Chief Complaint section we discovered a large cluster
of patients seeking advice and pre-operative risk evaluation.
This cluster disappears in a site code plot (Fig. 8).

B. Cross-Section Analysis

As discussed above, clinical notes are composed of several
sections. Each section describes a different aspect of a
patient’s well-being and care. However, since each section is
still discussing the same individual, some overlap in content
is to be expected. In order to observe the level of similarity
between sections, we computed correlations between patient
topic distributions from section to section. In Fig. 9 we
highlight those topics with the highest correlations (r > 0.1
and p < 0.0005).

Clear visual patterns emerge showing high levels of sim-
ilarity between History of Present Illness and Impressions
and Plan, as well as slightly weaker but still visually
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Figure 9. Cross-section topic correlation matrix. Topics with high Pearson
correlation coefficient and low p-values are highlighted in yellow. Clusters
appear to indicate significant overlap in content between HPI and IMP.

striking relationships between these two sections with the
Chief Complaint and Review of Systems/Physical. This is in
contrast to Family History and Social History, which appear
to lack significant correlation to other sectional content.

In context it seems sensible that a physician’s consult
notes would show similarities between patient complaints,
their present illness, bodily symptoms discussed during a
physical review and the doctor’s impressions. Meanwhile,
Family History and Social History contain many unique
patient details. From this analysis it appears those details
are topically unrelated to patient illness.

C. Mutation Correlation

The Sequenom panel tests for mutations that are already
known to exist in certain types of cancers. The goal of
this correlation study was to see if we could independently
re-identify any known relationships between mutations and
cancer phenotypes as a proof-of-concept to test the reliability
of using topic modeling to generate useful labeling of
patients and find meaningful correlations. If we examine the
strongest correlations between patient topics and mutation
test results (those where r > 0.1 and p < 0.0005), we find
several interesting correlations.

We discovered several topics with notable correlations to
specific genetic mutations. First, we examined individually
these strongest correlations between patient topics and mu-
tations results. We found that 0.27% of topic-mutation pairs
were notably correlated. In Table I we show the specific in-
dividual top correlations for the Impressions & Plan section
with 20 topic groups. When reviewing the highest correlated

Table I
TOP MUTATION-TOPIC CORRELATIONS BETWEEN POSITIVE MUTATION

TESTS AND IMPRESSIONS & PLAN 20 TOPIC GROUP.

Mutation Topic words r p-value
NRAS-Q61 melanoma, trials, options 0.31 3.8E-05
BRAF-V600 melanoma, trials, options 0.29 1.6E-07
EGFR-EXON-19 mutational, lung, testing 0.27 4.4E-05
BRAF-V600 thyroid, disease, PET 0.21 1.6E-07
EGFR-L858 mutational, lung, testing 0.16 1.8E-19
NRAS-Q61 thyroid, disease, PET 0.16 3.8E-05
EGFR-T790 mutational, lung, testing 0.16 4.8E-25
PIK3CA-H1047 breast, cancer, positive 0.14 5.0E-20
EGFR-EXON-20 mutational, lung, testing 0.11 4.5E-07

Table II
REPEATED MUTATION-TOPIC CORRELATIONS

Mutation Correlated topic words
BRAF-V600 melanoma, excision, malignant, wide
BRAF-V600 thyroid, papillary, carcinoma, neck
BRAF-V600 BRAF, melanoma, ipilmumab, clinical
EGFR-* lung, adenocarcinoma, erlotinib, Stage IV
EGFR-* EGFR, mutation, lung, no tobacco
KRAS-A146 colon, metastatic, liver, sigmoid
NRAS-Q61 melanoma, excision, malignant, wide
NRAS-Q61 thyroid, papillary, carcinoma, neck
PIK3CA-H1047 breast, positive, invasive, ductal

items we repeatedly noted topics correlating to the following
mutations: BRAF-V600, several EGFR mutations, KRAS-
A146, NRAS-Q61, and PIK3CA-H1047. Furthermore, these
mutations paired with multiple topics but because of the
topic stability and overlap in sectional content discussed
earlier, we were able to see a pattern of content emerge from
these correlated topics. Table II shows the most common
topic content associated with these mutations.

We first notice that for BRAF-V600 and the EGFR
mutations that ‘BRAF’ and ‘EGFR’ show up in commonly
correlated topics. This is promising since it implies that
our clustering and correlation study is finding reasonable
correlations between note content and mutation results. More
importantly, these correlations also find notable relationships
in less obvious areas. For example, “NRAS” is never seen in
the topic content correlating NRAS-Q61 to melanoma and
thyroid cancer. For EGFR mutations, we see a relationship
to lung cancer and erlotinib outside the topics containing
“EGFR””.

In the bi-clustering step, we categorized each relationship
between a topic and a mutation using the same standards for
labeling the strongest correlations. Then, using the algorithm
described in [19] we learn bi-clusters of correlated mutations
and topics. Using this process we discover that BRAF-V600
and NRAS-Q61 mutations correlate to the same topics as
each other, and can visualize the cluster between EGFR-
EXON-19, EGFR-EXON-20, EGFR-L858 and EGFR-T790
and topics containing “EGFR, mutation, no tobacco” and
“erlotinib, lung, adenocarcinoma.” See Fig. 10 for the bi-
clustering results discovered between the Sequenom muta-
tions and Chief Complaint 100 topics.

Since the Sequenom panel tests for mutations that are
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Figure 10. On the left the bi-clustering process is demonstrated. The blue heatmap shows the range of correlation between topics and mutations. The dark
red heatmap shows the range of p-values for the same points. We combine these two datasets to identify clusters of the strongest correlations between topics
and mutations. Those strongest relationships are highlighted in yellow in the third heatmap. The last step shows the bi-clustering results. The right-hand
side shows the content of these bi-clusters. The green topics correlated to BRAF-V600 and NRAS-Q61 represent the top left-cluster with two mutations
and three topics, and the magenta topics correlated to several EGFR mutations represent the second-cluster.

already known to exist in certain types of cancers, we
can examine the other correlated topics to determine if we
were successful in independently identifying any verified
relationships between mutations and cancer phenotypes.

Excitingly, these strongest relationships have been de-
tected independently by other methods of research [20], [21],
[22], [23], [24]. This success in identifying independently
verified relationships to mutations encourages us to speculate
that refining and expanding upon this approach would be a
valid avenue for future study with a larger corpus of patient
data and less studied mutations.

VI. SUMMARY AND FUTURE WORK

In this paper we examined a unique, largely unexplored
corpus of clinical notes and a related collection of genetic
mutation test results. We sought to gain insight into the
hidden themes and framework of unstructured free-text
medical notes, and to examine the parallels between that
text and the genetic mutations of the patients it describes.

We began by accessing the clinical notes and genetic
mutation records of several thousand patients from a private
database of patient electronic health records assembled by
Memorial Sloan-Kettering Cancer Center. These records
were carefully prepared for analysis through several data

pre-processing techniques in order to reduce noise and in-
consistency which might lead to misleading or inconclusive
results.

From our exploration of the clinical text notes we discov-
ered large clusters of patients concerned with a variety of
issues from the treatments and effects of specific cancers
to broad interests in alternative medicine or opinions on
surgical risk. We determine that there is a large amount of
overlap between several of the main sections provided in
typical clinical notes: Chief Complaint, History of Present
Illness, Impressions and Plan, and Review of Systems,
however other sections such as Social History and Family
History contain unique details which are largely unrelated
to the remainder of the note.

From an examination of the correlations between clinical
note content and the available panel of mutation data, we
successfully identified several genotype-phenotype relation-
ships that have been independently identified through other
methods of research. We consider this a successful proof-of-
concept to motivate further refinement of our topic modeling
approach.

Regarding future work, we are interested in the fol-
lowing directions. First, we want to train topic models
on sentences from documents and aggregate the resulting
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sentence representation per document to obtain a sharper
estimate of topics and retain additional contextual detail.
Next we wish to explore the entire series of patient notes
over time to generate a temporal, naturally hierarchical topic
representation of the clinical notes. Additionally, we wish to
investigate a broader selection of mutation-topic associations
with additional genetics data. Finally, we would like to
explore other applications of topic models for clinical notes
such as automated patient identification for clinical trials.
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