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Abstract 

RNAseq technology has revolutionized the face of gene expression profiling by 

generating read count data measuring the transcript abundances for each queried gene. 

But on the other side, the underlying technical artefacts generate a wide variety of 

hidden effects that may potentially distort the primary signals of differential expression 

between two sample groups. This is in addition to the factors of unwanted biological 

variability may give rise to a highly complicated pattern of residual expression 

heterogeneity in the data. Standard normalization techniques fail to correct for these 

latent variables and leads to a substantial reduction in the power of common statistical 

tests for differential expression. Here I introduce a novel method SVAPLSseq that aims 

to capture the traces of hidden variability in the data and incorporate them in a 

regression framework to re-estimate the primary signals for finding the truly positive 

genes. Application on both simulated and real-life RNAseq data shows the superior 

performance of the method compared to other available techniques. The method is 

provided as an R package ‘SVAPLSseq’ that has been submitted to Bioconductor. 

Introduction 

Latent variability is a very important source of residual heterogeneity in gene expression 

studies. Several latent effects stemming from a wide array of hidden/unknown factors can 

distort the actual gene expression signals of the tissue samples and introduce spurious sources 

of extraneous variation. A small number of research works have been conducted over the past 

few years to address this problem with limited success. Moreover, with the advent of the RNA 

sequencing technology quantification of gene expression profiles is now possible at a deeper 

and finer resolution. But the complexity of the RNAseq workflow gives rise to a number of 

technical artifacts and other potential latent variables that add to the underlying variability in 

the data (Marioni et al. 2008; Mclntyre et al. 2011). Moreover, the discrete nature of the data 

hinders the application of standard probability models and necessitates a more generalized 

approach to analyse it. Methods like SVA (Leek and Storey 2007; Leek 2015), PCA and RUV 

(Risso et al., 2014) have been developed that have been shown to work effectively for certain 

specific types of latent variation, while they fail to capture a large number of other 

unaccountable biases in gene expression data. Recently Leek (2015) developed an extension of 

the original SVA methodology (SVASEQ) to correct for hidden variability in RNAseq data on 

gene expression. Although the method conceptually resembles the earlier version, a new 

approach has been introduced in SVASEQ that uses the information on control probes to extract 
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the signatures of residual heterogeneity. RUV uses a factor analysis approach to identify the 

sources of latent variability in the gene expression data. Overall, SVA and RUV  are robust 

methodologies  that can handle simple latent effects with considerable success, but fails to 

improve the detection power of differential expression studies in case the hidden variability is 

highly complicated in nature.  

 

The SVAPLSseq Methodology 

Let 𝑌𝑖𝑗𝑘  denote the read count value measuring the expression level of gene 𝑖 in sample 

(replicate) 𝑘 from group 𝑗 (𝑖 = 1(1)𝑛; 𝑘 ∈ 𝑆𝑗; 𝑗 = 1,2). Here 𝑆𝑗 denotes the collection of 

samples/replicates corresponding to group 𝑗 (𝑗 = 1, 2). Let 𝑚 denote the total number of 

samples in the two groups.   

Initially a regression model is fitted on a transformed version of the read count data on gene 

expression with the sample group (tissue type) as covariate: 

 

                                                   𝜂(𝑌𝑖𝑗𝑘) = 𝜇𝑖 + 𝛽𝑖𝑍𝑖𝑗𝑘 + 𝜖𝑖𝑗𝑘                                                              (1)  

 

Where 𝜂 is the transforming function, usually chosen as (𝑥) = log𝑒( 𝑥 + 𝑐) , 𝑐 being a constant,  

𝜇𝑖  is the intercept term (baseline effect) for gene 𝑖; 𝛽𝑖 is the regression coefficient for the group 

indicator  𝑍𝑖𝑗𝑘  (= 1 𝑖𝑓 𝑘 ∈ 𝑆1, = 0 𝑖𝑓 𝑘 ∉ 𝑆1) corresponding to gene 𝑖 and 𝜖𝑖𝑗𝑘 is the random 

error term. 

Now, residuals from the above fit [𝑒𝑖𝑗𝑘 = 𝜂(𝑌𝑖𝑗𝑘) − 𝜇̂𝑖 − 𝛽̂𝑖𝑍𝑖𝑗𝑘] and the transformed read count 

values [𝜂(𝑌𝑖𝑗𝑘)] for all the genes are column-wise organized into two 𝑚 × 𝑛 matrices 𝐸 and 𝑌 

respectively. To that end, 𝐸 and 𝑌 can be characterized as two 𝑛 dimensional random variables 

where each dimension corresponds a certain gene. The rationale of the method is to integrate 

the residual effects in 𝐸 and the original expression signals in 𝑌 in order to extract the potential 

signatures of hidden (latent) variability in the data. The multivariate Non-linear Partial Least 

Squares (NPLS) regression technique is used for this purpose (Boulesteix and Strimmer 

2007).The NPLS model for regressing 𝐸 on 𝑌 is given by: 

 

                                                                     𝐸 = Λ𝑌𝑡 + 𝛾                                                                       (2) 

 

where Λ is the matrix of regression coefficients and 𝛾 is the random error component in the 

model. Now the coefficients in Λ are estimated by partial least squares based on the following 

two latent factor models for 𝐸 and 𝑌   

 

                                                                    𝐸 = 𝑈𝑄𝑡 + 𝜖1                                                                      (3) 

                                                                    𝑌 = 𝑇𝑃𝑡 + 𝜖2                                                                       (4) 
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Here 𝑈 = [𝑢1: 𝑢2: … : 𝑢𝑓] is a matrix of 𝑓 unknown, arbitrary latent factors in the column space of 

𝐸 and 𝑄 = [𝑞1: 𝑞2: … : 𝑞𝑓] is the corresponding matrix of factor loadings.  

Similarly  𝑇 = [𝑡1: 𝑡2: … : 𝑡𝑓]  and 𝑃 = [𝑝1: 𝑝2: … : 𝑝𝑓] are the factor and loading matrices in the 

column space of  𝑌. 𝜖1 and 𝜖2 are the random error terms in the two models. The algorithm aims 

to estimate the latent factor pairs (scores) [(𝑢𝑖, 𝑡𝑖), 𝑖 = 1(1)𝑓] in such a way that their mutual 

covariance is maximized.  

The estimated 𝑌-space scores  𝑡1, 𝑡2 … . . 𝑡𝑓 can be visualized as surrogate variables capturing 

potential signatures of latent variation in the data. These surrogate variables are further tested 

for significance using a statistical test on their coefficients from the following linear model: 

 

                                          𝑠𝑘 = 𝑐 + 𝜓1𝑡1𝑘 + 𝜓2𝑡2𝑘 + ⋯ 𝜓𝑓𝑡𝑓𝑘 + 𝑟𝑘                                               (5) 

 

Where 𝑠𝑘 is the 𝑘th component of the first eigenvector of  𝐸𝑡𝐸, 𝑐 is the intercept, 𝜓𝑢 is the 

regression coefficient for 𝑡𝑢 (𝑢 = 1,2. . 𝑓) and 𝑟𝑘 is the random error term in the model. 

I also introduce another variant of the SVAPLSseq methodology (supervised-SVAPLSseq) which 

can be used to adjust for the hidden sources of variation in the data when information on 

control probes is provided. This variant uses the following NPLS regression model for extracting 

the signatures of latent variability in the data: 

                                                                                   𝑌 = Γ𝑌𝑐
𝑡 + 𝜖                                                                         (6) 

where, 𝑌𝑐 is a matrix of transformed gene level read counts for a predefined set of 

control genes. Furthermore, two separate regression models are used for 𝑌 and 𝑌𝑐, 

which characterize the latent factors in the column spaces of the two matrices. Similar 

to unsupervised version of the method, here also the surrogate variables are defined as 

the PLS scores in the covariate space of the regression model (column space of 𝑌𝑐). 

These scores being generated from the vector space of the control gene expression 

matrix are expected to be free from the primary signals of differential expression and 

only contain signatures of the unknown variability in the data. Similar to the 

unsupervised version here also the surrogate variables are tested for statistical 

significance using an analogous linear model as in (5), with  𝑠𝑘 being the 𝑘th component 

of the first eigenvector of 𝑌𝑐
𝑡𝑌𝑐. 

The statistically significant surrogate variables can now be incorporated in a regression 

model and the group effects for all the genes can be re-estimated with higher accuracy. 

Using these variables in consort with a statistical test for differential gene expression 

can substantially improve the detection power and specificity of the analysis.  
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Simulation Study 

The application of the method SVAPLSseq has been illustrated on a simulated RNAseq dataset 

affected by hidden variables stemming from multiple experimental and sample specific 

artefacts.  

Suppose an RNAseq experiment has been performed to measure the expression levels of 1000 

genes over 20 samples distributed equally between two different tissue types. Let 𝑌𝑖𝑗𝑘  denote 

the number of reads corresponding to gene 𝑖 in sample 𝑘 belonging to the group 𝑗  (𝑖 =

1(1)1000; 𝑘 ∈ 𝑆𝑗;  𝑗 = 1,2); 𝑆1 = {1,2, ⋯ 10}, 𝑆2 = {11,12, ⋯ 20} . Here 𝑌𝑖𝑗𝑘  is generated as: 

𝑌𝑖𝑗𝑘 = 𝑍𝑖𝑗𝑘 + ℎ𝑖𝑗𝑘 , where 𝑍𝑖𝑗𝑘  follows a negative binomial 𝑁𝐵(𝜇𝑖𝑗𝑘 , 𝜙𝑖𝑗𝑘) distribution with mean 

𝜇𝑖𝑗𝑘  and size (dispersion) parameter 𝜙𝑖𝑗𝑘, ℎ𝑖𝑗𝑘  is the latent effect from the hidden variability in 

the data.  

The gene expression values are assumed to be distorted by multiple sources of hidden 

variability attributed to several technical artefacts. To that end, let us assume that the 20 

samples have been sequenced with two different library preparations, in 4 flowcells (with 5 

lanes in each flowcell). Samples indexed (1, 2…10) are sequenced in library 1 and (11, 12…20) 

are sequenced in library 2. Thus the library effect here is a complex latent variable that is 

strongly confounded with the primary group effect. Additionally, the samples indexed (1, 2…5) 

are processed  in flowcell 1, (6, 7…10) in flowcell 2, (11, 12…15) in flowcell 3 and (16, 17…20) in 

flowcell 4. Additionally, it is also assumed that the GC content affects the read counts for each 

gene. We define 𝜇𝑖𝑗𝑘 = 𝑒𝜓(𝛾𝑖,𝑋𝛽𝑖𝑗𝑘,𝐿𝑏𝑘,𝐹𝑘,𝐿𝑛𝑘), 𝛾𝑖  being the mean parameter for gene 𝑖, estimated 

from the zebrafish RNAseq data by using the R package polyester (Frazee et al. 2015). 𝑋 is the 

design matrix for the primary signal of group-specific differential expression and 

𝛽𝑖𝑗𝑘~𝑁(0, 1) 𝑖𝑓 𝑖 ≤ 400; = 0 𝑖𝑓 𝑖 > 400. 𝐿𝑏𝑘 is the library effect, 𝐹𝑘 is the flowcell effect and 𝐿𝑛𝑘 

is the lane effect corresponding to sample 𝑘 and 𝜓() is a continuous function. The library effect 

𝐿𝑏𝑘 is generated from an uniform 𝑈(−0.5, 0) distribution if sample 𝑘 ∈ 𝐿𝑖𝑏𝑟𝑎𝑟𝑦 1 and an 

uniform 𝑈(0.7, 1) distribution if sample 𝑘 ∈ 𝐿𝑖𝑏𝑟𝑎𝑟𝑦 2. The flowcell effect is assumed to be a 

fixed effect and is generated as: 

𝐹𝑘 = −1.7 𝑖𝑓 𝑘 ∈ 𝐹𝑙𝑜𝑤𝑐𝑒𝑙𝑙 1 

   = 2.3 𝑖𝑓 𝑘 ∈ 𝐹𝑙𝑜𝑤𝑐𝑒𝑙𝑙 2 

   = 0.3 𝑖𝑓 𝑘 ∈ 𝐹𝑙𝑜𝑤𝑐𝑒𝑙𝑙 3 

   = 2.7 𝑖𝑓 𝑘 ∈ 𝐹𝑙𝑜𝑤𝑐𝑒𝑙𝑙 4 

The corresponding lane effect 𝐿𝑛𝑘 for sample 𝑘 in flowcell 𝑢 is simulated from a normal 

𝑁(𝐹𝑢, 0.05) distribution with mean 𝐹𝑢 and standard deviation 0.05 (𝑢 = 1, 2, 3, 4). Here, ℎ𝑖𝑗𝑘  is 

the GC-content effect due to the 𝑖th gene on the 𝑘th sample belonging to group 𝑗 and is 

generated from a 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (500, 𝑝𝑖) distribution, 𝑝𝑖  being the corresponding GC-content 

proportion of the gene. A heatmap of the simulated data is presented in Figure 1. 

The simulation study is based on a performance analysis of the six methods: SVAPLSseq, SVA-

IRW, SVA-TWOSTEP, PCA, RUV and standard linear regression on the simulated RNAseq data 

affected by the complicated pattern of hidden variation. The methods are used to extract the 

signatures of hidden variability in the data that are in turn used in a linear regression model for 
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estimating the primary signals of differential gene expression. The R package “limma” (Ritchie 

et al. 2015) is used to fit the hidden effect adjusted models for the different genes and re-

estimate the primary signals.  

The detection power (sensitivity) values from the five methods are presented in Figure 2. Both 

the variants of SVAPLSseq detect the truly differentially expressed genes with the higher power 

and accuracy compared to the other methods. In addition, I also computed the correlation 

coefficients between the simulated latent variables corresponding to the flowcell, lane, library, 

GC-content effects and their estimated signatures from the different methods. A graphical 

representation of the corresponding correlation patterns (Figure 3) demonstrates the 

superiority of SVAPLSseq in accurately capturing the different factors of hidden variation in the 

data. Higher correlations of the simulated and estimated effects are observed for SVAPLSseq 

compared to the other methods. Particularly, the correlation profile for SVAPLSseq is strongest 

for the flowcell and library effects followed by the lane and GC-content effects. This is expected 

as the first two effects are fixed with respect to the genes while the last two effects vary 

randomly with each gene.  

 

Application to Real Life Data 

In this section a real life application of the methodology has been illustrated on a RNAseq gene 

expression data from the C57BL/6J (B6) and DBA/2J (D2) strains of 20 inbred mice (Bottomly 

et al. 2011). The data contains the expression levels of 36356 genes over 20 mice brain samples 

(11 from B6 and 10 from D2 strain). The data has been trimmed so that every gene has at least 

one read from a sample in each group. The reduced data has information on 12839 genes. Now, 

the samples have been sequenced via three different experiments. Distribution of the samples 

among the three experiments is shown in Table 1. A heatmap of a subset of the data shows a 

prominent batch effect due to the experiment number (Figure 4). I applied SVAPLSseq on this 

data along with the five other competing methods in order to adjust for this unwanted 

variability and detect the differentially expressed genes between the two strains. Overall, 

SVAPLSseq detected 1713 genes with 1103 genes from PCA, 1796 genes from SVA and 1997 

genes from RUVSeq (Figure 5). I also performed a principal component analysis of the residual 

data obtained after removing the primary signals and the estimated signatures of hidden 

variability from the 6 methods. SVAPLSseq and SVA exhibited the best performance by 

accurately adjusting for the inherent batch effect in the data (Figure 6) 

 

Discussion 

Latent variability in RNAseq gene expression data is attributable to several biological as well 

technical effects that are difficult to remove via standard normalization approaches. The 

complexity of the sequencing workflow along with the unknown biological profiles of the 

samples can potentially generate a wide array of hidden variables (confounders). Often, these 

variables impact the original pattern of differential gene expression between two groups of 

samples and introduce spurious signals of unwanted heterogeneity. As a result the commonly 

used tests based on simple linear models fail to detect a large number of true differentially 

expressed genes, while several genes are wrongly detected as false positives. I have introduced 
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a novel method SVAPLSseq that identifies the signatures of different hidden effects in RNAseq 

gene expression data and corrects for them in order to enable a more powerful and accurate 

inference on the differentially expressed genes. The superior performance of the method has 

been validated by rigorous comparative studies with other available techniques, on both 

simulated as well as real-life RNAseq data. Both the studies demonstrate the impressive 

detection power and efficacy of hidden effect estimation by SVAPLSseq compared to the other 

methods. Moreover, the two variants of SVAPLSseq provide a wider scope of applying the 

method to different types of RNAseq data. In particular, the supervised version has been shown 

to be a much more powerful alternative than the competing methods when information on a set 

of control genes is available. Thus overall, the method provides a flexible and generalized 

framework to capture the effects of hidden variability in RNAseq gene expression data and 

adjust for them in order to potentially improve the detection power of differential expression 

analyses. 

Tables and Figures 

Experiment Number Sample Numbers 
4 8, 9, 10, 11, 12, 13, 14 
6 1, 3, 5, 7, 16, 18, 20 
7 2, 4, 6, 15, 17, 19, 21 

 

Table 1: Table showing the distribution of the samples among the three experiments in the 

Bottomly RNAseq data. 

 

 

Figure 1: A heatmap of the simulated RNAseq expression data on 1000 genes, showing a strong 

prominence of the different hidden effects. 
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Figure 2: A Barplot showing the sensitivity (detection power) of the different methods on the 

simulated RNAseq data affected by several hidden variables. 
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Figure 3: An image plot showing the absolute correlation patterns of the simulated hidden 

effects and their corresponding signatures estimated from the different methods. 

 

 

Figure 4: A heatmap showing the expression values for the genes in the Bottomly RNAseq data, 

showing a clear batch effect owing to the experiment number. 
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Figure 5: A Venn diagram of the differentially expressed genes detected by the six methods from 

an analysis of the Bottomly data. 
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Figure 6: A scatterplot of the first and second principal components of the residual matrices 

obtained after removing the estimated signals of hidden variability in the data from the 

different methods. The red, green and blue dots represent the samples from experimental 

batches numbered 4, 6 and 7, respectively. 

 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 5, 2016. ; https://doi.org/10.1101/062125doi: bioRxiv preprint 

https://doi.org/10.1101/062125


 
 

References  

1. Leek, J. T. and Storey, J. D. Capturing heterogeneity in gene expression studies by 

surrogate variable analysis. PloS Genetics 3(9): 1724-1735 (2007). 

 

2. Leek, J. T. svaseq: removing batch effects and other unwanted noise from 

sequencing data. Nucleic Acids Research 42(21) (2014). 

 

3. Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. et al. RNA-seq: an assessment 

of technical reproducibility and comparison with gene expression arrays. 

Genome Research 18: 1509-1517 (2008). 

 

4. McLntyre, L. M., Lopiano, K. K., Morse, A. M. RNA-seq: technical variability and 

sampling. BMC Genomics 12:293 (2011). 

 

5. Risso, D., Ngai, J., Speed, T. P. and Dudoit, S. Normalization of RNAseq data using 

factor analysis of control genes or samples. Nature Biotechnology 32(9): 896-902 

(2014). 

 

6. Boulesteix, A. L. and Strimmer, K. Partial least squares: a versatile tool for the 

analysis of high-dimensional genomic data. Briefings in Bioinformatics 8(1):32-44 

(2007). 

 

7. Frazee, A. C., Jaffe, A. E., Langmead, B. and Leek, J. T. Polyester: simulating RNA-

seq datasets with differential transcript expression. Bioinformatics 31(17): 2778-

2784 (2015). 

 

8. Ritchie, M. E., Phipson, B., Wu, D, Hu, Y. et al. limma powers differential 

expression analyses for RNA-sequencing and microarray studies. Nucleic Acids 

Research 43(7):e47 (2015). 

 

9. Bottomly, D., Walter, N. A., Hunter, J. E., Darakjian, P. et al. Evaluating gene 

expression in C57BL/6J and DBA/2J mouse striatum using RNA-Seq and 

microarrays. PLoS One 6(3): e17820 (2011). 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 5, 2016. ; https://doi.org/10.1101/062125doi: bioRxiv preprint 

https://doi.org/10.1101/062125

