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ABSTRACT The distribution of fitness effects (DFE) encompasses deleterious, neutral and beneficial mutations. It conditions
the evolutionary trajectory of populations, as well as the rate of adaptive molecular evolution (α). Inference of DFE and α from
patterns of polymorphism (SFS) and divergence data has been a longstanding goal of evolutionary genetics. A widespread
assumption shared by numerous methods developed so far to infer DFE and α from such data is that beneficial mutations
contribute only negligibly to the polymorphism data. Hence, a DFE comprising only deleterious mutations tends to be estimated
from SFS data, and α is only predicted by contrasting the SFS with divergence data from an outgroup. Here, we develop a
hierarchical probabilistic framework that extends on previous methods and also can infer DFE and α from polymorphism data
alone. We use extensive simulations to examine the performance of our method. We show that both a full DFE, comprising both
deleterious and beneficial mutations, and α can be inferred without resorting to divergence data. We demonstrate that inference
of DFE from polymorphism data alone can in fact provide more reliable estimates, as it does not rely on strong assumptions
about a shared DFE between the outgroup and ingroup species used to obtain the SFS and divergence data. We also show
that not accounting for the contribution of beneficial mutations to polymorphism data leads to substantially biased estimates of
the DFE and α. We illustrate these points using our newly developed framework, while also comparing to one of the most widely
used inference methods available.
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1

New mutations are the ultimate source of heritable variation.2

The fitness properties of new mutations determine the possible3
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evolutionary trajectories a population can follow (Bataillon and4

Bailey 2014). For instance, supply rate and fitness effects of ben-5

eficial mutations determine the expected rate of adaptation of a6

population (Lourenço et al. 2011), while deleterious mutations7

condition the expected drift load of a population (Kimura et al.8
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1963). Even a few beneficial mutations with large effects can9

quickly move a population towards its fitness optimum, while10

the fitness can be reduced through the accumulation of multi-11

ple deleterious mutations with small effects that occasionally12

escape selection. Genome-wide rates and effects of new muta-13

tions influence, among others, the evolutionary advantage of14

sex (Otto and Lenormand 2002), the expected degree of parallel15

evolution (Chevin et al. 2010b), the maintenance of variation on16

quantitative traits (Hill 2010), and the evolutionary potential17

and capacity of populations to respond to novel environments18

(Chevin et al. 2010a; Hoffmann and Sgrò 2011).19

Effects of new mutations on fitness are typically modeled as20

independent draws from an underlying distribution of fitness ef-21

fects (hereafter DFE) which, in principle, spans deleterious, neu-22

tral and beneficial mutations. Lately, there has also been consid-23

erable focus on estimation of the DFE of new non-synonymous24

mutations, and learn more about factors governing the rate of25

adaptive molecular evolution, commonly defined as the propor-26

tion of fixed adaptive mutations among all non-synonymous27

substitutions, and often denoted α. Therefore, inferring the DFE,28

both from experimental (Bataillon and Bailey 2014; Bataillon29

et al. 2011; Jacquier et al. 2013; Halligan and Keightley 2009;30

Sousa et al. 2011), but also from polymorphism and divergence31

data (Eyre-Walker et al. 2006; Keightley and Eyre-Walker 2007;32

Boyko et al. 2008; Eyre-Walker and Keightley 2009; Keightley33

and Eyre-Walker 2012; Galtier 2016), has been a longstanding34

goal of evolutionary genetics.35

The McDonald-Kreitman test (McDonald et al. 1991) was one36

of the first attempts to use DNA data to measure the amount37

of selection experienced by genes. It compares the amount of38

variation (counts of nucleotide polymorphism) within a species39

(ingroup) to the variation between species (measured by di-40

vergence counts between sequences from the ingroup and an41

outgroup). The test parses and contrasts the amount of variation42

found at the synonymous and non-synonymous sites, where the43

synonymous sites are assumed to be neutrally evolving sites.44

Smith and Eyre-Walker (2002) further developed this test to also45

infer the amount of purifying selection, defined as the propor-46

tion of strongly deleterious mutations, and α (see also Welch47

(2006) for a maximum likelihood approach). Building on the48

Poisson Random Field (PRF) theory (Sawyer and Hartl 1992;49

Sethupathy and Hannenhalli 2008) and arising as extensions50

to the classical McDonald-Kreitman test, a series of methods51

have been developed to not only characterize the amount of52

selection, but also the DFE (Bustamante et al. 2003; Piganeau and53

Eyre-Walker 2003; Eyre-Walker et al. 2006; Keightley and Eyre-54

Walker 2007; Boyko et al. 2008; Keightley and Eyre-Walker 2010;55

Gronau et al. 2013; Kousathanas and Keightley 2013; Racimo and56

Schraiber 2014), and then used it as a building block to estimate57

α (Loewe et al. 2006; Eyre-Walker and Keightley 2009; Schneider58

et al. 2011; Keightley and Eyre-Walker 2012; Galtier 2016).59

Assuming that sites are independent, that new mutations60

follow a Poisson process and always occur at new sites, these61

methods then model the observed variation using a Poisson62

distribution. The variation within the ingroup is given through63

counts of the site frequency spectrum (SFS), whose mean in each64

entry of the SFS is calculated as a function of the DFE and other65

parameters. Selection is assumed to be weak (s << 1, but note66

that 4Nes can still be large) and the DFE to be constant in time67

and the same in both the ingroup and outgroup.68

Additionally, in order to disentangle selection from demog-69

raphy and other forces (Nielsen 2005), and in the spirit of the70

McDonald-Kreitman test, the sequenced sites are divided into71

two classes of neutrally evolving and selected sites. The DFE is72

then inferred by contrasting the SFS counts for the neutral and73

selected sites, by assuming that such forces equally affect the74

two classes.75

Ideally, a full demographic model should be jointly inferred76

with the DFE parameters from the data. However, this can77

be computationally very demanding and instead a simplified78

demography is often assumed, where a single population size79

change is allowed (Keightley and Eyre-Walker 2007; Eyre-Walker80

and Keightley 2009; Kousathanas and Keightley 2013), or a some-81

what more complex model is inferred (Boyko et al. 2008). Alter-82

natively, the explicit inference of demography can be avoided83

altogether by introducing a series of nuisance parameters that84
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account for the demography and sampling effects. These pa-85

rameters account for distortions of the polymorphism counts86

relative to neutral expectations in an equilibrium Wright-Fisher87

population (Eyre-Walker et al. 2006; Galtier 2016). An added ben-88

efit is that controlling for demography effects (either explicitly89

or through nuisance parameters) can also remove bias caused90

by linkage (Kousathanas and Keightley 2013; Messer and Petrov91

2012). The approach of Eyre-Walker et al. (2006) can potentially92

be more robust for estimating a DFE than putting a lot of faith93

in a simplified demographic scenario.94

The proportion of adaptive substitutions, α, is typically ob-95

tained as a ratio between an estimate of the number of adap-96

tive substitutions and the observed selected divergence counts97

(Eyre-Walker and Keightley 2009; Loewe et al. 2006; Keightley98

and Eyre-Walker 2012; Galtier 2016). The number of adaptive99

substitutions is calculated by subtracting, from the observed100

divergence counts at selected sites, the expected counts accrued101

by fixation of deleterious and neutral mutations. These expected102

counts are calculated from an inferred DFE of deleterious mu-103

tations (henceforth denoted deleterious DFE). The deleterious104

DFE is inferred from the SFS data under the assumption that105

all SNPs at selected sites are only deleterious. Therefore this106

approach for estimating α heavily relies on the assumption that107

the ingroup and outgroup species share the same DFE - or more108

accurately, the same distribution of scaled selection coefficients109

S = 4Nes. Unfortunately, this assumption of invariance might110

not often be met in practice, because the DFE might change, or111

simply because it is unlikely that both ingroup and outgroup112

evolved with the same population size.113

There has been great focus on developing methods inferring a114

deleterious DFE from polymorphism data alone (Keightley and115

Eyre-Walker 2007; Kousathanas and Keightley 2013; Eyre-Walker116

et al. 2006; Racimo and Schraiber 2014). These methods rely on a117

crucial assumption: beneficial mutations contribute negligibly118

to polymorphism (SFS counts) and therefore are not modeled119

for this type of data. The reasoning behind this is that strongly120

selected beneficial mutations will fixate very quickly and that “at121

most an advantageous mutation will contribute twice as much122

heterozygosity during its lifetime as a neutral variant” (Smith123

and Eyre-Walker 2002). This assumption is backed by one study124

(Keightley and Eyre-Walker 2010) discussed in more details in125

the Results and Discussion section. While some DFE methods do126

model a full DFE (encompassing both deleterious and beneficial127

mutations) (Bustamante et al. 2003; Piganeau and Eyre-Walker128

2003; Boyko et al. 2008; Schneider et al. 2011; Gronau et al. 2013;129

Galtier 2016), the majority of them do not estimate α.130

Here, we develop a hierarchical probabilistic model that com-131

bines and extends previous methods, and that can infer both132

the full DFE and α from polymorphism data alone. We use133

our method and perform extensive simulations to investigate134

different aspects of the inference quality. We show that the as-135

sumption that beneficial mutations make negligible contribution136

to SFS data is unfounded and that a full DFE can also be inferred137

reliably from polymorphism data alone. Using the estimated138

full DFE, we show how α can be inferred without relying on139

divergence data. Performing inference on polymorphism data140

alone proves more adequate when assumptions regarding the141

outgroup evolution (for example, that the scaled DFE is shared142

between the ingroup and outgroup) are not likely to be met.143

We also demonstrate that when the contribution of beneficial144

mutations to SFS data is ignored, both the inferred deleterious145

DFE and α can be heavily biased. We compare our method146

and illustrate the resulting bias using the most widely used147

inference method, dfe-alpha (Keightley and Eyre-Walker 2007;148

Eyre-Walker and Keightley 2009; Schneider et al. 2011; Keight-149

ley and Eyre-Walker 2012). We also investigate the impact on150

inference of misidentification of ancestral state.151

Hierarchical model for inference of DFE and α152

In this study, we build on several of the methods using PRF153

theory to build a hierarchical model to infer, via maximum like-154

lihood, the DFE from polymorphism (site frequency spectrum,155

SFS) and divergence counts. Our hierarchical model is combin-156

ing and extending different features from different approaches.157

Figure 1 shows a schematic of the data and the model. We offer158

below a summary of the assumptions and theory underlying159
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Figure 1 Schematic of data and model. Throughout the figure, gray and green filling indicates sites that are assumed to be evolv-
ing neutrally or potentially under selection, respectively, while red and blue outline indicates polymorphism and divergence data
(expectations), respectively. (A) The history and coalescent tree of two populations: the ingroup (on the left side), for which poly-
morphism data is collected, and the outgroup (on the right side), for which divergence counts are obtained. A total of n sequences
are sampled from the ingroup (marked in red), with the most recent common ancestor (MRCA) found at s. The MRCA of the whole
ingroup population is found at i. From the outgroup we typically have access to one sequence (marked in blue). The total evolution-
ary time between s and the sampled outgroup sequence can be divided into the time from s to i (blue dot-dash line) and T, the time
from i to the sampled outgroup sequence (blue full line). (B) Site frequency spectrum and divergence counts (pz(i) and dz, with
z ∈ {neut, sel} and 1 ≤ i < n). (C) Expected counts (E [ Pz(i) ] and E [ Dz ], with z ∈ {neut, sel} and 1 ≤ i < n), model parameters
and relations between parameters, expectations and data. (D) Expectations as a function of S, for θ = 0.001 and λ = 0.005.

our approach. Further details on the likelihood function, its160

implementation and numerical optimization can be found in the161

Supplemental Material.162

Notations and assumptions163

The data is divided into sites that are assumed to be either sites164

that evolve neutrally (henceforth marked by the subscript neut),165

or sites that bear mutations with fitness consequences and for166

which the DFE is estimated (henceforth marked by the subscript167

sel). Let the observed SFS be given through pz(i), where pz(i)168

is the count of polymorphic sites that contain the derived allele169

i times, 1 ≤ i < n, and lz the total number of sites surveyed,170

where n is the sample size and z ∈ {neut, sel}. We denote by171

Pz(i) the corresponding random variable per site, defined as the172

random number of sites that contain the derived allele i times,173

normalized by lz. From the PRF theory, pz(i) follows a Poisson174

distribution with mean lzE [ Pz(i) | θ, φ ], where θ = 4Neµ is the175

scaled mutation rate per site per generation, and φ is a para-176

metric DFE (Figure 1B and C) that will be specified later in the177

Results and Discussion section. Here, we assume additive selec-178

tion and we define the selection coefficient s as the difference179

in fitness between the heterozygote for the derived allele and180

the homozygote for the ancestral allele, leading to fitness of 1,181

1 + s and 1 + 2s for the ancestral homozygote, heterozygote and182

derived homozygote genotypes, respectively.183
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Expected SFS184

From PRF theory (Sawyer and Hartl 1992; Sethupathy and Han-185

nenhalli 2008),186

E [ Pneut(i) | θ ] =
θ

i
,

E [ Psel(i) | θ, S ] = θ
∫ 1

0
B(i, n, x)H(S, x) dx,

(1)

where187

B(i, n, x) =
(

n
i

)
xi(1− x)n−i

is the binomial probability of observing i derived alleles in a188

sample of size n, when the true allele frequency is x, and189

H(S, x) =
1− e−S(1−x)

x(1− x)
(
1− e−S

)

Note that due to our scaling of the mutation rate, H(s, x) is pro-190

portional (with a factor of 1/2) to the mean time a new semidom-191

inant mutation of scaled selection coefficient S = 4Nes spends192

between x and x + dx (Wright 1938). Figure 1D shows the193

expectations from equation (1) as a function of S.194

To obtain E [ Psel(i) | θ, φ ], we integrate over the DFE,195

E [ Psel(i) | θ, φ ] =
∫ ∞

−∞
E [ Psel(i) | θ, S ] φ(S) dS. (2)

Relative to the expected SFS of independent sites under a Wright-196

Fisher constant population (equations (1) and (2)), the observed197

SFS can be distorted due to demography, ascertainment bias,198

non-random sampling, and linkage. We account for such distor-199

tions that affect both the neutral and selected sites to a similar200

extent by using the approach of Eyre-Walker et al. (2006) and201

introduce nuisance parameters ri, 1 ≤ i < n, that scale the202

expected SFS, for z ∈ {neut, sel},203

E [ Pz(i) | θ, ri, φ ] = ri E [ Pz(i) | θ, φ ] . (3)

To avoid identifiability issues, we set r1 = 1.204

Full DFE and divergence counts205

Unlike methods that infer only a strictly deleterious DFE, we206

can incorporate a full DFE that includes both deleterious and207

beneficial mutations. Additionally, to add flexibility in the infer-208

ence of the full DFE, we optionally model divergence counts (the209

number of observed fixed mutations relative to an outgroup)210

dz as a Poisson distribution with mean ld
zE [ Dz | λ, θ, φ ]. Here,211

ld
z is the number of sites used for divergence counts, and can212

possibly be different than lz. We have that213

E [ Dneut | λ ] = λ,

E [ Dsel | λ, S ] = λ
S

1− e−S ,
(4)

where λ = Tθ is a composite divergence parameter that accounts214

for the number of neutral mutations that go to fixation during the215

divergence time T from the MRCA of the ingroup population to216

the outgroup (blue full line in Figure 1A). The term S/(1− e−S)217

accounts for the fixation of a mutation with scaled selection218

coefficient S, and can be obtained as limx→1 H(S, x). Figure 1D219

shows the expectations for the divergence counts at selected220

sites from equation (4) as a function of S.221

As divergence counts are calculated by comparing the out-222

group sequence to the sample of sequences from the ingroup,223

polymorphism may be misattributed as divergence, i.e. muta-224

tions that are polymorphic in the ingroup population but fixed225

in the sample are counted as divergence. This is the case for226

mutations that occur between the MRCAs of the sample and227

ingroup (blue dot-dash line in Figure 1A). As noted by Keightley228

and Eyre-Walker (2012), misattributed polymorphism can lead229

to biased inference of α. To account for this, we adjust the above230

means to also incorporate the misattributed polymorphism by231

increasing the expectations with the contributions coming from232

mutations present in all n sampled individuals,233
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E [ Dneut | λ, θ, rn ] = E [ Dneut | λ ] + θrn
1
n

,

E [ Dsel | λ, θ, rn, S ] = E [ Dsel | λ, S ]

+ θrn

∫ 1

0
B(n, n, x)H(S, x) dx.

(5)

Assuming that the ingroup and outgroup share the same234

DFE, we integrate over it to obtain235

E [ Dsel | λ, θ, rn, φ ] =
∫ ∞

−∞
E [ Dsel | λ, θ, rn, S ] φ(S) dS. (6)

Unfolded SFS and ancestral misidentification236

When only a deleterious DFE is inferred, the folded SFS is typ-237

ically used, where only sums of the form pz(i) + pz(n− i) are238

modeled. This is sufficient for inference of deleterious DFE239

(Keightley and Eyre-Walker 2007). However, the unfolded SFS240

contains valuable information for inference of the full DFE, as241

beneficial mutations are expected to be present in high frequen-242

cies (Durrett 2008; Fay and Wu 2000). To obtain an unfolded SFS,243

the ancestral state needs to be identified, and this is error prone.244

To account for potential misidentification of the ancestral state,245

we model the mean of Pz(i), z ∈ {neut, sel}, as a mixture of sites246

whose ancestral states were correctly identified (with probability247

1− ε), or misidentified (with probability ε) (Williamson et al.248

2005; Boyko et al. 2008; Glémin et al. 2015),249

E [ Pz(i) | θ, ri, ε, φ ] = (1− ε)E [ Pz(i) | θ, ri, φ ]

+ εE [ Pz(n− i) | θ, ri, φ ] .
(7)

Mutation variability250

There is substantial evidence that both substitution and mu-251

tation rates vary along the genome (Golding 1983; Yang 1996;252

Francioli et al. 2015; Hodgkinson and Eyre-Walker 2011; Arndt253

et al. 2005), with a long tradition of modeling this variability in254

phylogenetic inferences as a gamma distribution (Golding 1983;255

Yang 1996). A few DFE inference methods allow for mutation256

rates to vary in a non-parametric fashion (Bustamante et al. 2003;257

Gronau et al. 2013). Here, we model mutation variability by258

assuming that mutation rates follow a gamma distribution with259

mean θ̄ and shape a. This is motivated by the phylogenetic ap-260

proaches, but also by mathematical convenience: if the mean of a261

Poisson distribution follows a gamma distribution, the resulting262

distribution is a negative binomial distribution. We assume that263

the data is divided into m non-overlapping fragments of lengths264

l j
neut + l j

sel, 1 ≤ j ≤ m, and for each fragment j, we have the SFS265

pj
z(i), 1 ≤ i < n. Possibly, we have an additional md fragments266

of lengths ld,j
neut + ld,j

sel for which we have the divergence counts,267

dj
z. We assume that each fragment has a constant mutation rate268

θ, but that mutation rates can vary between fragments. Given269

the mutation rate θj of the fragment j, then pj
z(i) and dj

z follow270

the Poisson distributions with means l j
zE
[

Pz(i) | θj, ri, ε, φ
]

and271

ld,j
z E

[
Dz | λ, θj, rn, φ

]
, given by equations (1) – (6). Integrating272

over the mutation rates distribution, we obtain that pj
z(i) and dj

z273

have a negative binomial distribution with shape a and means274

l j
zE
[

Pz(i) | θ̄, ri, ε, φ
]

and ld,j
z E

[
Dz | λ, θ̄, rn, φ

]
, respectively.275

Inferring α using divergence or polymorphism data alone276

Once the DFE is estimated, α can be calculated from the observed277

divergence counts as follows (Eyre-Walker and Keightley 2009)278

α ≈
dsel −

ld
sel

ld
neut

dneut

∫ 0

−∞

S
1− e−S φ(S) dS

dsel
, (8)

where the nominator represents the estimated number of adap-279

tive substitutions, which are obtained by subtracting the ex-280

pected deleterious and neutral substitutions from the total ob-281

served divergence counts at selected sites. Keightley and Eyre-282

Walker (2012) extended the above estimation of α to account283

for the misattributed polymorphism. Using our framework, we284

correct for the misattributed polymorphism by removing from285

dsel and dneut the expected number of mutations that are in fact286

polymorphic. These expectations can be readily obtained from287

equation (5) by setting λ = 0. Then the new estimate of α is288

obtained as in equation (8), where dsel and dneut are replaced289

with the re-adjusted divergence counts d∗sel and d∗neut given by290
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d∗neut = dneut − ld
neutE [ Dneut | λ = 0, θ, rn ] ,

d∗sel = dsel − ld
selE [ Dsel | λ = 0, θ, rn, φ ] .

(9)

This approach to calculate α relies heavily on the assump-291

tion that the ingroup and outgroup share the same scaled DFE.292

However, if one has access to an estimated full DFE purely from293

polymorphism data, α can still be estimated by replacing the294

observed divergence counts with the expected counts from equa-295

tion (4). As λ will cancel out in the resulting fraction, α can be296

obtained by setting λ = 1. Then,297

α ≈

∫ ∞

0
E [ Dsel | λ = 1, S ] φ(S) dS

∫ ∞

−∞
E [ Dsel | λ = 1, S ] φ(S) dS

. (10)

In the rest of this paper, we refer to the two above estimates298

of α as αdiv and αdfe, respectively, to distinguish more clearly the299

type of information used.300

Likelihood estimation and comparison of models301

The hierarchical framework described above allows maximum302

likelihood estimation of both evolutionary (mutation rates, DFE303

parameters) and nuisance parameters, as well as the error in304

the ancestral states, ε. Details about the implementation and305

optimization of the likelihood function are given in the Supple-306

mental Material. Note that in our implementation, likelihood307

ratio tests (LRTs) can be used to test rigorously whether the poly-308

morphism data provides evidence for a full DFE, or if a strictly309

deleterious DFE is sufficient for accounting for the data. This310

framework also allows to decide whether including nuisance311

parameters and / or ancestral errors provides a better fit to the312

data. The p-values for the LRT are obtained by assuming that313

likelihood ratio under the null hypothesis (reduced model is314

correct) is distributed as χ2.315

Results and Discussion316

To investigate the statistical performance of our method to infer317

the DFE, α and test hypothesis regarding the contribution of ben-318
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Figure 2 Example of simulated and inferred gamma + expo-
nential DFEs. (A) Three of the simulated DFEs (corresponding
to LALSD, MALPB, and HAHSB from Table S1) with differ-
ent αs (proportion of beneficial substitutions). The DFEs are
parameterized by Sd (mean selection coefficient of deleterious
mutations), b (shape of distribution of deleterious DFE), pb
(proportion of beneficial mutations), and Sb (mean selection co-
efficient of beneficial mutations). The inset shows a zoom-in of
the beneficial part of the DFE. (B) Simulated discretized DFE
(orange, corresponding to MAMSD from Table S1), together
with the mean (over the 100 replicates) inferred discretized
DFE using both polymorphism and divergence data (purple)
and only polymorphism data (pink and gray), where a full
DFE (pink) and a deleterious DFE (gray) was inferred.

eficial mutations to patterns of polymorphism, we performed319

extensive simulations using SFS_CODE (Hernandez 2008). We320

explored a wide range of simulated DFEs (12 full DFEs and 5321

deleterious DFEs, Table S1), chosen such that the simulated α322

had one of four possible values (0%, 20%, 50% and 80%, Fig-323

ure 2A). Most simulations were performed using a constant324

population size and without error in the identification of the325

ancestral state. Results are shown for this type of data if not326

otherwise specified. These assumptions were later relaxed. The327

simulations contained linkage and were performed to resemble328

exome data. For each considered simulation scenario (one given329

DFE, demographic, linkage, misidentification of the ancestral330

state), we simulated 100 replicate data sets. For more details on331

the simulated data, see the Supplemental Material.332

The general shape of the DFE is not agreed upon (Welch et al.333
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2008; Bataillon and Bailey 2014). The DFE has been modeled334

using a wide range of functional continuous forms (Boyko et al.335

2008; Kousathanas and Keightley 2013; Galtier 2016), but also336

as a discrete distribution (Gronau et al. 2013; Kousathanas and337

Keightley 2013; Keightley and Eyre-Walker 2010). Here, we use338

a DFE consisting of a mixture between gamma and exponential339

distributions, that model deleterious and beneficial mutations,340

respectively. With probability 1− pb, a new mutation is deleteri-341

ous and its selection coefficient comes from a reflected gamma342

distribution with mean Sd < 0 and shape b, while with probabil-343

ity pb, a new mutation is beneficial and its selection coefficient344

comes from an exponential distribution with mean Sb > 0 (Fig-345

ure 2A). We do not explore alternative parametric DFE families.346

For such studies, we refer the reader to Kousathanas and Keight-347

ley (2013); Welch et al. (2008).348

We inferred the DFE and alpha parameters in our model us-349

ing three different models: a full DFE was inferred from both350

polymorphism and divergence data; a full DFE was inferred351

from polymorphism data alone; an only deleterious DFE was in-352

ferred from polymorphism data alone. From the inferred DFEs,353

we calculated αdfe and αdiv. For the inference assuming only354

a deleterious DFE, αdfe is always 0, and for such inference we355

therefore only calculated αdiv. The distortion parameters r were356

always estimated, while the ancestral misidentification error357

ε was fixed to 0, unless otherwise specified. We report the in-358

ference performance using log2(estim/sim) on a log-modulus359

scale. Here, estim is the estimated value, while sim is the simu-360

lated value. Unlike the relative error, this log ratio gives equal361

weight to both overestimation and underestimation of the pa-362

rameters. For example, the log ratios of 1 and −1 correspond to363

the estimated value being double or half the simulated value,364

respectively. When sim = estim, the ratio is equal to 0. See the365

Supplemental Material for details.366

Inference of deleterious DFE367

Using simulations that did not contain any beneficial mutations368

in the polymorphism data, we first investigated how well we can369

infer the deleterious DFE and if our method can recover the fact370

that all polymorphic mutations are deleterious. We observed371

that the two parameters determining the deleterious DFE, Sd372

and b, and α, are inferred accurately when only a deleterious373

DFE was estimated (Figure 3A and Figure S1). When, instead, a374

full DFE was inferred from the polymorphism data alone, the375

parameters showed different amounts of bias (Figure 3A and376

Figure S1). A crucial question is whether the data allows one377

to decide correctly which model is most sensible: the full DFE378

or only deleterious DFE? When using a LRT to compare the379

relative goodness of fit on simulated data, virtually all data sets380

tended to reject the full DFE model in favor of the reduced model381

featuring only deleterious mutations in the DFE (Figure S2). This382

indicates that while our method can account for the presence of383

beneficial mutations in the SFS data, it can also accurately detect384

if there is no empirical evidence for such mutations in the data.385

So in principle, one can perform estimation under both the full386

and deleterious DFE models and use the LRT to decide which387

model is most appropriate for the data.388

Inference of full DFE389

From the expected contribution of mutations to polymorphism390

and divergence data, as a function of S (Figure 1D), it is evident391

that if beneficial mutations occur at any appreciable rate, they392

should have a non-negligible impact in the polymorphism data.393

This suggests that it should be possible to infer the full DFE394

from polymorphism data alone. We investigated this using data395

generated under a full DFE. As one might expect, the deleteri-396

ous DFE parameters were inferred equally well regardless of397

whether the divergence data was used or not (Figure S3). The398

variance of the estimates seems to be somewhat larger when399

divergence data is not used, but this is most likely due to the400

inference using less data. The parameters of the beneficial part401

of the DFE and α were inferred with different levels of accuracy402

(Figure 3B and Figure S3). From the simulation scenarios consid-403

ered here, it is apparent that the value of α predicts the accuracy:404

the higher α, the better the prediction, for both inference with405

and without divergence. In short, when beneficial mutations are406

comparatively rare and of very small effects, estimating their407
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Figure 3 Inference of α (proportion of beneficial substitutions) and DFE parameters: Sd (mean selection coefficient of deleterious
mutations), b (shape of distribution of deleterious DFE), pb (proportion of beneficial mutations), and Sb (mean selection coefficient
of beneficial mutations). (A) Quality for inference performed on polymorphism data alone, for three simulated deleterious (corre-
sponding to DelLSD, DelMSD, and DelHSD from Table S1) DFEs with different Sds. The DFE parameters are inferred using only
polymorphism data assuming a full (white boxes) and deleterious (gray boxes) DFE. (B) Quality for inference performed on poly-
morphism and divergence data, for three simulated DFEs with different αs (corresponding to LALSD, MAMSD, and HAHSD from
Table S1). The DFEs differ only in the simulated value of Sd. The DFE parameters are inferred using both polymorphism and diver-
gence (white boxes) and only polymorphism (gray boxes) data. (C) Quality for inference performed on polymorphism data alone,
for three simulated DFEs with different αs (corresponding to LALSB, MAMSD, and HAHSB from Table S1). The DFEs differ only
in the simulated value of Sb. Only polymorphism data is used, and the DFE parameters are inferred assuming a full DFE where ε
is set to 0 and is not estimated (white boxes) and a deleterious DFE (gray boxes), where ε is set to 0 and is not estimated (light gray
boxes), or is estimated (dark gray boxes). The data was simulated with ε = 0.

properties and α is challenging (even with divergence data).408

Conversely, when beneficial mutations are relatively common,409

they dominate the divergence counts, but also make substantial410

contribution to the SFS counts, which alone can allow reliable411

estimation of the beneficial fraction of the DFE and α. For the412

lower values of α (α ≈ 20%), the use of divergence data provides413

more accurate estimates than when relying on polymorphism414

data alone. This could perhaps be explained by the fact that,415

in this case, the polymorphism data is heavily dominated by416

deleterious mutations and it is more difficult to tell apart the417

amount of beneficial selection from polymorphism data alone.418

However, as α increases, the differences in performance between419

the inference with and without divergence diminishes, strongly420

indicating that divergence data is not necessarily needed for421

accurate inference.422

Similar to Schneider et al. (2011), we observe a strong negative423

correlation between the proportion of beneficial mutations pb424

and their scaled selection coefficient Sb (Figure S4). This illus-425

trates the fact that pb and Sb are difficult to estimate separately,426

but their product, which largely determines α, is more accurately427

estimated. This can be seen in Figure 3B and Figure S3, where428

even though pb and Sb might be biased, overall α is inferred429

more accurately. Schneider et al. (2011) reported that the estima-430

tion of pb and Sb improves as more sites are available. In our431
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data simulations we used a fixed number of sites, but we do432

observed that pb, Sb and α are better estimated as α increases.433

When inferring a full DFE, we can calculate both αdiv and434

αdfe, which should both be good predictors of the true simulated435

α. We generally found very good correlation between the two436

estimated values (Figure S5), and perhaps not surprising, the437

estimates of αdfe obtained when performing inference on both438

SFS and divergence data were more tightly correlated.439

We note here that Schneider et al. (2011) is the only method440

that we are aware of that can estimate both a full DFE and α from441

polymorphism data alone, though the authors did not investi-442

gate the power to infer α, but rather the product of pbSb, which443

is taken as a proxy for α. Additionally, they did not consider444

in their simulations different deleterious DFEs. Our simulated445

DFEs where chosen such that they cover cases with the same446

simulated pb and Sb, but generate different αs. The differences447

in α can be driven by the amount of beneficial mutations, but448

also by the intensity of purifying selection, or, said slightly differ-449

ently, the properties of the deleterious fraction of the DFE. These450

simulated data set revealed that the amount and strength of451

positive selection is not the only determinant in how accurately452

pb and Sb are inferred. For example, the results in Figure 3B are453

given for simulated DFEs that differ only in the value of Sd, i.e.454

the strength of purifying selection, and we find in this instance a455

clear difference in the inference performance in terms of relative456

error.457

Bias from not inferring full DFE458

Given that divergence data is clearly not necessary for reliable459

estimates of the full DFE, a question arises: what happens when460

inference methods ignore the presence of beneficial mutations in461

the polymorphism data? For this, using the simulated data sets462

generated using full DFEs, we performed inference only on poly-463

morphism data where we inferred either a full DFE, like before,464

or under a reduced model restricted to only a deleterious DFE465

(Figure 3C and Figure S6). Note that this corresponds to the cur-466

rent state of the art for empirical studies of DFE from population467

genomics data, where data tend invariably to be analyzed under468

the assumption that SFS data is to be fitted exclusively with a469

deleterious DFE (Racimo and Schraiber 2014; Bataillon et al. 2015;470

Halligan et al. 2013; Arunkumar et al. 2015; Charlesworth 2015;471

Harris and Nielsen 2016; Slotte et al. 2010; Strasburg et al. 2011).472

When α was ≈ 20%, the inferred Sd and b were, at times, more473

accurate when only a deleterious DFE was used. However, as474

α increased, the two parameters were increasingly biased. The475

mean Sd was estimated to be more negative, while the shape b476

was estimated to be closer to 0: the inferred deleterious DFEs477

were getting much more leptokurtic than the parametric DFE478

used to simulate the data. This resulted in inferring DFEs with479

more probability mass accumulating close to 0. A straightfor-480

ward interpretation is that the inference method attempted to fit481

the SFS counts contributed by the weakly beneficial mutations482

by fitting a DFE that comprised a sizable amount of weakly dele-483

terious mutations (the best proxy for beneficial mutations). A484

comparison of the simulated and inferred discretized DFEs (Fig-485

ure 2B and Figure S7) illustrates this point: the inference with486

only deleterious DFE overestimated appreciably the amount of487

mutations with a selection coefficient in the range (−1, 0) (sim-488

ulated: 0.07, deleterious DFE: 0.11) and (−5,−1) (simulated:489

0.063, deleterious DFE: 0.067) ranges.490

DFE methods that do not model beneficial mutations in the491

polymorphism data use a folded SFS. To mimic this behavior,492

we allowed for ε to be estimated, even though no errors in the493

identification of ancestral state were simulated. We observed494

that ε reduces partially the bias in the parameters (Figure 3C,495

Figures S6 and S7).496

Using a LRT we could test, as before, for the presence of497

beneficial mutations in the polymorphism data by comparing498

the inferences with a full or deleterious DFE (Figure S8). We499

observed that the larger α, the stronger the preference for the full500

DFE model. We also noticed that, even though α might be rela-501

tively large, if the mean strength of beneficial selection was very502

low (Figure S8, MALSB where Sb = 0.1), the LRT indicated that503

there were no beneficial mutations in the polymorphism data.504

Such mutations can pass as weakly deleterious mutations when505

fitting the data. The LRT also showed an increasing preference506
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Figure 4 Inference of α (proportion of beneficial substitutions), ε (rate of ancestral error), and DFE parameters: Sd (mean selection
coefficient of deleterious mutations), b (shape of distribution of deleterious DFE), pb (proportion of beneficial mutations), and Sb
(mean selection coefficient of beneficial mutations). The figure shows the inference quality for three simulated DFEs (corresponding
to LALSD, MAMSD, and HAHSD from Table S1) with different αs. The DFEs differ only in the simulated value of Sd. A full DFE
is inferred from both polymorphism and divergence data, and ε is set to 0 and is not estimated (white boxes), or is estimated (gray
boxes). The data was simulated with ε = 0.05.

with α for ε when only deleterious DFE is inferred, indicating,507

as expected, that the model with ε 6= 0 could account for some508

of the weakly beneficial mutations present in the polymorphism509

data.510

Inferring only a deleterious DFE leads to a consistent bias in511

α as well. This bias is not that well correlated with the simulated512

value of α, but it is apparent that a higher α leads to a smaller513

bias (Figure S6). This is in contrast to the bias observed for Sd514

and b. To obtain α from a deleterious DFE only, we need to rely515

on the divergence data. Perhaps, when α is large, the signal516

of positive selection is so strong in the divergence data that it517

overrides, to some extent, the bias in Sd and b, leading to a more518

accurate estimate of α.519

The assumption of negligible contribution of beneficial muta-520

tions to SFS counts can be traced back to Smith and Eyre-Walker521

(2002). To support the claim, the authors stated that “if advan-522

tageous mutations, with an advantage of Nes = 25 occur at523

one-hundredth the rate of neutral mutations, they will account524

for 50% of substitutions, but account for just 2% of heterozygos-525

ity”. Our simulated Sb (which is scaled by 4Ne) was typically 4.526

To investigate what happens when selection is much stronger,527

we simulated a full DFE with Sb = 800 such that only 10% of528

beneficial mutations (0.2% of all mutations) had a selection coef-529

ficient of 100 or less. For this, the simulated α was nearly 100%530

and one would expect that, as selection is so strong, most mu-531

tations would fix quickly. While the DFE parameters could not532

be recovered as accurately (Figure S9), the estimated α was very533

precise, regardless of the model used for inference. This points to534

the fact that, even when positive selection is very strong, there is535

enough information left in the polymorphism data to be able to536

estimate α without relying on divergence data. The bias in Sd, b537

and α (Figure S9) and LRT (Figure S10) from inference with only538

deleterious DFE followed the same trend as before. However,539

even though α was large, pb and Sb were not that well estimated.540

This is most likely because when Sb is getting very large, the541

expected counts from equation (1) become independent of S,542

since H(S, x) ≈ 1
x(1−x) for large S (Figure 1D). This explains543

why the inference method will have trouble narrowing precisely544

the value of Sb.545

Keightley and Eyre-Walker (2010) investigated if the presence546

of beneficial mutations in the polymorphism data could poten-547

tially affect the inference when assuming only a deleterious DFE.548

For this, they simulated data using a partially reflected gamma549

distribution, given by550

φ(S; Sd, b) =
1

1 + eS Γ(|S|;−Sd, b),

where Γ(x; m, s) is the density of a gamma distribution with551

mean m and shape s. This distribution arises from the assump-552

tion that the absolute strength of selection is gamma distributed553

and that each site can be occupied by either an advantageous554

or a deleterious allele, both having the same absolute selection555

strength |s|. Keightley and Eyre-Walker (2010) simulated data556

Inference of DFE and α from polymorphism data 11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 5, 2016. ; https://doi.org/10.1101/062216doi: bioRxiv preprint 

https://doi.org/10.1101/062216
http://creativecommons.org/licenses/by-nc-nd/4.0/


with |Sd| = 400 and b = 0.5. Due to the chosen distribution, the557

simulated proportion of beneficial selection was pb = 0.0214,558

while the mean selection coefficient of beneficial mutations was559

only Sb = 0.014 (pbSb = 0.00029). These values are close to560

one of our own simulated DFEs with α ≈ 20% (LALSB, Ta-561

ble S1), with the difference that we simulated an Sb that was562

approximately 7 times larger. For this simulation scenario we563

did, indeed, find little bias in Sd and b when inferring only a564

deleterious DFE (Figures S6 and S7). However, arguably, this565

strength of beneficial mutations is extremely low. For example,566

Schneider et al. (2011) inferred the strength of beneficial muta-567

tions from Drosophila and found pbSb to be two-three orders of568

magnitude higher: pb = 0.0096 and Sb = 18 (pbSb = 0.1728).569

Impact of ancestral error on inference570

The results presented above were based on simulations where571

the true ancestral state was used. To investigate the conse-572

quences of misidentification of the ancestral state, we added573

errors to the simulated data (see Supplemental Material for de-574

tails). Inferring a full DFE and using divergence data, we found575

that we can properly account for the rate of misidentification,576

and the error ε is accurately recovered (Figure 4 and Figure S11).577

As expected, the inference of the DFE and α is biased when578

the misidentification is not accounted for. A LRT for ε 6= 0579

(Figure S14) supported the use of a model including the joint580

estimation of ε and DFE parameters for the data with errors, but581

rejected the more complex model for the data without error.582

Galtier (2016), who also used distortion parameters ri when583

inferring the DFE, stated that these parameters are “expected584

to capture any departure from the expected SFS as soon as it585

is shared by synonymous and non-synonymous sites”. Our586

results indicate that the misidentification of the ancestral state587

cannot be accurately accounted for by the ri parameters (Figure 4588

and Figure S11). However, we did find that the resulting bias589

decreased with α and that the preference (as measured by a LRT)590

for models inferring ε 6= 0 also decreased for data sets with591

higher α (Figure S14). For data simulations with α ≈ 80%, the592

inference was just as good when ε was set to 0. To investigate593

this in more details, we also ran the inference with ri = 1 (i.e.594

no distortion correction) and ε = 0 on those simulated DFEs.595

The results showed a large bias in the DFE parameters and α596

when ri = 1 (Figure S12), and a LRT favored the estimation597

of ris (Figure S15). This illustrated that merely using the ri598

parameters without explicitly accounting for misidentification of599

the ancestral state is not always accurate and can bias inference600

of DFE and α.601

Both the presence of beneficial mutations and ε 6= 0 create602

similar patterns in the polymorphism data: the frequency of the603

common derived alleles increases. We have seen before that ε604

can account for some of the positive selection in the data (Fig-605

ure 3C, Figures S6 and S7). Similarly, we observed that positive606

selection can account for some of the misidentification of ances-607

tral state. On simulations with a deleterious DFE and incorrect608

ancestral states, we found that when assuming ε = 0, the pa-609

rameters inferred when a full DFE is assumed are, generally,610

more accurate than when only a deleterious DFE is inferred611

(Figure S13). A LRT also supported the use of a full DFE (Fig-612

ure S16). Comparing the inferred pb and Sb when ε is inferred or613

not (Figure S13) showed that these parameters are higher when614

ε = 0, further indicating that they captured some of the ancestral615

misidentification errors. Therefore, if the data contains sites that616

have the ancestral state misidentified, which is virtually always617

the case in empirical data sets, ancestral misidentification will618

be wrongly interpreted as positive selection if the misidentifi-619

cation is not accounted for. If ε is inferred jointly with the DFE620

parameters, a LRT comparing models with full DFE or only dele-621

terious DFE can correctly detect that the polymorphism data622

does not contain any beneficial mutations (Figure S16). Our623

simulation results illustrated that systematically incorporating624

the rate of ancestral error is crucial for a reliable inference of DFE625

parameters and α.626

Distortions of the SFS by linkage and demography627

It has previously been suggested that correcting for the effect628

of demography – using the observed SFS at neutral sites – can629

also reduce some of the bias introduced by linkage in the data630
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Figure 5 Inference of α (proportion of beneficial substitutions). The figure shows the inference quality for αdfe (inferred from DFE
alone, white) and αdiv (inferred from DFE and divergence data, gray) for four simulated demographic scenarios (detailed in the
Supplemental Information) and a deleterious DFE only (α = 0, corresponding to DelMSD from Table S1) or a full DFE (α ≈ 50%,
corresponding to MAMSD from Table S1). For all inference only SFS data was used, and a LRT was performed to compare the full
and deleterious only DFE models. The estimated value of α was chosen from the model preferred by the LRT.

(Kousathanas and Keightley 2013; Messer and Petrov 2012). We631

explored this possibility by simulating different levels of linkage632

(see Supplemental Material for details). We found that, indeed,633

the ri parameters could partially correct for the presence of link-634

age (Figure S17), with the most pronounced effect on Sd and635

b. A LRT for ri 6= 1 (Figure S18) increasingly favored the more636

models fitting ri as the level of linkage increased.637

For the previous simulations we used a constant population638

size. To check that the ri parameters can also correct for demog-639

raphy, we simulated additional data, using different demogra-640

phy scenarios (see Supplemental Material for details). When641

populations size varies in time, Ne is typically taken to be the642

harmonic mean of the different sizes (Kliman et al. 2008). While643

this might be a good approximation for the neutral sites, the sites644

under selection experience a different Ne, which depends on the645

strength of selection S (Otto and Whitlock 1997). Therefore, for646

these simulations, we do not have a priori knowledge of the Ne647

that accurately captures the interaction between selection and648

demography, and we could only compare parameters that are in-649

dependent of Ne (b, pb), and α, for which a value can be obtained650

by tracking the proportion of adaptive mutations contributing to651

divergence in the forward simulations used to generate the data652

sets. Like before, we first simulated a deleterious DFE, similar to653

previous studies (Boyko et al. 2008; Eyre-Walker et al. 2006; Eyre-654

Walker and Keightley 2009; Keightley and Eyre-Walker 2007).655

We found that a LRT correctly detected that ri 6= 1 (Figure S20),656

but that the parameters can correct only partially for the effect657

of demography (Figure S19). The b parameter was inferred ac-658

curately when the ri parameters were estimated. However, the659

estimated α was still biased (Figure 5). As no full DFE was in-660

ferred, α was calculated from the divergence data. For this, the661

same DFE was assumed in the ingroup and outgroup. How-662

ever, as the ingroup now underwent variable population size,663

its Ne was different from the Ne of the outgroup (which had a664

constant size), and therefore the two populations had different665

scaled DFEs. This difference could explain the observed bias in666

α Eyre-Walker and Keightley (2009) noticed the same effect and667

proposed a correction for α. However, their correction requires668

the ratio of the Nes of the two populations, which is typically669

not known.670

We then investigated if the ri parameters could also correct671

for demography when a full DFE was simulated (Figure S21).672

The LRT (Figure S22) showed a clear preference for ri 6= 1. When673

inferring the DFE from both polymorphism and divergence data,674

we observed a bias in b and pb. As before, this was caused by675

the incorrect assumption of a shared DFE between the ingroup676

and outgroup. When only polymorphism data was used for the677

inference, the ri parameters could accurately correct the estima-678

tion of pb and b, but the inferred α (estimated via αdfe) was still679

slightly biased. To investigate if this bias was caused by linkage,680

we also ran simulations with reduced linkage (Figure S21), but681

the bias remained.682

We investigated if the full or deleterious DFE model is pre-683

ferred for the data simulated under variable population size.684

We found that a LRT consistently preferred the full DFE model685

when the SFS data contained beneficial mutations (Figure S23).686
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Under demographic simulations, the estimated αdfe and αdiv687

could differ considerably (Figure 5). When only a deleterious688

DFE was simulated, relying on divergence data to estimate α689

can lead to heavily biased estimates. Note that when the popu-690

lation size was halved and a full DFE was simulated, the LRT691

favored the incorrect deleterious DFE model. This indicates that692

the ri parameter cannot fully capture the demography and in693

this particular simulation, the incorrect model choice can be ex-694

plained by the extra deleterious load incurred by the population695

shrinkage.696

The simulated demographics were the same for both dele-697

terious and full DFE simulations, and therefore the inferred698

ri parameters on the deleterious and full DFE data should be699

highly correlated. We did, in fact, detect a strong correlation700

(Figure S24). One of the simulations showed no correlation in701

ri and the LRT preferred the less complex model with ri = 1702

(Figures S20 and S22, SHRINK). The change in population size703

for this simulation was most likely not strong enough for it to704

leave an appreciable footprint in the data.705

Galtier (2016) is the only study that we are aware of that706

tested if demography can accurately be accounted for when a707

full DFE was simulated. While the estimated αs from Galtier708

(2016) were somewhat more accurate than what we found, there709

are critical differences between these studies. While we sim-710

ulated a continuous full DFE, Galtier (2016) assumed that all711

beneficial mutations had the same selection coefficient Sb. Nev-712

ertheless, Galtier (2016) inferred a continuous full DFE and used713

equation (8) for calculating α, where the integration limit was714

set to some Sadv > 0 instead of 0. The reasoning behind this is715

that mutations with a selection coefficient S > 0 that is not very716

large should not be considered advantageous mutations. Galtier717

(2016) used an arbitrary cutoff at Sadv = 5. Note that a different718

cut-off value of Sadv would lead to different αs: the smaller Sadv,719

the larger the estimated α.720

Comparison with the dfe-alpha method721

We chose to compare our method with dfe-alpha, one of the722

most widely used inference methods for DFE and α. dfe-alpha723

was originally developed to infer a deleterious DFE (Keightley724

and Eyre-Walker 2007), and it was subsequently extended to725

estimate α (Eyre-Walker and Keightley 2009), model a full DFE726

(Schneider et al. 2011) and correct α for misattributed polymor-727

phism (Keightley and Eyre-Walker 2012). While dfe-alpha can728

infer a full discrete DFE, the method to account for potential729

errors in the ancestral state described in Schneider et al. (2011)730

is not implemented in dfe-alpha. At the time when we ran out731

comparison, we could not find any option in dfe-alpha for ac-732

counting for such errors. As we showed that this is crucial for733

accurate inference (Figure 4 and Figure S11), we therefore chose734

to run dfe-alpha with a folded SFS, where only a deleterious735

DFE can be estimated. We then compared with our method736

when only a deleterious DFE was inferred, where, as before, ε737

was either set to 0, or estimated. Although these comparisons738

are therefore quite limited in scope, we found that, for simula-739

tions with only a deleterious DFE, our method provided better740

estimates and with lower variance than dfe-alpha (Figure 6 and741

Figure S25). For these simulations, we also found that, some-742

times, dfe-alpha estimated an α that was very large, both on the743

negative and positive side (Figure S25, DelHB simulation). This744

seemed to be the result of the correction for the misattributed745

polymorphism, as the uncorrected α was much closer to the true746

value (data not shown). This most likely explains the general747

differences observed between the estimated α from dfe-alpha748

and our method. When the inference was performed on data749

simulated with a full DFE, we observed the same type of bias750

in Sd and b as described before (Figure 6 and Figure S25). When751

demography and a strictly deleterious DFE were simulated, the752

estimation was, again, comparable (Figure S26). However, when753

demography was simulated on top of a full DFE, the bias of b754

differed between dfe-alpha and our method. This could, per-755

haps, be explained by the differences between the two methods756

for accounting for demography: while we used the nuisance pa-757

rameters ri, dfe-alpha assumes a strict simplified demographic758

scenario and only allows the population to undergo one size759

change in the past.760
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Figure 6 Comparison to dfe-alpha of inference of α (proportion of beneficial substitutions) and deleterious DFE parameters: Sd
(mean selection coefficient of deleterious mutations) and b (shape of distribution of deleterious DFE), for four simulated deleterious
DFEs (corresponding to DelMSD, LALSD, MAMSD and HAHSD from Table S1) with different αs. The DFE parameters are inferred
using only polymorphism data, assuming a deleterious DFE, where ε is set to 0 and is not estimated (white boxes), or is estimated
(light gray boxes). The inference from dfe-alpha is given in the dark gray boxes. The data was simulated with ε = 0.

Conclusion761

We have presented a new method to infer the DFE and propor-762

tion of advantageous substitutions, α, from polymorphism and763

divergence data. Using our framework, we demonstrated that764

inference can be performed using polymorphism data alone,765

and that this lead to more accurate inference when the DFE is766

not shared between the ingroup and the outgroup. We addition-767

ally illustrated that when the effects of beneficial mutations on768

polymorphism data were not modeled, the inferred deleterious769

DFE was biased. This bias comes from an increase of mutations770

at selected sites that segregate at high frequencies. Methods771

ignoring the contribution of beneficial fraction to SFS counts772

will tend to infer DFEs that have a larger amount of slightly773

deleterious mutations, as this is the best way to account for the774

observed data. Therefore, the estimated deleterious DFE had775

a much larger mass close to 0 compared to the simulated dele-776

terious DFE. This, in turn, could be achieved by a larger (more777

negative) Sd and a lower b of the Γ distribution used here for778

the deleterious DFE. In cases where polymorphism data did not779

contain any beneficial mutations, the inference was much more780

accurate under a reduced model positing only a deleterious DFE.781

We showed that when applying our method, the use of a LRT782

comparing a model featuring a full DFE and a deleterious DFE,783

would accurately select the reduced model and allow precise784

inference of the deleterious DFE. This is an important result, as785

it suggests that using a full DFE for inference from SFS data does786

not come with a cost when no beneficial mutations contributed787

to the SFS counts, and that the method does not spuriously infer788

presence of beneficial mutations.789

In order to correct for demography and other forces that can790

distort the SFS data, such as linkage, we used the so-called nui-791

sance parameters ris. These parameters have the potential of792

accounting for more complex scenarios without directly model-793

ing the underlying changes in population size, and potentially,794

other events such as migration and admixture. This could prove795

more robust than just allowing for one (or two) population size796

changes, as dfe-alpha assumes. However, we did not test the797

behavior of our method under these more complex scenarios798

and the extent of bias in α they might generate.799

In order to infer the full DFE, we used the unfolded site fre-800

quency spectrum (SFS). This requires the identification of the801

ancestral state, which is prone to errors. The errors in the identi-802

fication of the ancestral state can, for example, be accounted for803

by using a probabilistic modeling of the ancestral state (Schnei-804

der et al. 2011; Gronau et al. 2013). We chose to assume that805

the polymorphism data is composed of a mixture of sites with806

correctly inferred ancestral state and sites with incorrect ances-807

tral state. This approach has proved to be efficient for unbiased808

estimation of GC-biased gene conversion (Glémin et al. 2015),809

a weak selection-like process. Here, we also showed that we810

could capture the errors in the identification of ancestral state811

under a general distribution of fitness effects and, as apposed to812

the expectations of Galtier (2016), that the ri parameters are not813

sufficient to correct for misidentification of ancestral state.814

When using the divergence data in the inference, we cor-815
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rected for mutations that were fixed in the sample but that were,816

in fact, polymorphic in the population. These mutations would817

incorrectly be counted into the divergence data. Our correction is818

different than the one used by Keightley and Eyre-Walker (2012),819

which is implemented in dfe-alpha. We found that this correc-820

tion can lead dfe-alpha to predict values of α that are extreme,821

both on the positive and negative side. Our approach showed a822

much more consistent behavior throughout the simulations.823

One drawback of the method presented here is that as the824

sample size n increases, so does the number of required ri param-825

eters. Estimating too many parameters could lead to numerical826

difficulties in finding the optimum. One might expect that muta-827

tions present in i copies could be distorted to similar extent as828

mutations that are present in i− 1 or i + 1 copies. Using this, the829

number of ri parameters could be reduced by allowing different830

consecutive polymorphism counts to share the same r parameter.831

A model selection procedure, via LRT or AIC, can then be used832

to decide on the most adequate grouping of the r parameters.833

Similar to the ri parameters, both our approach and methods834

that use probabilistic modeling to account for the identification835

of ancestral state rely on that the same process applies to both836

neutral and selected sites. This is probably not the case, as one837

could expect that the error in the identification of the ancestral838

state is different for the sites that are under selection. Theoreti-839

cally, the neutral and selected sites could each have their own840

ε, but this would most likely not be identifiable. Nonetheless,841

it would be useful to investigate how robust the inference is842

when neutral and selected sites have different errors in the iden-843

tification of the ancestral state. One could also put more effort844

in reducing the misidentification error when obtaining the un-845

folded from the folded SFS. Such an approach is pursued by846

Keightley et al. (2016), where the unfolded SFS is obtained by847

relying on two, instead of one, outgroup populations.848

All methods that estimate the DFE require an a priori strict849

division of sites into neutral and selected classes. This is needed850

to disentangle the effects of selection from other forces, such as851

demography and misidentification of the ancestral state. It is852

expected that real data violates this assumptions, and it is not853

known to how extent this biases the inference. Similar to the854

ε, one could add a contamination error, εcon, with which, the855

observed neutral data would be modeled as a mixture of truly856

neutral sites and selected sites. However, this parameter would857

not be identifiable. It would though be interesting to investigate858

to what extent violations of this assumption bias the inference.859

Throughout this paper, we used LRTs for model testing. How-860

ever, inferences with or without divergence data are not compa-861

rable through LRT or AIC, or any other similar method (as the862

data are different). A goodness of fit test could be developed,863

that would investigate how closely the predicted SFS matches864

the observed one. This could then be used to decide if diver-865

gence data should be used in the inference or not.866

Here, we assumed that selection is additive, where fitness of867

the heterozygote and derived homozygote are 1 + s and 1 + 2s,868

and the selection coefficient s is fixed in time. This assumption869

is made by most methods that infer the DFE and α, though870

some approaches exist for modeling arbitrary dominance or871

potentially temporal variation/fluctuations in selection coeffi-872

cients. Williamson et al. (2004), Huerta-Sanchez et al. (2008) and873

Gossmann et al. (2014) pursue this in more details, illustrating874

the need for future development accounting for other types of875

selection regimes.876

Our general approach can be applied to a wide range of877

species where the amount and impact of beneficial mutations878

on patterns of polymorphism and divergence varies widely (as879

uncovered by Galtier (2016)). Our method allows to accurately880

detect if beneficial mutations are present in the data, and a LRT881

can be used for model reduction, to let the data decide if a full882

or strictly deleterious DFE should be inferred. Importantly, we883

also show that estimating a full DFE, and thus learning about884

the property of beneficial mutations and expected amounts of885

adaptive substitution, is possible without relying on divergence886

data.887

Availability888

The source code is available upon request from PT.889
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