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 2 

Introductory paragraph 1 

Gaining insights into the regulatory mechanisms that underlie the pervasive transcriptional variation 2 

observed between individual cells1,2 necessitates the development of methods that measure 3 

chromatin organization in single cells. Nucleosome Occupancy and Methylome-sequencing 4 

(NOMe-seq) employs a GpC methyltransferase to detect accessible chromatin and has been used to 5 

map nucleosome positioning and DNA methylation genome-wide in bulk samples3,4. Here I provide 6 

proof-of-principle that NOMe-seq can be adapted to measure chromatin accessibility and 7 

endogenous DNA methylation in single cells (scNOMe-seq). scNOMe-seq recovered characteristic 8 

accessibility and DNA methylation patterns at DNase hypersensitive sites (DHSs) and enabled 9 

direct estimation of the fraction of accessible DHSs within an individual cell. In addition, scNOMe-10 

seq provided high resolution of chromatin accessibility within individual loci which was exploited 11 

to detect footprints of CTCF binding and to estimate the average nucleosome phasing distances in 12 

single cells. This approach could be applied to characterize the chromatin organization of single 13 

cells in heterogeneous mixtures of cells, for example to samples of primary cancer cells. 14 

 15 

Main 16 

A number of methods that map chromatin organization in populations of cells previously have been 17 

adapted for single cells, including ATAC-seq5,6 , DNase-seq7, methylome sequencing8,9, and ChIP-18 

seq10. Interpretation of these data in single cells is complicated because the resulting signal is near 19 

binary and extremely sparse5,7,11–13. Nucleosome Occupancy and Methylome-sequencing (NOMe-20 

seq)3 employs the GpC methyltransferase (MTase) from M.CviPl  to probe chromatin 21 

accessibility3,4. The GpC MTase methylates cytosines in GpC di-nucleotides in non-nucleosomal 22 

DNA in vitro. Combined with high-throughput bisulfite sequencing this approach has been used to 23 

characterize nucleosome positioning and endogenous methylation in human cell lines3,14 and in 24 
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 3 

selected promoters of single yeast cells15. NOMe-seq data have several unique features that are 1 

advantageous in light of the challenges associated with single cell measurements (Fig. 1a). First, 2 

NOMe-seq simultaneously measures chromatin accessibility (through GpC methylation) and 3 

endogenous CpG DNA methylation. Chromatin accessibility indicates whether a putative regulatory 4 

region might be utilized in a given cell16, while endogenous DNA methylation in regulatory regions 5 

has been connected to a variety of regulatory processes often associated with repression17. The 6 

ability to combine complementary assays within single cells is essential for a comprehensive 7 

genomic characterization of individual cells since each cell represents a unique biological sample 8 

which is almost inevitably destroyed in the process of the measurement. Second, each sequenced 9 

read might contain several GpCs which independently report the accessibility status along the 10 

length of that read. NOMe-seq therefore captures additional information compared to purely count-11 

based methods, such as ATAC-seq and DNase-seq, which increases the confidence associated with 12 

the measurements and allows detection of footprints of individual transcription factor (TF) binding 13 

events in single cells. Third, the DNA is recovered and sequenced independently of its methylation 14 

status, which is a pre-requisite to distinguish between true negatives (i.e. closed chromatin) and 15 

false negatives (i.e. loss of DNA) when assessing accessibility at specified locations in single cells. 16 

NOMe-seq can therefore measure the fraction of accessible regions among a set of covered, pre-17 

defined genomic locations. 18 

To adapt the NOMe-seq protocol3,18 to single cells (scNOMe-seq), individual nuclei were isolated 19 

using fluorescence-activated cell sorting (FACS) and sorted into wells of a 96-well plate following 20 

the incubation with the GpC MTase (Fig. 1b and Supplemental Fig. 1). DNA from isolated nuclei 21 

was subjected to bisulfite conversion and sequencing libraries were prepared using a commercial kit 22 

for amplification of low input bisulfite converted DNA (Methods). In this proof-of-concept study, I 23 

used the well-characterized lymphoblast cell lines GM12878 and K562 to assess the feasibility and 24 

performance of scNOMe-seq. The scNOMe-seq datasets in this study represent 19 individual 25 

GM12878 cells and 12 individual K562 cells. The set of GM12878 cells included seven control 26 
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 4 

cells that were not incubated with GpC MTase (Supplemental Fig. 2). Each GpC MTase treated 1 

library was sequenced to at least 16 M 100 bp reads, of which 37%- 64% aligned to the human 2 

genome using the bisulfite aligner Bismark19 (Supplemental Table 1). Genome-wide, the number 3 

of cytosines covered in GpC and CpG contexts averaged 6,679,864 (2.9%) of all GpCs and 4 

1,291,180 (3.6%) of all CpGs per cell (Supplemental Fig. 3 and Supplemental Table 1).  5 

To test whether the GpC methylation observed in GpC MTase treated samples (Supplemental Fig. 6 

4) captured chromatin accessibility at specific genomic features, I focused on DNase hypersensitive 7 

sites (DHSs) previously identified in GM12878 and K562 cell lines16. DHSs were associated with 8 

strong enrichment of GpC methylation. This was observed both in data from pooled and individual 9 

GM12878 cells (Fig. 1 c, d and Supplemental Fig. 5), and K562 cells (Supplemental Fig. 6, 7). 10 

Conversely, endogenous DNA methylation decreased around the center of the DHSs in agreement 11 

with previous reports20,21 (Figure 1c and Supplemental Fig. 6). These data show that scNOMe-seq 12 

detects chromatin accessibility at DHSs. In principle, the frequent occurrence of GpC di-nucleotides 13 

renders the majority of DHSs detectable by NOMe-seq (Supplemental Fig. 8, 9). On average in 14 

10.6% (20388/191566) and 17.3% (33182/191598) of the DHSs with one or more GpC at least one 15 

GpC was covered by a sequencing read, and in 5.2% (9083/174896) and 9.5% (16608/174828) of 16 

the DHSs with four or more GpC at least four GpCs were covered in individual GM12878 cells and 17 

K562 cells, respectively (Fig. 1 e). Chromatin accessibility signal can vary along the length of a 18 

given DHSs due to binding of transcription factors22 and the specific position of a GpC within a 19 

DHSs will thus affect its chance of being methylated. To account for this variability and to obtain 20 

more robust estimates of GpC methylation only DHSs with at least 4 covered GpC were used for 21 

the subsequent analyses and referred to as ‘covered DHSs’. Average GpC methylation of covered 22 

DHSs in single cells was strongly associated with the observed DNaseI accessibility at these sites in 23 

bulk populations (Fig. 1f and Supplemental Fig. 10). The opposite trend was observed for 24 

endogenous CpG methylation which was lowest for DHSs with the highest DNaseI accessibility 25 

(Fig. 1g and Supplemental Fig. 10). At the level of individual sites the distribution of GpC 26 
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 5 

methylation suggested that around 50% of the covered DHS showed no or low accessibility (i.e. 1 

less than 25% GpC methylation) in individual cells (Supplemental Fig. 11). To estimate the 2 

proportion of covered DHSs that were concurrently accessible in a single cells I applied a fixed 3 

threshold of 40% GpC methylation above which sites were considered accessible (Methods). At 4 

this GpC methylation threshold 32%-44% and 26%-37% of all covered DHSs were determined 5 

accessible in single GM12878 and K562 cells, respectively. As expected these result depended to 6 

some degree on the GpC methylation and the numbers of GpCs required to include a DHSs in the 7 

analysis (Supplemental Fig. 12). However, even under the most lenient conditions less than 50% 8 

of DHSs were accessible in most individual cells. Grouping the DHSs based on DNaseI 9 

accessibility measured in bulk samples revealed that the degree of DNaseI accessibility closely 10 

related to the frequency DHSs accessibility in single cells (Fig. 1h). This analysis leveraged the 11 

NOMe-seq-specific property that the DNA sequence is recovered independently of its accessibility 12 

status. It provided direct evidence for the notion that the degree of DNaseI accessibility observed in 13 

DNase-seq of bulk samples reflects the frequency with which a particular region is accessible in 14 

individual cells. 15 

A potentially powerful application for single cell genomic approaches is the label-free classification 16 

of single cells from heterogeneous mixtures of cells solely based on the measured feature5,11,23. Of 17 

note, using a union set of DHSs from both cell types was sufficient to classify individual GM12878 18 

and K562 cells into their respective cell types based on GpC methylation (Fig. 1 i). While this 19 

assessment might have been influenced in part by the separate processing of both cell types, both 20 

cell types showed preferential enrichment of GpC methylation at their respective DHSs compared 21 

to DHSs identified in the other cell type (Supplemental Fig. 13). Thus, this approach should be 22 

extendable to scNOMe-seq data from samples containing mixtures of cell types and endogenous 23 

CpG methylation could be included in such analyses to provide additional information9. 24 

To examine in detail whether scNOMe-seq captures features of chromatin accessibility that are 25 

specifically associated with transcription factor binding I analyzed scNOMe-seq data at 26 
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 6 

transcription factor binding sites (TFBS). The average GpC methylation around CTCF ChIP-seq 1 

peaks16 in single cells recapitulated the accessibility previously observed in NOMe-seq bulk 2 

samples3: Accessibility increased strongly towards the CTCF binding sites while the location of the 3 

CTCF motif at the center of the region showed low accessibility suggesting that CTCF binding 4 

protected from GpC MTase activity and thus creating a footprint of CTCF binding, both when 5 

averaged across data from all single cells (Fig. 2a and Supplemental Fig. 14) and in individual 6 

cells (Fig. 2b and Supplemental Fig. 15). In contrast, endogenous CpG methylation was generally 7 

depleted around the center of CTCF binding sites (Fig. 2a and Supplemental Fig. 14). Similar 8 

accessibility profiles, albeit less pronounced compared to CTCF were observed for additional 9 

transcription factors (Supplemental Fig. 16). These analyses provided evidence, that in aggregate, 10 

scNOMe-seq detected CTCF DNA binding events from single cells. In addition to aggregated 11 

binding sites, scNOMe-seq data should also provide information about transcription factor binding 12 

at individual loci. To test whether scNOME-seq data detected CTCF footprints at individual motifs, 13 

GpC methylation at motifs within CTCF ChIP-seq peaks that contained at least one GpC was 14 

compared to the GpC methylation level in the regions flanking each motif (Fig. 2c). On average, 15 

two-thirds of CTCF motif instances within these accessible regions showed no GpC methylation, or 16 

lower GpC methylation than the flanking regions suggesting that scNOMe-seq detected footprints 17 

caused by binding of CTCF (Fig. 2d and f). Of note, motifs associated with a footprint had 18 

significantly higher scores than motifs without a footprint suggesting that the motif score is a strong 19 

determinant of CTCF binding within these accessible regions (Fig. 2e, g and Supplemental Fig. 20 

17). The CTCF footprint could be observed at individual loci and comparing GpC methylation from 21 

multiple cell and suggests that scNOMe-seq also detected cell-to-cell variation in the footprint 22 

(Figure 2h and Supplemental Fig. 18). Footprint measurements such as this should be generally 23 

feasible for TFs whose motifs contain at least one GpC di-nucleotide and could be used to infer the 24 

activity of a wide range of transcription factors in single cells. 25 
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 7 

The pattern of GpC methylation adjacent to CTCF sites suggested that scNOMe-seq also detected 1 

the well-positioned nucleosomes flanking these regions (Fig. 2a)3. This observation was confirmed 2 

by the oscillatory distribution of the average GpC and CpG methylation around locations of well-3 

positioned nucleosomes identified from MNase-seq data16 (Fig. 3a and Supplemental Fig. 14). 4 

While nucleosome core particles are invariably associated with DNA fragments of  147 bp, 5 

nucleosomes are separated by linker DNA of varying lengths, resulting in different packaging 6 

densities between cell types24 and between genomic regions within a cell24,25. To determine whether 7 

scNOMe-seq data can be used to measure the average linker length, average distances between 8 

nucleosome midpoints in single cells (phasing distances) were estimated by correlating the 9 

methylation status between pairs of cytosines in GpC di-nucleotides at offset distances from 3 bp to 10 

400 bp (Fig. 3c, d and Supplemental Fig. 19, 20). The estimated phases fell between 187 bp and 11 

196 bp (mean=196.7 bp) in GM12878 cells, and between 188 bp and 200 bp (mean =194.2 bp ) in 12 

K562 cells (Fig. 3e). These estimates are in general agreement with phase estimates derived from 13 

MNase-seq data in human cells24. In addition, estimated phasing distances varied within individual 14 

cells depending on the chromatin context, similar to observation from bulk MNase-seq data24 (Fig. 15 

3f). These proof-of-principle experiments have been performed using commercial kits for bisulfite 16 

conversion and library amplification, additional optimization or alternative amplification 17 

approaches8 are likely to increase the yield substantially. Ultimately, it should be possible to 18 

integrate the GpC MTase treatment into microfluidic workflows and combine this method with 19 

scRNA-seq, similar to recently published methods that combine scRNA-seq and methylome-20 

sequencing26. scNOMe-seq will be particularly useful for studies that aim to simultaneously 21 

measure chromatin accessibility and DNA methylation, or that aim to measure activity of 22 

transcription factors in individual cells based on footprints in single cells. This approach could be 23 

applied to characterize the chromatin organization of single cells in heterogeneous mixtures of cells, 24 

for example to samples of primary cancer cells. scNOMe-seq could be applied to characterize the 25 
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 8 

chromatin organization of single cells in heterogeneous mixtures of cells, for example in samples of 1 

primary cancer cells. 2 

 3 

Methods 4 

Cell culture, nuclei isolation, and GpC methylase treatment 5 

GM12878 and K562 cells were obtained from Coriell and ATCC, respectively. GM12878 were 6 

grown in RPMI medium 1640 (Gibco), supplemented with 2mM L-Glutamine (Gibco), and 7 

Penicilin and Streptavidin (Pen Strep, Gibco), and 15% fetal bovine serum (FBS, Gibco). K562 8 

were grown in RPMI medium 1640 of the same composition but with 10% FBS. Cells were grown 9 

at 37 C and in 5% CO2. NOMe-Seq procedure was performed based on protocols for CpG 10 

methyltransferase SSsi described in18and the GpC methyltransferase from M.CviPl3, with some 11 

modification. Between 2x10^6 and 5x10^6 cells were harvested by centrifuging the cell suspension 12 

for 5 min at 500x g. Cells were washed once with 1x PBS, re-suspended in 1 ml lysis buffer (10mM 13 

Tris-HCl pH 7.4, 10mM NaCl, 3mM MgCl2) and incubated for 10 min on ice. IGEPAL CA-630 14 

(Sigma) was added to a final concentration of 0.025% and the cell suspension was transferred to a 2 15 

ml Dounce homogenizer. Nuclei were released by 15 strokes with the pestle. Success of lysis was 16 

confirmed by inspection under a light microscope. Nuclei were collected by centrifuging the cell 17 

suspension for 5 min at 800x g at 4C and washed twice with cold lysis buffer without detergent. 18 

One million nuclei were resupended in reaction buffer to yield a suspension with a final 19 

concentration of 1x GpC MTase buffer (NEB), 0.32 mM S-Adenosylmethionine (SAM) (NEB), and 20 

50 ul of GpC methyltransferase (4U/ul)) from M.CviPl (NEB). The suspension was carefully mixed 21 

before incubating for 8 min at 37 C after which another 25 ul of enzyme and 0.7 ul of 32 mM SAM 22 

were added for an additional 8 min incubation at 37C. To avoid disruption of nuclei incubation was 23 

stopped by adding 750 ul of 1x PBS and collecting the nuclei at 800 xg. Supernatant was removed 24 
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 9 

and nuclei were re-suspended in 500ul 1x PBS containing Hoechst 33342 DNA dye (NucBlue Live 1 

reagent, Hoechst). Nuclei were kept on ice until sorting. 2 

Nuclei isolation using Fluorescence activated cell sorting (FACS), lysis, and DNA bisulfite 3 

conversion 4 

Nuclei were sorted at the Flow Cytometry core at the University of Chicago on a BD FACSAria or 5 

BD FACSAria Fusio equipped with a 96-well-plate holder. To obtain individual and intact nuclei 6 

gates were set on forward and side scatter to exclude aggregates and debris. DAPI/PacBlue channel 7 

or Violet 450/500 channel were usedto excited the Hoechst 33342 DNA dye and to gate on cells 8 

with DNA content corresponding to cells in G1 phase of the cell cycle in order to maintain similar 9 

DNA content per cell and to remove potential heterogeneity attributable to cell cycle. Cells were 10 

sorted into individual wells pre-filled with 19 ul of 1x M-Digestion buffer (EZ DNA Methylation 11 

Direct Kit, Zymo Research) containing 1 mg/ml Proteinase K. Following collection, the plates were 12 

briefly spun to collect droplets that might formed during handling. Nuclei were lysed by incubating 13 

the samples at 50 C for 20 min in a PCR cycler. DNA was subjected to bisulfite conversion by 14 

adding 130 ul of freshly prepared CT Conversion reagent (EZ DNA Methylation Direct Kit, Zymo) 15 

to the lysed nuclei. Conversion was performed by denaturing the DNA at 98 C for 8 min followed 16 

by 3.5 hrs incubation at 65 C. DNA isolation was performed using the EZ DNA Methylation Direct 17 

Kit (Zymo Research) following the manufacturer’s instruction with the modification that the DNA 18 

was eluted in only 8 ul of elution buffer. 19 

Library preparation and sequencing 20 

Libraries were prepared using the Pico Methyl-seq Library prep Kit (Zymo Research) following the 21 

manufacturer’s instruction for low input samples. Specifically, the random primers were diluted 1:2 22 

before the initial pre-amplification step and the first amplification was extended to a total of 10 23 

amplification cycles. Libraries were amplified with barcoded primers allowing for multiplexing. 24 

The sequences can be found in Supplemental Table 2, primers were ordered from IDT. The 25 

purification of amplified libraries was performed using Agencourt AMPureXP beads (Beckmann 26 
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 10 

Coulter), using a 1:1 ratio of beads and libraries. Concentration and size distribution of the final 1 

libraries was assessed on an Bioanalyzer (Agilent). Libraries with average fragment size above 150 2 

bp were pooled and sequenced. Libraries were sequenced on Illumina HiSeq 2500 in rapid mode 3 

(K562 cells) and HiSeq4000 (GM12878 cells). 4 

Read processing and alignment 5 

Sequences were obtained using 100 bp paired-end mode. For processing and alignment each read 6 

from a read pair was treated independently as this slightly improved the mapping efficiency. Before 7 

alignment, read sequences in fastq format were assessed for quality using fastqc 8 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were trimmed to remove low 9 

quality bases and 6 bp were clipped from the 5 prime end of each read to avoid mismatches 10 

introduced by amplification. In the case of GM12878 cells 6 bp were clipped from either end of the 11 

read. Only reads that remained longer than 20 bp were kept for further analyses. These processing 12 

steps were performed using trim_galore version 0.4.0 13 

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) with the following settings: 14 

trim_galore --quality 30 --phred33 --illumina --stringency 1 -e 0.1 --clip_R1 6 --gzip --length 20 --15 

output_dir outdir Sample.fastq.gz. The trimmed fastq files were aligned using the bisulfite aligner 16 

bismarck version 0.15.027 which calls bowtie228 internally. Reads were aligned to the human 17 

genome (genome assembly hg38). Reads were aligned in single read mode using default settings. 18 

The amplification protocol used to generate the scNOMe-seq libraries yielded non-directional 19 

libraries and alignment was performed with the option —non_directional (bismark --fastq --prefix 20 

SamplePrefix --output_dir output_dir --non_directional --phred33-quals --score_min L,0,-0.2 --21 

bowtie2 genome_file trimmed.fastq.gz). Some libraries contained small amounts of DNA from C. 22 

elegans as spike-ins, however these were not used during the analysis. Duplicates were removed 23 

using samtools version 0.1.1929 on sorted output files from bismark (samtools rmdup 24 

SamplePrefix.sorted.bam SampleAligned_rmdup.bam). 25 

Extraction of GpC and CpG methylation status 26 
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Coverage and methylation status of all cytosines was extracted using 1 

bismark_methylation_extractor27 (bismark_methylation_extractor -s --ignore 6 --output outdir --2 

cytosine_report --CX --genome_folder path_to_genome_data SampleAligned_rmdup.bam). The 3 

resulting coverage files were used to extract the methylation status of cytosines specifically in GpC 4 

and CpG di-nucleotides using the coverage2cytosine script which is part of Bismark27. The resulting 5 

coverage files contained cytosines in GCG context which are ambiguous given that they represent a 6 

cytosine both in GpC and CpG di-nucleotides. Coordinates of these ambiguous positions were 7 

identified using oligoMatch30 and these positions were removed from the coverage files. The 8 

number of unconverted cytosines (estimated based on apparent methylation rates in non-GpC and 9 

non-CpG context) was low in all libraries (<1%). However, it was noted that unconverted cytosines 10 

were not randomly distributed but associated with entirely unconverted reads. Regions covered by a 11 

read with more than 3 unconverted cytosines in non-CpG and non-GpC context were removed from 12 

further analysis as well. The genotype was not taken into account as its effect on calling the 13 

methylation status incorrectly was deemed negligible for the analyses performed here. 14 

Analysis of GpC and CpG methylation at genomic features in single cells 15 

ScNOMe-seq data were compared to a number of genomic features in GM12878 and K562 cells 16 

collected by ENCODE24 which were downloaded through the UCSC data repository31. These 17 

datasets are listed in Supplemental Table 3. While the scNOMe-seq data were aligned against 18 

human genome assembly hg38, some of the datasets were only available on genome assembly hg19 19 

and the coordinates of these datasets were lifted from hg19 to hg38 using liftOver30 (default re-20 

mapping ratio 1). Nucleosome positions based on MNase-seq data in GM12878 were determined 21 

with DANPOS version 2.2.232 using default settings. Resulting intervals were lifted to hg38. After 22 

removing summit locations with occupancy values above 300, the top 5% (713361) of nucleosome 23 

positions based on their summit occupancy value were used. 24 

GpC and CpG methylation density across intervals encompassing DNase hypersensitivity sites 25 

(DHSs), transcription factor binding sites (TFBS), and well positioned nucleosomes was calculated 26 
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across the 2 kb regions centered on the middle of these regions using the scoreMatrixBin function in 1 

the genomation package33 in R34. Data were aggregated in 5 bp bins for each region and across all 2 

regions covered in a single cell. The average methylation level in pre-defined intervals (DHSs, 3 

TFBS) was determined by computing the average GpC or CpG methylation for each interval 4 

together with the number of GpC/CpGs covered in this interval using the map function from the 5 

bedtools35 suite. If not specifically mentioned otherwise DHSs were considered ‘covered’ and used 6 

in analyses when at least 4 GpCs occurring within the predefined interval were covered by 7 

sequencing data in an individual cell. Covered DHSs that Because the frequency of CpG di-8 

nucleotides is significantly lower, only 2 CpGs were required in order for a DHSs to be considered 9 

covered for analyses focused on endogenous DNA methylation. To estimate the number of 10 

cytosines within a given DHSs that could be covered only cytosines on the forward strand were 11 

counted. While each GpC dinucleotide can be measured on both strands and would therefore yield a 12 

count of two cytosines the data are sparse and each location will get at most a single read. This 13 

approach should therefore give a more conservative estimate of the possible GpC coverage. For 14 

analyses that used the scores of the peak regions, the peak scores reported the datasets from bulk 15 

samples were used16. 16 

For analyses that were centered on transcription factor binding motifs the PWMs were obtained 17 

from the JASPAR database (2014)36 for the TFs CTCF (MA0139), EBF1 (MA0154), and 18 

PU.1(MA0080). Genome-wide scanning for locations of sequence matches to the PWMs was 19 

performed using matchPWM in the Biotstring package37 in R with a threshold of 75% based on the 20 

human genome assembly hg38. 21 

All plots were prepared using ggplot238, with the exception of heatmaps displaying the average 22 

methylation density around genomic features in individual cells which were prepared using 23 

heatmap.2 in gplots39. 24 

Comparison of chromatin accessibility between cells 25 
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Similarity in accessible chromatin between cells was calculated based on Jaccard similarity. Jaccard 1 

similarity index (eq. 1) was calculated between pairs of samples by first obtaining the intersection 2 

of DHSs covered in both samples of a pair with more than 4 GpCs. Each features was annotated as 3 

open or closed, depending on the methylation status (>= 40% methylation) and only pairs in which 4 

at least one of the members was open. 5 

𝑗𝑎𝑐(𝐴, 𝐵) = (*∩,)
(*∪,)

      (1) 6 

The similarity between samples from GM12878 and K562 cells was calculated based on the union 7 

set of DHSs from both cell lines. The similarity indexes of all pairwise comparisons were used to 8 

compute the distances between each cell. The resulting clustered data were displayed as a heat map. 9 

CTCF footprints in single cells 10 

CTCF footprints were measured by comparing the GpC methylation level in each motif to the 11 

methylation level in the 50bp flanking regions immediately upstream and downstream of the motif. 12 

Overlapping motifs were merged into a single interval before determining the coordinates for 13 

flanking regions. To ensure sufficient GpC coverage for each interval the resulting three interval 14 

was required to have at least one covered GpC and 4 GpCs covered in total among the three 15 

intervals. This analysis only included regions that were accessible based on the methylation status 16 

of the flanking regions (at least 50%). A CTCF footprint ’score' was determined by simply 17 

subtracting the average GpC methylation of the flanking regions from the GpC methylation of the 18 

motif.  19 

 scNOMe-seq data were displayed in the UCSC genome browser30 by converting the GpC 20 

methylation coverage file into a bed file and using the methylation value as score. To facilitated the 21 

visualization of the data in the context of previous Encode data the methylation files were lifted to 22 

hg19. The tracks shown together with scNOMe-seq data are Open Chromatin by DNaseI HS from 23 

ENCODE/OpenChrom (Duke University) for DNaseI hypersensitivity, Nucleosome Signal from 24 
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ENCODE/Stanford/BYU, and CTCF ChIP-seq signal from Broad Histone Modification by ChIP-1 

seq from ENCODE/Broad Institute. All data are from GM12878 cells.  2 

Estimation of nucleosome phasing 3 

Nucleosome phasing estimates were obtained by first calculating the correlation coefficients for the 4 

methylation status of pairs of GpCs ad different offset distances. These values were computed using 5 

a custom python script. Essentially, pairs of sequenced cytosines in GpC di-nucleotides were 6 

collected for each offset distance from 3bp to 400bp cytosine. At each offset distance the correlation 7 

of the methylation status was calculated across all pairs. Correlation coefficients were plotted 8 

against the offset distances revealing periodic changes in the correlation coefficient. The 9 

smoothened data were used to estimate the phasing distances by obtaining the offset distance 10 

corresponding to the local maximum found between 100 bp and 300 bp. To determine phase lengths 11 

of nucleosomes in different chromatin contexts the GpC coverage files were filtered for positions 12 

falling into categories defined by chromHMM16,40 before obtaining the correlation coefficients. 13 

Data access 14 

Raw data and methylation coverage files are available at GEO (https://www.ncbi.nlm.nih.gov/geo/) 15 

under the accession number . Reviewers might use this link: 16 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=glotcwqqjbqlvef&acc=GSE83882 17 
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Figure Legends 1 

Figure 1. scNOMe-seq detected DNase hypersensitive sites in single cells. a) Schematic of GpC 2 

methyltransferase-based mapping of chromatin accessibility and simultaneous detection of 3 

endogenous DNA methylation. b) Schematic of scNOMe-seq procedure introduced in this study. c) 4 

Average GpC methylation level (blue) and CpG methylation level (orange) at DNase 5 

Hypersensitive sites (DHSs) in GM12878 cells. Regions are centered on the middle of DNase-seq 6 

peak locations. Shown is the average methylation across a 2 kb window of 12 GM12878 cells. d) 7 

Heatmap displaying the average GpC methylation level across the same regions as in c). Each row 8 

corresponds to an individual GM12878 cell. Cells were grouped by similarity. e) Proportion of 9 

DHSs covered by scNOMe-seq data in each cell. The proportion displayed corresponds to the 10 

fraction of DHSs covered by at least 1 or 4 GpCs in a given cell. Only DHSs with at least 1 or 4 11 

GpCs, respectively, within their primary sequence were taken in consideration. Error bars represent 12 

the standard deviation. f) Average GpC methylation and g) endogenous CpG methylation at DHSs 13 

split into 10 groups based on associated DNase-seq peak scores from lowest to highest scores. 14 

Average methylation per DHSs was based on the data from 12 GM12878 cells. h) Fraction of 15 

accessible sites in individual GM12878 and K562 cells, respectively. DHSs were grouped by 16 

DNase-seq peak scores. DHSs was considered accessible if the average methylation for that locus 17 

was above 40%. Only DHSs with at least 4 covered GpCs were included. i) Heatmap shows 18 

similarity scores (pair-wise jaccard distances) between all GM12878 and K562 cells. Comparison 19 

was based on the union set of DHSs from GM12878 and K562 cells. Cells were grouped based on 20 

unsupervised hierarchical clustering. 21 

 22 

 23 

 24 
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Figure 2. scNOMe-seq detected characteristic accessibility patterns at CTCF transcription 1 

factor binding sites and measured CTCF footprints at individual loci a) Average GpC 2 

methylation level (blue) and CpG methylation level (orange) at CTCF binding sites in GM12878 3 

cells. Regions are centered on motif locations. Shown is the average methylation across a 2 kb 4 

window of the pool of 12 GM12878 cells. b) Heatmap displaying the average GpC methylation 5 

across CTCF binding sites. Each row corresponds to an individual GM12878 cell and rows are 6 

grouped by similarity. c) Schematic outline the measurement of CTCF footprints in accessible 7 

regions. M denotes CTCF binding motifs within CTCF ChIP-seq regions and U and D indicate 50 8 

bp upstream and downstream flanking regions. footprint score was determined by subtracting the 9 

average GpC methylation in the flanking regions from the GpC methylation at the motif. d) 10 

Heatmap displays GpC methylation in accessible regions found in a representative GM12878 cell 11 

(GM_1). Each row represents a single CTCF motif instance within a CTCF ChIP-seq region. 12 

Average methylation values for the motif and the 50 bp upstream and downstream regions are 13 

shown separately. Regions are sorted based on the footprint score. Displayed are only regions that 14 

had sufficient GpC coverage and that were considered accessible based on the methylation status of 15 

the flanking regions. e) Heatmap reporting the CTCF motif scores for the motif regions in d). 16 

Regions are sorted in the same order as in d). f) Average number of accessible regions at CTCF 17 

motifs and the average number of those with a detectable footprint per individual GM12878 cell. 18 

Error bars reflect standard deviation. g) Average CTCF motif scores in regions with and without 19 

CTCF footprint for all 12 GM12878 cells. Each line connects the two data points from an individual 20 

cell h) Combined display of scNOMe-seq data from this study and DNase hypersensitivity data, 21 

nucleosome occupancy, and CTCF ChIP-seq data from ENCODE. Upper panel shows a ~10 kb 22 

region containing a CTCF binding sites. DNaseI hypersensitivity data and nucleosome density show 23 

characteristic distribution around CTCF binding sites in GM12878 cells. Lower panel shows the 24 

GpC methylation data of 5 individual cells that had sequencing coverage in this region, 4 of the 25 

cells provide GpC data covering the CTCF motif located in the region. scNOMe-seq data tracks 26 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 1, 2016. ; https://doi.org/10.1101/061739doi: bioRxiv preprint 

https://doi.org/10.1101/061739
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

show methylation status of individual GpCs. Each row corresponds to data from a single cell. These 1 

data indicate that binding of CTCF is detected in all 4 cells. Data are displayed as tracks in the 2 

UCSC genome browser (http://genome.ucsc.edu). 3 

 4 

Figure 3. Nucleosome phasing in single cells. a) Average GpC methylation level and b) CpG 5 

methylation level at well-positioned nucleosomes in GM12878 cells. Regions are centered on 6 

midpoints of top 5% of positioned nucleosomes. Shown is the average methylation across a 2 kb 7 

window of the pool of 12 GM12878 cells. c), d) Correlation coefficients for the comparison in 8 

methylation status between GpCs separated by different offset distances for GM12878 (c) and K562 9 

(d) cells. Each line represents a single cell. Data are smoothened for better visualization. e) 10 

Distribution of estimated phase lengths for GM12878 and K562 cells. f) Nucleosome phasing in 11 

GM12878 in genomic regions associated with different chromatin states defined by chromHMM 12 

(ENCODE). Boxplot represents the distribution of estimated phase lengths from all 12 GM12878 13 

cells and overlaid points indicate values of each individual cells. 14 
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