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ABSTRACT 13	

The degree to which host genetic variation can modulate microbial communities in humans 14	

remains an open question. Here we performed a genetic mapping study of the microbiome in 15	

two accessible upper airway sites, the nasopharynx and the nasal vestibule, during two seasons 16	

in 144 adult members of a founder population of European decent. We estimated the relative 17	

abundances (RAs) of genus level bacteria from 16S rRNA gene sequences and examined 18	

associations with 148,653 genetic variants (linkage disequilibrium [LD] r2 < 0.5) selected from 19	

among all common variants discovered in genome sequences in this population. We identified 20	

37 microbiome quantitative trait loci (mbQTLs) that showed evidence of association with the 21	

RAs of 22 genera (q < 0.05), and were enriched for genes in mucosal immunity pathways. The 22	

most significant association was between the RA of Dermacoccus (phylum Actinobacteria) and 23	

a variant 8kb upstream of TINCR (rs117042385; p = 1.61x10-8; q = 0.002), a long non-coding 24	

RNA that binds to peptidoglycan recognition protein 3 (PGLYRP3) mRNA, a gene encoding a 25	

known antimicrobial protein. A second association was between a missense variant in 26	

PGLYRP4 (rs3006458) and the RA of an unclassified genus of family Micrococcaceae (phylum 27	

Actinobacteria) (p = 5.10x10-7; q = 0.032). Our findings provide evidence of host genetic 28	

influences on upper airway microbial composition in humans, and implicate mucosal immunity 29	

genes in this relationship.  30	
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INTRODUCTION 31	

Diverse populations of microorganisms inhabit nearly every surface of the human body 32	

and these complex assemblies of microbes reflect host-microbe and microbe-microbe 33	

interactions. Collectively, these microorganisms constitute the human microbiome (Human 34	

Microbiome Project Consortium 2012). Under healthy conditions, the relationship between 35	

microbes and the host is symbiotic with many physiologic benefits to the host (Nicholson et al. 36	

2012). Imbalances or changes in the composition of bacterial communities can shift this 37	

relationship from symbiotic to pathogenic, a condition known as dysbiosis, which has been 38	

implicated in a variety of diseases (Chow et al. 2010). For example, altered composition of 39	

airway microbiota has been linked to important respiratory diseases such as sinusitis (Boase et 40	

al. 2013), chronic obstructive pulmonary disease (COPD) (Pragman et al. 2012) and asthma 41	

(Hilty et al. 2010; Huang et al. 2011; Denner et al. 2015). Similar to the traits it influences, the 42	

microbiome itself can be considered a complex phenotype with environmental and genetic 43	

factors contributing to its composition (Marsland and Gollwitzer 2014). Understanding how host 44	

genetic variation shapes the microbiome, and how the microbiome ultimately functions to 45	

modulate host immunity are fundamental questions that are central to fully characterizing the 46	

architecture of many common diseases that occur at mucosal surfaces, including those 47	

involving the airway.  48	

Although knowledge of the airway microbiome lags behind that of the gut, important 49	

characteristics of the microbial communities in the airway are beginning to emerge. Similar to 50	

the gut, the community structure of an individual’s airway microbiome is established early in life 51	

and plays a critical role in immune development (Arrieta et al. 2014; Gensollen et al. 2016). 52	

Many external factors influence the airway microbiome, including mode of delivery at birth 53	

(Dominguez-Bello et al. 2010), breastfeeding (Biesbroek et al. 2014), antibiotic use (Noverr et 54	

al. 2004; Suárez-Arrabal et al. 2015), and exposure to tobacco smoke (Morris et al. 2013) and 55	
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pathogens (Bosch et al. 2013). While the influences of environmental exposures on microbiome 56	

composition are well known, the degree to which host genetics plays a role in structuring 57	

microbial communities is less well understood. In fact, recent data suggest that host genetics 58	

may play an important role in shaping microbiome composition. For example, the heritability of 59	

the gut microbiome was recently investigated in 1,126 twin pairs (Goodrich et al. 2016). Out of 60	

945 taxa examined, the RAs of 8.8% of taxa had non-zero heritability estimates suggesting that 61	

the abundances of those bacteria are influenced by host genetic variation. Moreover, more 62	

similar microbiome structures among related individuals compared to unrelated individuals 63	

(Yatsunenko et al. 2012; Tims et al. 2013) further supports a role for genetics influencing inter-64	

individual variability in microbiome profiles. In fact, quantitative trait locus (QTL) approaches 65	

have successfully identified variation in candidate host genes that influence the RA of specific 66	

bacteria not only in Drosophila and mice but also in humans (Benson et al. 2010; McKnite et al. 67	

2012; Srinivas et al. 2013; Knights et al. 2014; Org et al. 2015; Blekhman et al. 2015; Davenport 68	

et al. 2015; Goodrich et al. 2016). 69	

Studies of host genetic influences on the microbiome are particularly challenging due to 70	

the profound effects of environmental exposures on microbiome variability. It is not surprising, 71	

therefore, that two studies were unable to show host genotype effects on the human gut 72	

microbiome (Turnbaugh et al. 2009; Yatsunenko et al. 2012). Studies of related individuals and 73	

even twin pairs are confounded to a large extent by the more similar environments among close 74	

relatives, making it impossible to completely disentangle the relative roles of genes and 75	

environment. To address these challenges, we focused our studies on the Hutterites, a founder 76	

population that practices a communal, farming lifestyle that minimizes environmental variation 77	

between individuals (Ober et al. 2001), and should increase power to identify genetic influences 78	

on complex traits, including the airway microbiome composition. For example, Hutterites 79	

prepare and eat all meals in communal kitchens, smoking is prohibited and rare, and individual 80	
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family homes are nearly identical within each colony (communal farm) and very similar across 81	

colonies. Furthermore, the Hutterites in our studies are related to each other in a 13-generation 82	

pedigree and are descendants of only 64 founders. Finally, nearly all genetic variation in these 83	

individuals has been revealed through whole genome sequencing studies in 98 Hutterite 84	

individuals (Livne et al. 2015).  85	

We previously reported studies of the gut microbiome in the Hutterites (Davenport et al. 86	

2014; 2015). Here we interrogated the interaction between host genetic variation and 87	

microbiome composition in two accessible sites in the upper airways, the nasal vestibule and 88	

the nasopharynx, which have important physiologic functions and relevance to airway diseases. 89	

While the nasal vestibule is located in the anterior nares and in direct contact with the 90	

environment, the nasopharynx is in the posterior nasal passage and continuous with the lower 91	

airway. Overall, our findings demonstrate that the airway microbiome is influenced by host 92	

genotype at many loci, and suggest that host expression of innate and mucosal immune 93	

pathway genes plays a significant role in structuring the airway microbiome. 94	

 95	

RESULTS 96	

Nasal microbiome composition 97	

To characterize the variation of the microbiome from the nasal vestibule and the nasopharynx, 98	

we first analyzed 16S rRNA V4 gene sequences from 322 samples collected from 144 Hutterite 99	

adults in summer and/or in winter months (Table 1). After applying quality control filters and 100	

subsampling to 250,000 reads per sample, 83 million reads were assigned to 563 operational 101	

taxonomic units (OTUs) with 97% sequence identity. We identified sequences from eleven phyla, 102	

with three accounting for 98.94% of the sequences – Firmicutes (52.28%), Actinobacteria 103	

(29.81%) and Proteobacteria (16.85%). We then classified OTUs into 166 genera; six dominant 104	

genera accounted for 83.30% of the sequences (Figure 1 and Supplemental Table S1). 105	
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Table 1: Sample composition: A total of 332 samples were collected from 144 (58 male, 86 106	

female) Hutterite adults (age 16 to 78 years).  107	

Nasal site Summer Winter Both seasons Unique subjects 
Vestibule 87 80 34 133 

Nasopharynx 88 77 40 125 

Both sites 72 60 23 144 

 108	

Figure 1: Taxonomic composition of bacterial communities in the nasal vestibule and the 109	

nasopharynx, sampled in summer and in winter. Genus level mean RA is shown for the 20 110	

most abundant genera identified in the samples. The remaining 146 genera are grouped as 111	

“other”.  *Genus unclassified, family level presented. **Genus and family unclassified, order 112	

level presented. 113	

 114	

In a prior study in a largely overlapping sample of adult Hutterites, we identified large 115	

seasonal variation in the gut (fecal) microbiome (Davenport et al. 2014). To see if similar 116	

patterns were present in the nasal microbiome, we examined the genus level RAs for individuals 117	

studied in both seasons (n=34 for the nasal vestibule and 40 for the nasopharynx). The RA of 118	

Winter
Nasal vestibule      

Summer

Winter 
Nasopharynx      

Summer

Planococcaceae*
Corynebacterium
Moraxella
Alloiococcus
Streptococcus
Staphylococcus
Acinetobacter

Peptoniphilus
Moraxellaceae*
Anaerococcus
Finegoldia
Blastomonas
Bradyrhizobiaceae*
Haemophilus

Neisseriaceae*
Comamonadaceae*
Lactobacillus
Fusobacterium
Rothia
Streptophyta**
Other

Relative Abundance
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12 genera in the nasal vestibule and 15 in the nasopharynx differed by season after applying a 119	

Bonferroni correction (paired Wilcox rank sum test, p < 0.0003), nine of which were different 120	

between seasons at both nasal sites (Supplemental Table S2). Similarly, we looked for genus 121	

level RAs that differed between the nasal sites within each of the two seasons (n=72 for the 122	

summer and 60 for the winter) but did not identify statistically significant differences.  123	

 124	

Nasal microbiome diversity 125	

We used three diversity metrics to assess within sample (alpha) diversity for each of the four 126	

seasonal nasal site groups – the number of species (richness), Shannon index, and evenness.  127	

Overall, the highest alpha diversity was observed in the nasopharynx in the summer (Figure 2 128	

and Supplemental Figure S1A), where the number of observed species and the Shannon index 129	

reflected higher diversity compared to the nasopharynx in the winter (paired Wilcoxon signed-130	

rank test; p = 0.002 and 0.048, respectively). Additionally, there was higher diversity in the 131	

nasopharynx in the summer compared to the nasal vestibule in the summer (paired Wilcoxon 132	

signed-rank test; richness p = 4.6x10-7, Shannon index p = 0.009 and evenness p = 0.031, 133	

respectively). Although higher diversity trends were observed in the nasopharynx in the summer 134	

compared to the winter, these associations were largely due to decreased alpha diversity 135	

among women compared to men in the winter (Wilcoxon signed-rank test; richness p = 0.03, 136	

Shannon index p = 0.002 and evenness p = 0.001, respectively; Supplemental Figure S1B). 137	

Lastly, Shannon index and evenness decreased with increasing age only in the nasopharynx in 138	

the summer (p = 0.019; Supplemental Figure S2). 139	

 140	

Figure 2: Within sample alpha diversity: Alpha diversity measurements for microbial 141	

communities from the nasal vestibule and the nasopharynx by season. The nasopharynx in the 142	

summer (light green) shows the overall largest alpha diversity. *Paired Wilcox-rank sum test p < 143	

0.5; ** p < 0.01; ***p < 0.001. 144	
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  145	

 146	

We next analyzed community composition and structure between samples (beta 147	

diversity) by calculating Euclidean distances between all pairs of individuals. In the seasonal 148	

analyses, the summer samples for both the nasal vestibule and the nasopharynx had lower 149	

Euclidean distances compared to their respective winter samples (Wilcoxon signed-rank test, 150	

nasal vestibule p < 2.2x10-16 and nasopharynx p < 2.2x10-16), reflecting more similar microbiome 151	

diversity between pairs of individuals in the summer than in the winter. Moreover, Euclidean 152	

distances for the same individual paired with him/herself between seasons (separately within 153	

the nasal vestibule and nasopharynx samples) and between nasal sites (separately within the 154	

summer and the winter samples) were lower than the respective distances calculated between 155	

each individual with all other individuals (Wilcoxon signed-rank test nasal vestibule between 156	

seasons p = 9.25x10-8; nasopharynx between seasons p = 3.97x10-12; summer between nasal 157	

sites p < 2.2x10-16, winter between nasal sites p < 2.2x10-16; Supplemental Figure S3). These 158	

results reflect stability in microbiome structure between seasons and nasal sites within 159	

individuals, potentially reflecting a genetic component to microbiome composition and diversity.   160	

 161	

Nasal vestibule in the summer

Nasal vestibule in the winter

Nasopharynx in the summer

Nasopharynx in the winter

***

No. of species Shannon 
index Evenness

** *
** *
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Correlation between host genetic similarity and microbiome structure 162	

To evaluate the relationship between genetic similarity (or relatedness) among pairs of 163	

individuals and the similarity of their nasal microbiomes, we compared genetic distance, 164	

measured by the kinship coefficient and beta diversity between all pairs of individuals in the 165	

sample combined across seasons (see methods). We reasoned that if there was a genetic 166	

influence on bacterial composition and diversity, more related individuals should have lower 167	

measures of beta diversity, reflecting more similar microbiomes. To assess significance we 168	

performed 10,000 permutations for each of the two nasal sites. This analysis revealed a 169	

significant negative Spearman correlation between kinship and beta diversity (Figure 3). 170	

 171	

Figure 3: Heat scatterplots of Euclidean distance (beta diversity) by kinship coefficient. 172	

Individuals with larger kinship coefficients (more related) have more similar beta diversities 173	

(lower Euclidean distances). Red dashed represents the trend line from a linear model. Nasal 174	

vestibule p < 1x10-4; nasopharynx p = 4.0x10-4. 175	

 176	

Although an individual’s microbiome composition is highly sensitive to the household 177	

environment (Lax et al. 2014), sharing of households by first degree relatives did not 178	

significantly affect the correlation between beta diversity and kinship in our sample. To examine 179	
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this directly, we removed all first degree relatives who lived in the same household (three sibling 180	

pairs and their parents; 15 out of 175 first-degree relative pairs in the sample) and repeated the 181	

analysis. The correlation between kinship and Euclidean distance remained significant (nasal 182	

vestibule p < 1x10-4 and nasopharynx p = 5.0x10-4), indicating that the significant effect of 183	

kinship on microbiome similarities between Hutterite adults is not likely due to shared 184	

environments. Instead, we attribute these correlations largely to shared genetic variation. 185	

 186	

Genome-wide association studies of relative abundance 187	

To directly test for host genetic effects on genus level bacteria in the nasal vestibule and in the 188	

nasopharynx, we performed microbiome quantitative trait locus (mbQTL) mapping on the 189	

bacterial RAs for each nasal site in the summer sample and winter samples separately, and in a 190	

larger sample combining both seasons. We tested for associations between 52 and 90 genera 191	

with 148,653 SNPs (LD r2<0.5) using a linear mixed model as implemented in GEMMA (Zhou 192	

and Stephens 2012), and included sex and age as fixed effects and kinship as a random effect 193	

to adjust for the relatedness between all pairs of individuals in our study. Our analyses revealed 194	

37 mbQTLs at q < 0.05, three of which were associated with multiple bacteria (overall 37 195	

variants associated with 22 genus level bacteria). Of the 37 mbQTLs, 14 were associated with 196	

10 genera in the nasal vestibule and 23 were associated with 14 genera in the nasopharynx. 197	

The results for mbQTLs with q < 0.05 are shown in Table 2 and results for 108 mbQTLs with q < 198	

0.10 are shown in Supplemental Table S2.  199	

The most significant association was with an intergenic SNP 8kb upstream of the TINCR 200	

gene on chromosome 19 and the abundance of Dermacoccus (phylum Actinobacteria) in the 201	

nasal vestibule in the summer (rs117042385; p = 1.61x10-8; q = 0.002, Figure 4). TINCR is a 202	

long non-coding RNA gene that controls human epidermal differentiation and directly binds to 203	

the peptidoglycan recognition protein 3 (PGLYRP3) transcript (Kretz et al. 2013). A second 204	

mbQTL (rs28362459), located 314 kb downstream from the TINCR mbQTL (r2 = 0.26; D’=0.76), 205	
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was also associated with the RA of Dermacoccus in the same site and season as TINCR (p = 206	

9.47x10-7, q = 0.047, Figure 4). rs28362459 is a missense variant in fucosyltransferase 3 207	

(FUT3), a gene essential for the synthesis of Lewis blood groups (Taylor-Cousar et al. 2009; 208	

Yamamoto et al. 2014).  209	

To determine if the association of increased Dermacoccus RA with the rs28362459-C 210	

allele in FUT3 is independent of the association with the rs117042385-C allele upstream of 211	

TINCR, we phased the two variants and examined the four haplotypes (seven diplotypes) 212	

present in our sample. This revealed independent effects of genotypes at both SNPs 213	

contributing to the RA of Dermacoccus (p = 4.65 x10-9; Figure 4C). In particular, individuals who 214	

were homozygous for both alleles (rs117042385-CC/rs28362459-CC) had the highest RA of 215	

Dermacoccus, while one or two copies of the FUT3 rs28362459-A allele on a homozygous 216	

TINCR rs117042385-CC background was associated with decreased RA. Overall, the presence 217	

of a FUT3 rs28362459-A allele was associated with lower RA regardless of genotype at TINCR 218	

rs117042385. The two individuals who were homozygous for both the TINCR rs117042385-T 219	

and FUT3 rs28362459-A alleles did not have any Dermacoccus sequences detected. Overall, 220	

these results suggest that the FUT3 rs28362459 and TINCR rs117042385 variants (or variants 221	

in strong LD with them) are exerting independent effects on the RA of Dermacoccus.  222	

 223	

Figure 4: Associations with the RA of Dermacoccus in the nasal vestibule in the summer. 224	

A. Manhattan plot. Association results are presented for variants pruned for LD (r2 < 0.5).  Four 225	

variants on chromosomes 5 and 19 are associated with the RA of Dermacoccus at a q < 0.05 226	

significance threshold (red line). B. Locus and genotype plots for the 2 mbQTLs on 227	

chromosome 19. Variants included in the locus plot are those with MAF > 10% in the Hutterites, 228	

prior to LD pruning. Genotype plots show both minor alleles (T at rs117042385 and A at 229	

rs28362459) are associated with lower Dermacoccus RA. C. Boxplots of Dermacoccus 230	
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residuals for rs117042385 and rs28362459 phased haplotypes. Numbers underneath each 231	

boxplot represent the number of individuals in each genotype or haplotype class. 232	

 233	

Another mbQTL that linked PGLYRP genes more directly to host regulation of the 234	

microbiome is an association between a missense variant in PGLYRP4 (rs3006458) on 235	

chromosome 1 and the RA of an unclassified genus of family Micrococcaceae (phylum 236	

Actinobacteria) in the combined season nasopharynx sample (p = 5.10x10-7; q = 0.032, 237	

Supplemental Figure S4A). This same SNP was also associated with genus Aerococcus in the 238	

nasopharynx in the winter at a less stringent q value cutoff (phylum Firmicutes; p = 1.28x10-6; q 239	

= 0.06). Peptidoglycan recognition proteins (PGRPs) are a conserved family of antibacterial 240	
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pattern recognition molecules that directly bind peptidoglycan and other bacterial cell wall 241	

components, including lipopolysaccharide (LPS) (Kashyap et al. 2011).  242	

 243	

mbQTL associations with multiple bacteria 244	

Five mbQTLs (q < 0.05), including the PGLYRP4 mbQTL discussed above, had associations 245	

with multiple bacteria within the same nasal site at a relaxed significance threshold (q < 0.10). 246	

The largest number of associations identified with a single mbQTL was an intronic variant in the 247	

Leucine Rich Repeat Containing 16A (LRRC16A; rs1543603) and the RAs of five 248	

Proteobacteria in the nasopharynx in the summer (unclassified genus of family Caulobacteracea, 249	

unclassified genus of family Bradyrhizoviaceae, Parvibaculum, Blastomonas and Rheinheimera), 250	

of which Caulobacteraceae was the most significant (p = 2.30x10-8, q = 0.006; Supplemental 251	

Figure S4B). LRRC16A encodes CARMIL (capping protein, Arp2/3, and Myosin-I linker), a 252	

protein that plays an important role in cell shape and motility (Yang et al. 2005). 253	

The association between genotype at a single SNP, rs1543603, with the RAs of five 254	

genus level bacteria suggested potential functional community level relationships between these 255	

five Proteobacteria. Indeed, the RAs of all five Proteobacteria were correlated with each other 256	

(correlation coefficients > 0.773; median 0.924).  A co-occurrence network (Friedman and Alm 257	

2012) assigned all five bacteria to a single network that included 13 bacteria (12 Proteobacteria 258	

and one Bacteroidetes) from among the 90 genera tested in the nasopharynx in the summer 259	

(Figure 5). In this network, genera from families Bradyrhizobiaceae and Caulobacteraceae, two 260	

of the five bacteria associated with rs1543603 (p = 3.25x10-7 and 2.30x10-8, respectively) are 261	

the largest hubs with nine neighbors each. These findings suggest that host genetic effects can 262	

act to modulate microbial community patterns, by directly affecting host-microbe interactions 263	

with only one or a few main drivers of the community. 264	

 265	
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Figure 5: Five genus-level bacteria associated with rs1543603 are hubs in a co-266	

occurrence module of 12 Proteobacteria and one Bacteroidetes. Co-occurrence networks 267	

built from correlation coefficients between all 90 genus level RAs determined in the 268	

nasopharynx summer sample. Nodes represent bacteria and are listed by number, colored by 269	

phylum and sized proportionally to the RA of each bacterium. Edges represent correlations 270	

greater than 0.75. Blue node borders represent the five bacteria associated with rs1543603, an 271	

intronic variant in LRRC16A.  272	

 273	

Pathway analyses of genes near mbQTLs 274	

To further understand how host genetic variation regulates nasal microbiome composition and 275	

to identify shared pathways among the mbQTLs identified in this study, we selected the closest 276	

gene to each mbQTL (q < 0.10; 131 genes) and to all variants in LD (r2 > 0.8) with each mbQTL, 277	

using LD estimates in the Hutterites. We then generated protein-protein interaction networks 278	

among these genes, using Ingenuity Pathway Analysis Knowledge Base (IPA®, QIAGEN 279	

Redwood City, CA), a curated database of biological interactions and functional annotations. 280	

IPA identified two networks with Fisher exact p < 10-25 (Figure 6). The most significant network 281	

included 21 of the 131 genes, nine of which were near mbQTLs with q < 0.05 (Fisher exact p = 282	

10-43; Figure 6A). This network contained many hubs including SMAD2, a gene that regulates 283	
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the production of immunoglobulin A (IgA) by LPS-activated B-cells and activates immune 284	

response at other mucosal surfaces upon stimulation by pathogenic microbes (Malhotra and 285	

Kang 2013). The second significant network (Fisher exact p = 10-29) contained 17 of the 131 286	

genes, also with nine genes near mbQTLs with q < 0.05. Many of the hubs in this network 287	

represent important modulators of mucosal immunity, including immunoglobulins A and G (IgG 288	

and IgG2a), IL12/IL12RA, TCR and STAT5A/B (Macpherson et al. 2008; Holt et al. 2008; Mantis 289	

and Forbes 2010). 290	

 291	

Figure 6: Ingenuity Pathway Analysis (IPA) interaction networks. Networks show genes 292	

near nasal mbQTLs are enriched for mucosal immunity pathways. Two significant networks (p < 293	

10-25) are presented. A. Network one is centered on SMAD2 and ERK1/2 (p < 10-43; 21 genes). 294	

B. Network two is a highly connected network centered on IL2RA, STAT5a/b and IL12, among 295	

others. This network contains many of the key regulators of mucosal immunity (p < 10-29; 17 296	

genes). Node color represents genes near microbiome QTL associations in the nasal vestibule 297	

(blue) or in the nasopharynx (green); open symbols are genes added by IPA. Edges represent 298	

direct (solid) and indirect (dashed) interactions in the IPA Knowledge Base database. Node 299	

shapes correspond to functional classes of gene products: concentric circles for groups or 300	

complexes, diamonds for enzymes, rectangles for transcriptional regulators or modulators, ovals 301	

for trans-membrane receptors and circles for other. 302	
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 303	

Comparison of genes near mbQTLs in the Hutterites to the TwinsUK study 304	

The TwinsUK study, the largest human gut microbiome QTL study to date, recently reported a 305	

candidate gene study (Goodrich et al. 2016) in which 17 genes within 10 kb of 15 mbQTLs were 306	

associated with 15 different taxa (false discovery rate (FDR) less than 5%). To determine if 307	

genes associated with the RA of bacteria in the upper airway also influence the RA of bacteria 308	

in the gut, we compared 53 genes near the 37 mbQTLs discovered in our study (q < 0.05) to the 309	

17 genes reported in the TwinsUK Study. Two different intronic variants in the slit guidance 310	

ligand 3 (SLIT3) gene on chromosome 5 were associated with the RA of an unclassified genus 311	

of family Clostridiaceae in TwinsUK (rs10055309) and with the RA genus Dermacoccus in the 312	

nasal vestibule in the summer in our study (rs77536542; p = 6.35x10-8; Figure 4A). SNP 313	

rs10055309 was the most significant QTL reported the TwinsUK study. SLIT3 is a secreted 314	

protein that is widely expressed across many tissues with highest expression in skin, brain 315	

cerebellum and lung (Dickinson et al. 2004). SLIT3 hypermethylation has been reported in a 316	

number of human cancers (Dickinson et al. 2004) and SLIT3 expression is increased in LPS 317	

stimulated macrophages in mice (Tanno et al. 2007). The combined data from the TwinsUK 318	
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Study and our study suggests that this gene may play a role in the modulating bacterial 319	

abundances across diverse body sites in humans. 320	

 321	

DISCUSSION 322	

Our study is the first to assess the role of genome-wide host genetic variation in shaping the 323	

human microbiome at two upper airway sites. We first demonstrated reduced bacterial beta 324	

diversity between more closely related pairs of individuals, and then discovered associated 325	

genetic variants at functionally related genes. These combined results indicate a significant role 326	

for host genotype in patterning microbial diversity in the nose.   327	

Our results further suggest that the upper airway may be the site of important gene-328	

environment interactions. In this context, host genotype at many loci may ultimately impact 329	

health and disease by modulating particular members of the microbial community. For example, 330	

a missense variant in fucosyltransferase 3 (FUT3; rs28362459) was strongly associated with 331	

decreased abundance of Dermacoccus in the nasal vestibule in the summer. This SNP is 332	

predicted to be deleterious by both Polymorphism Phenotyping (PolyPhen) v2 (Adzhubei et al. 333	

2010) and Combined Annotation Dependent Depletion (CADD) (Kircher et al. 2014) scores 334	

(0.997 and 15.12, respectively). Interestingly, the non-secretor phenotype, characterized by a 335	

null variant in another FUT gene, FUT2, and the resulting absence of ABH antigens in the 336	

mucosa in homozygotes for the null allele, influences the composition and diversity of the 337	

microbiome in the human intestinal tract (Wacklin et al. 2011; Rausch et al. 2011). Moreover, 338	

variants in both FUT2 and FUT3 have been shown in GWAS to increase susceptibility to 339	

diseases associated with both mucosal surface pathobiology and microbiome composition, such 340	

as cystic fibrosis (Taylor-Cousar et al. 2009), Crohn’s disease (Hu et al. 2014) and ulcerative 341	

colitis (Hu et al. 2016). Our study extends a role for fucosyltransferases to the nasal mucosal 342	

surface, and further implicates host genetic influences on bacterial diversity at this site. 343	
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Four mbQTLs show effects on phylogenetically diverse phyla and two were identified in 344	

different seasons and nasal sites. In particular, a missense variant in PGLYRP4 (rs3006458) 345	

was associated with the abundance of genus Aerococcus (Firmicutes) in the nasopharynx in the 346	

summer and with family Micrococcacea (Actinobacteria) in the nasopharynx in the combined 347	

sample. The RAs of Aerococcus and Micrococcacea are only weakly correlated with each other 348	

indicating that these are likely independent associations. Moreover, the associations with 349	

phylogenetically distant bacteria and in different subsamples (summer vs. combined) suggest 350	

that PGLYRP4 has pleiotropic effects over several organisms. Alternatively, the SNP identified 351	

in our study (rs3006458) could be tagging a haplotype with multiple variants that have 352	

independent effects on different bacterial abundances. The genomic region that includes the 353	

PGLYP genes includes a cluster of genes implicated in epidermal barrier function (Toulza et al. 354	

2007) and SNPs in this region show extensive LD. However, independent evidence suggests 355	

that PGLYRP4 may be the target gene of this association. The rs3006458-T allele, which is 356	

associated with lower RA of Aerococcus and Micrococcacea in our study, was associated with 357	

increased gene expression of the PGLYRP4 gene in epithelial and mucosal tissues (skin, small 358	

intestine and esophageal mucosa) in the Genotype-Tissue Expression (GTEx Consortium 2015), 359	

and in lung tissue in a separate eQTL study (Hao et al. 2012). These tissues serve as physical 360	

barriers and provide innate immune functions essential for antimicrobial defense (Gallo and 361	

Hooper 2012). Collectively, these data suggest that host genotype at rs3006458 (or a variant in 362	

LD with rs3006458) regulates the expression in PGLYRP4 in the skin, lung and airway mucosa 363	

and functions to modulate bacterial abundance, possibly beyond the two genera identified in this 364	

study. The link between genetic variation in host PGRPs and microbiome abundance revealed 365	

in this study indicates that at least some of the important role these proteins play in modulating 366	

communities of symbiotic organisms (Royet et al. 2011) is attributable to host genetic variation. 367	

Eight of the mbQTLs identified in our study at a relaxed q < 0.10 influenced the 368	

abundance of more than one organism. Most were identified within the same season and nasal 369	
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site and four influenced the abundance of multiple closely related bacteria. For example, an 370	

intronic variant in LRRC16A (rs1543603) was associated with the abundance of five highly 371	

correlated genera of phylum Proteobacteria in the nasopharynx in the summer. These five 372	

bacteria co-occur in a larger network of 12 Proteobacteria and one Bacteroidetes, suggesting 373	

that they may be physically interacting and that their overall community structure is influenced 374	

by host genotype. Although not much is known about LRRC16A, other proteins with leucine-rich 375	

repeat (LRR) domains, such as nucleotide-binding oligomerization domain receptors (NODs) 376	

and toll-like receptors (TLRs) (Ng et al. 2011), function as recognition receptors in innate 377	

immunity.  378	

Although our study provides novel insights into host genetic influences on the nasal 379	

microbiome, there are some limitations. In particular, the size of our sample is relatively small 380	

for genetic mapping (77-88 individuals in seasonal analyses; 125 and 133 individuals in the 381	

combined). We reasoned that the reduced environmental heterogeneity among Hutterite 382	

individuals would enhance the effects of genetic variation and facilitate the detection of 383	

associated variants. While we were successful in identifying mbQTLs, we acknowledge that 384	

there are likely many more associations to be found in larger samples. A second limitation is the 385	

multiple testing burden that results from the high dimensionality of the microbiome. While we 386	

reduced the number of tests performed by mapping only genus level bacteria present in the 387	

majority of individuals, we only corrected for multiple testing within each study and did not 388	

correct for the 90 bacteria for which we performed mbQTL mapping. Although we used a fairly 389	

stringent threshold of genome-wide significance (q < 0.05), we acknowledge that some of our 390	

findings may be false positives. Lastly, the genetic effects revealed by our study are context 391	

specific due to the many environmental and stochastic factors that affect microbiome 392	

composition and, therefore, challenging to replicate. For example, even within our study of a 393	

relatively homogenous population, we detected significant effects of season, age, and gender. 394	

In fact, most of the mbQTLs that we identified were specific to one season and demonstrate that 395	

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2016. ; https://doi.org/10.1101/062232doi: bioRxiv preprint 

https://doi.org/10.1101/062232
http://creativecommons.org/licenses/by-nd/4.0/


	 20	

even small temporal changes (~6 months) in the RAs of bacteria within the same individuals 396	

can mask or enhance genetic effects. Although we did not formally replicate the results in 397	

independent populations, the identification of intronic variants within the gene SLIT3 in our study 398	

and in the TwinsUK study (Goodrich et al. 2016) bolsters confidence in the involvement of this 399	

gene in regulating microbial structure across multiple mucosal sites.  400	

 These limitations aside, our study provides evidence for genetic contributions to 401	

modulating variability of the nasal microbiome, a trait that has been linked to a number of airway 402	

diseases (Dickson et al. 2014). Importantly, our findings support the concept that host genetic 403	

variation directly influences the expression or function of genes that are specifically involved in 404	

innate mucosal immunity pathways. Such a framework is consistent with previous reports 405	

showing that antimicrobial peptides (Salzman et al. 2010; Royet et al. 2011)  and host immunity 406	

(Hooper and Macpherson 2010) are key modulators of microbial defense in the mucosa. Our 407	

data further suggest that host genetic effects on immune genes modulate particular bacteria or 408	

the structure of whole microbial communities in the upper airways. We speculate that 409	

interactions between host genetics and microbiome structure or composition in the upper airway 410	

can influence dysbiotic tendencies that may predispose to respiratory disease and could be 411	

subject to intervention. Indeed, moving forward, more detailed analyses of the complex 412	

relationship between genetic variation in host mucosal immunity and the microbiome — 413	

captured here in a snapshot in the upper airway — are required to fully characterize 414	

determinants of an inherently dynamic microbial ecosystem. Such work could potentially identify 415	

targets for novel therapeutic strategies useful across a wide range of respiratory diseases. 416	

  417	

METHODS 418	

Sample collection 419	

Nasal brushings from Hutterites ages 16 to 78 from five colonies located in South 420	

Dakota, all within 14 miles of each other, were collected at two time points, winter 421	
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(January/February 2011) and summer (July 2011), and from two nasal sites, the nasal vestibule 422	

and the nasopharynx. Samples from each of the two nasal sites were collected from opposite 423	

nares using sterile flock collection swabs (Puritan© 25-3316). The Human Microbiome Project 424	

anterior nare collection protocol (Aagaard et al. 2013) was used for the nasal vestibule and an 425	

adaptation of the Pasculle et al. protocol (Pasculle et al. 2008) was implemented for the 426	

nasopharynx. After excluding samples with low DNA yield, low sequencing read depth, antibiotic 427	

history within the prior 3 months, or missing genotypes, our final data consists of 133 individuals 428	

with nasal vestibule samples (87 summer and 80 winter) and 125 individuals with the 429	

nasopharynx samples (88 summer and 77 winter; Table 1). 430	

 431	

Sample DNA extraction library preparation and sequencing 432	

Nasal brushes were immediately frozen at −20°C following collection, shipped on dry ice, and 433	

stored at −80°C. DNA extraction was carried out using the BiOstic® Bacteremia DNA Isolation 434	

Kit (12240-50). DNA concentration and purity were assessed using the Nanodrop 1000 435	

spectrophotometer (Thermo Scientific, IL, USA). The 16S rRNA gene V4 region was amplified 436	

following conditions in Caporaso et al. protocol (Caporaso et al. 2012) using 62 different region-437	

specific primers labeled with a unique 12-base Golay barcode sequence in the reverse primer. 438	

Final libraries were quality controlled prior to pooling with the Agilent Bioanalyzer DNA 1000 439	

(Agilent Technologies, CA, USA). Libraries were pooled into 8 pools of 62 samples and 440	

sequenced on the HiSeq2000 platform (Illumina Inc, CA, USA) under a single end 102 base pair 441	

protocol. 442	

 443	

Sequencing and taxonomic classification 444	

Data was pre-processed using CASAVA 1.8.1. Following sample de-multiplexing, 617,909,462 445	

sequence reads were processed using the Quantitative Insights into Microbial Ecology (QIIME) 446	
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1.8.0 toolkit (Caporaso et al. 2010b). Quality controlled reads were required to have an exact 447	

match to an expected barcode, zero ambiguous base calls, less than three consecutive low 448	

quality base calls, and a minimum Phred quality score of 20 along the entire read. We used an 449	

open-reference OTU workflow where sequences were first clustered against the Greengenes 450	

May 2013 reference (Caporaso et al. 2010b; DeSantis et al. 2006) and reads that did not cluster 451	

with known taxa (97% identity) were subjected to de novo clustering. Representative sequences 452	

were aligned using PyNAST version 1.2.2 (Caporaso et al. 2010a) and the taxonomy of each 453	

OTU cluster was assigned with the uclust classifier version 1.2.22q (Edgar 2010). We applied 454	

an OTU abundance filter of 0.005% (Bokulich et al. 2013) to reduce spurious OTUs and 455	

obtained a final dataset of 563 OTUs. 456	

 457	

Data processing  458	

Seasonal 459	

For each of the four seasonal groups (nasal vestibule in the summer and in the winter, and 460	

nasopharynx in the summer and winter), a genus level RA table was calculated after 461	

subsampling reads to 250,000 per sample. Each bacteria’s RA was then quantile normalized 462	

using the qqnorm function in R. Next, PCA was performed using the prcomp function in R and 463	

each of the top 10 principal components (PCs, explaining ~76%-78% of the variance) were 464	

tested in a linear model against technical covariates. In at least one of the seasonal groups, we 465	

identified correlations between one of the PCs with DNA concentration prior to PCR, final base 466	

pair fragment size and date of sampling (p < 0.001). PCR adapter barcode, library batch, order 467	

within library batch, and final library concentration were not significant. After regressing out the 468	

identified technical covariates from the normalized RAs, we performed PCA on the residuals 469	

and tested for associations between the top 10 PCs and biological covariates. Age and sex 470	

were significant and were therefore adjusted for in all subsequent analyses. Next, to reduce the 471	

burden of multiple testing in the seasonal mapping studies, we removed genera that were 472	
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detected in fewer than 75% of individuals. This resulted in 78 genus level RAs in the nasal 473	

vestibule in the summer, 52 in the nasal vestibule in the winter, 90 in the nasopharynx in the 474	

summer and 59 in the nasopharynx in the winter.  475	

Combined seasons 476	

Although combining samples across seasons could introduce noise, it provides the largest 477	

possible sample size and consequently greatest power for genetic associations with bacteria 478	

that do not vary in abundance across seasons. Therefore, for each nasal site, we averaged the 479	

summer and winter genus level RA residuals obtained after quantile normalization and the 480	

regression of identified technical covariates for individuals with measurements during both 481	

seasons, or included the one season result for those with only one measurement (referred to as 482	

the combined sample). We selected all genus level bacteria present in at least 75% of 483	

individuals in either season, which resulted in 76 genus level RAs in the nasal vestibule and 90 484	

in the nasopharynx. We performed PCA on the combined seasons matrix to verify variation 485	

among samples did not separate the combined samples from the samples with one seasonal 486	

measurement. Season of origin (summer, winter or averaged) was not correlated with any of the 487	

top 10 principle components in either nasal site (Supplemental Figure S5).  488	

 489	

Genotype data 490	

The Hutterite individuals in our study are related to each other in a 13-generation pedigree that 491	

includes 3,671 individuals, all of whom originate from 64 founders. Using PRIMAL (Livne et al. 492	

2015), an in-house pedigree-based imputation algorithm, whole genome sequences from 98 493	

Hutterite individuals were phased and imputed to 1,317 Hutterites who were previously 494	

genotyped on Affymetrix arrays (Ober et al. 2008; Yao et al. 2014; Cusanovich et al. 2012). For 495	

mapping studies, we first selected 3,161,460 variants with genotype call rates greater than 95% 496	

in our sample and minor allele frequencies (MAF) > 0.10 in any of the 4 season/site subsamples. 497	

Next, we estimated LD in the Hutterite data using PLINK (Purcell et al. 2007), and pruned 498	
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variants for LD using an r2 threshold of 0.5, to yield a final set of 148,653 variants for mapping 499	

studies. 500	

 501	

Diversity metrics 502	

Alpha diversity metrics at the species level (observed species, Shannon index and evenness) 503	

were calculated in QIIME (Caporaso et al. 2010b) using the alpha_diversity.py script after 504	

subsampling reads from 1,000 to 10,000 every 1,000 reads, from 10,000 to 100,000 every 505	

10,000 reads and from 150,000 to 250,000 every 50,000 reads. Each subsampling series was 506	

completed 10 times and rarefaction curves were plotted. Diversity metrics were averaged from 507	

the 250,000 read subsamples using the collate_alpha.py script and this metric was compared 508	

across seasons and nasal sites.  509	

To calculate beta diversity, we first obtained the OTU table using phyloseq (McMurdie 510	

and Holmes 2013), quantile normalized OTU abundances using qqnorm in R and regressed out 511	

technical covariates (DNA concentration prior to PCR, final base pair fragment size and date of 512	

sampling). Next, we calculated pairwise Euclidean distance using the vegdist function in the 513	

vegan R package. 514	

 515	

Kinship associations to beta diversity 516	

Pair-wise kinship coefficients were previously calculated by PRIMAL (Livne et al. 2015) using 517	

271,486 variants genotyped on Affymetrix platforms. The average kinship coefficient between all 518	

pairs of individuals (n = 144) in our study was 4.51% (range 0.60%-32.03%). We performed 519	

10,000 permutations to asses the association between pairwise Euclidian distances and kinship 520	

coefficients in the combined seasons samples (nasal vestibule 8,778 pairs, nasopharynx 7,750). 521	

The p-value is the number of times out of 10,000 permutations that the Spearman correlation of 522	

the permuted sequence pair was more extreme than the observed pair.  523	

 524	
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Co-occurrence network analyses 525	

We used SparCC (Friedman and Alm 2012) to calculate nasopharynx in the summer correlation 526	

coefficients between all 90 genera tested in our mapping studies. We applied default settings 527	

and assigned p-values calculated from 100 bootstraps. Co-occurrence networks were 528	

generated from the SparCC correlation matrix for genera with correlation r2 > 0.75 and p < 0.01 529	

(1/100 bootstraps). The network was generated using igraph R package, where nodes 530	

represent each genera and edges represent correlations between the genera above the applied 531	

threshold.  532	

 533	

Ingenuity Pathway Analysis (IPA) of protein-protein interaction networks 534	

We selected the closest gene to 1,413 variants (131 genes) with Hutterite linkage disequilibrium 535	

(LD) r2 > 0.8 with the 108 mbQTLs (q < 0.10). To interrogate and visualize network associations, 536	

we used the Ingenuity Pathway Analysis Knowledge Base (IPA®, QIAGEN Redwood City, CA), 537	

limiting interactions to primary cells or tissues. The network scores generated by IPA are based 538	

on a right-tailed Fisher’s Exact test comparing the observed and expected mbQTL genes 539	

present in a pathway relative to the IPA database.  540	

 541	
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Table 2: QTL mapping results of nasal microbiome relative abundance. A. Nasal vestibule. 14 host variants were 

associated at a q < 0.05 with the relative abundance of 10 genera. rs111354832 is associated with an unclassified genus 

of family Micrococcaceae in the summer and in the combined sample. B. Nasopharynx. 23 host variants were associated 

at a q < 0.05 with the relative abundance of 14 genera. At this site 2 SNPs (rs1653301 and rs7702475) are associated 

with more than one bacterium. rsIDs presented for dbSNP142. Alleles presented as minor/major. Direction of effect is 

presented for the minor allele. When genus level is unclassified, highest classified taxonomic level is bolded. RA, relative 

abundance; Chr, chromosome. 

A. Nasal Vestibule 

Bacteria genus (phylum/class/order/family) Mean 
RA rsID Chr Start Alleles Gene(s) p q Beta 

Summer 

Dermacoccus  
(Actinobacteria/Actinobacteria/Actinomycetales/Dermacoccaceae) 

7.9X10-5 

 

rs67386870 5 126156219 A/C LMNB1 2.46X10-7 0.016 -1.10 

rs77536542 5 168583325 G/A SLIT3 6.35X10-8 0.005 -1.27 

rs117042385 19 5530692 T/C ZNRF4, TINCR 1.61X10-8 0.002 -1.16 

rs28362459 19 5844792 A/C FUT3 9.47X10-7 0.047 -0.81 
Unclassified genus 
(Actinobacteria/Actinobacteria/Actinomycetales/Micrococcaceae) 4.1X10-4 rs111354832 4 7136504 -/CAT FLJ36777, 

SORCS2 5.99X10-8 0.015 -0.74 

Winter 

Kocuria  
(Actinobacteria/Actinobacteria/Actinomycetales/Micrococcaceae) 5.2X10-4 rs12713689 2 70427457 G/A C2orf42, TIA1 2.10X10-8 0.005 -0.91 

Aerococcus (Firmicutes/Bacilli/Lactobacillales/Aerococcaceae) 2.2X10-4 rs10505338 8 119755490 A/G SAMD12-AS1, 
TNFRSF11B 2.02X10-7 0.038 -0.81 

Lactobacillus (Firmicutes/Bacilli/Lactobacillales/Lactobacillaceae) 1.4X10-3 rs4142162 13 81127842 G/A SPRY2, 
LINC00377 1.45X10-7 0.017 -0.77 

Combined 
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Unclassified genus 
(Actinobacteria/Actinobacteria/Actinomycetales/Intrasporangiaceae) 9.2X10-5 rs11085969 19 15792546 A/G CYP4F12 5.84X10-8 0.005 -0.91 

Microbispora 
(Actinobacteria/Actinobacteria/Actinomycetales/Micrococcaceae) 5.5X10-4 rs2891405 12 113152097 G/A MIR1302-1, 

RPH3A 1.50X10-7 0.038 -0.81 

Unclassified genus 
(Actinobacteria/Actinobacteria/Actinomycetales/Micrococcaceae) 3.5X10-4 rs111354832 4 7136504 -/CAT FLJ36777, 

SORCS2 3.45X10-8 0.017 -0.77 

Peptoniphilus  (Firmicutes/Clostridia/Clostridiales/Tissierellaceae) 8.9X10-5 rs9865782 3 113652774 A/G GRAMD1C 1.17X10-7 0.005 -0.91 

Paracoccus  
(Proteobacteria/Alphaproteobacteria/Rhodobacterales/Rhodobacterace
ae) 

6.5X10-5 rs9953410 18 29532946 C/A TRAPPC8, 
RNF125 2.21X10-7 0.038 -0.81 

Enterobacter  
(Proteobacteria/Gammaproteobacteria/Enterobacteriales/Enterobacteri
aceae) 

6.4X10-5 
rs11042877 11 10576232 A/C MRVI1-AS1 3.86X10-7 0.017 -0.77 

rs12446497 16 7341674 A/G RBFOX1 5.84X10-7 0.005 -0.91 

B. Nasopharynx 

Bacteria species (phylum/class/order/family) Mean 
RA rsID Chr Start Alleles Gene(s) p q Beta 

Summer 

Aerococcus  (Firmicutes/Bacilli/Lactobacillales/Aerococcaceae) 6.5X10-4 rs7702475 5 58088523 A/G RAB3C 3.97X10-8 0.010 0.77 

Unclassified genus (Firmicutes/Bacilli/Lactobacillales/Aerococcaceae) 5.3X10-4 rs11888528 2 120118764 C/T C2orf76 1.43X10-7 0.038 0.79 

Methylobacterium  
(Proteobacteria/Alphaproteobacteria/Rhizobiales/Methylobacteriaceae) 

4.3X10-4 

 

rs308961 3 12150014 T/G SYN2 8.12X10-7 0.034 -0.70 

rs10547084 4 37753111 -/TCTC RELL1,PGM2 4.93X10-7 0.031 0.77 

rs67737950 4 40260058 G/C RHOH, 
LOC101060498 2.73X10-7 0.023 0.85 

rs7702475 5 58088523 A/G RAB3C 2.46X10-7 0.023 0.77 

rs1278260 10 127731197 C/A ADAM12 6.21X10-7 0.031 0.95 

Unclassified genus 
(Proteobacteria/Alphaproteobacteria/Caulobacterales/Caulobacterace
ae) 

8.5X10-4 
rs927984 6 25412987 T/C LRRC16A 2.78X10-7 0.036 0.94 

rs1543603 6 25413922 A/G LRRC16A 2.30X10-8 0.006 0.88 

Winter 

Mycobacterium  
(Actinobacteria/Actinobacteria/Actinomycetales/Mycobacteriaceae) 2.2X10-4 rs1802665 10 61788623 G/T ANK3 8.73X10-8 0.007 -0.98 

Gemella (Firmicutes/Bacilli/Gemellales/Gemellaceae) 3.7X10-4 rs17631306 1 111072322 A/G KCNA10, 
KCNA2 2.94X10-8 0.008 1.27 
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Unclassified genus  (Firmicutes/Bacilli/Lactobacillales) 5.7X10-4 rs1153741 2 182860422 G/A PPP1R1C 1.52X10-7 0.039 -0.83 

Combined 

Gordonia 
(Actinobacteria/Actinobacteria/Actinomycetales/Gordoniaceae) 1.1X10-4 

rs61925863 12 66694722 C/G IRAK3, HELB 2.88X10-7 0.038 -0.90 

rs12435212 14 85483485 G/T NONE, 
LINC00911 1.93X10-8 0.005 0.88 

Unclassified genus  (Firmicutes/Clostridia/Clostridiales/Clostridiaceae) 1.0X10-2 
rs9661504 1 205915667 A/T SLC26A9, 

FAM72C 4.16X10-7 0.046 -0.70 

rs10232599 7 46035291 G/A IGFBP3, TNS3 1.14X10-7 0.029 -0.67 

Unclassified genus  (Actinobacteria/Actinobacteria/Actinomycetales) 
1.3X10-3 

 

rs12156316 8 41706484 T/C ANK1 8.16X10-7 0.042 0.58 

rs10901086 9 134635034 T/C RAPGEF1, 
MED27 7.05X10-7 0.042 0.89 

rs12244238 10 6083239 G/A IL2RA 6.82X10-7 0.042 -0.69 

Unclassified genus 
(Actinobacteria/Actinobacteria/Actinomycetales/Micrococcaceae) 5.0X10-4 

rs3006458 1 153320372 T/G PGLYRP4 5.10X10-7 0.032 -0.75 

rs4774283 15 58114121 T/G GCOM1, 
ALDH1A2 2.56X10-7 0.032 -0.57 

rs4814474 20 16322199 A/C KIF16B 9.35X10-7 0.040 0.56 

Rhodococcus 
(Actinobacteria/Actinobacteria/Actinomycetales/Nocardiaceae) 6.4X10-5 rs1653301 2 201076401 A/G C2orf47, 

SPATS2L 1.45X10-8 0.004 -0.82 

Unclassified genus   
(Actinobacteria/Actinobacteria/Actinomycetales/Sporichthyaceae) 1.5X10-4 rs13128830 4 21455808 T/C KCNIP4 3.03X10-7 0.022 0.64 

Unclassified genus  
(Proteobacteria/Alphaproteobacteria/Sphingomonadales/Sphingomon
adaceae) 

5.1X10-3 rs1653301 2 201076401 A/G C2orf47, 
SPATS2L 9.48X10-8 0.024 -0.80 
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