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Abstract

1 Motivation:

Biological networks contribute effectively to unveil the complex structure
of molecular interactions and to discover driver genes especially in cancer
context. It can happen that due to gene mutations, as for example when
cancer progresses, the gene expression network undergoes some amount
of localised re-wiring. The ability to detect statistical relevant changes
in the interaction patterns induced by the progression of the disease can
lead to discovery of novel relevant signatures.

2 Results:

Several procedures have been recently proposed to detect sub-network dif-
ferences in pairwise labeled weighted networks. In this paper, we propose
an improvement over the state-of-the-art based on the Generalized Ham-
ming Distance adopted for evaluating the topological difference between
two networks and estimating its statistical significance. The proposed
procedure exploits a more effective model selection criteria to generate p-
values for statistical significance and is more efficient in terms of compu-
tational time and prediction accuracy than literature methods. Moreover,
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the structure of the proposed algorithm allows for a faster parallelized
implementation. In the case of dense random geometric networks the
proposed approach is 10-15x faster and achieves 5-10% higher AUC, Pre-
cision/Recall, and Kappa value than the state-of-the-art. We also report
the application of the method to dissect the difference between the reg-
ulatory networks of IDH-mutant versus IDH-wild-type glioma cancer. In
such a case our method is able to identify some recently reported master
regulators as well as novel important candidates.

3 Availability:

The scripts implementing the proposed algorithms are available in R at
https://sites.google.com/site/raghvendramallmlresearcher/codes.

4 Contact:

rmall@qf.org.qa

5 Introduction

The omnipresence of complex networks is reflected in wide variety of domains
including social networks (??), web graphs (?), road graphs (?), communication
networks (?), financial networks (?) and biological networks (???). Although
we focus on biological networks many aspects of the method proposed in this
paper can also be applied for networks in other contexts. In cancer research
comparisons between gene regulatory networks, protein interaction networks,
and DNA methylation networks is performed to detect difference between con-
ditions, such as healthy and disease (??). This can lead to discovery of biological
pathways related to the disease under consideration, and, in case of cancer, the
gene regulatory changes as the disease progresses (??).

A central problem in cell biology is to model functional networks underlying
interactions between molecular entities from high throughput data. One of the
main questions is how the cell globally changes its behavior in response to ex-
ternal stimuli or as the effect of alterations such as driver somatic mutations or
changes in copy number. Signatures of differentially expressed and/or methy-
lated genes are the downstream effect of the de-regulation of the global behavior
of the cell in different conditions such as cancer subtypes. Therefore, it is argued
that driver mutations activate functional pathways described by different global
re-wiring of the underlying gene regulatory network.

The identification of significant changes induced by the presence or pro-
gression of the disease can help to discover novel molecular diagnostics and
prognostic signatures. For example, we have recently shown in (?) that the
majority of malignant brain tumors can be divided two main macro-categories
according to the mutation of the gene IDH which can be further divided in seven
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molecular and clinically distinct groups. These two macro-groups are character-
ized by highly different global expression and epigenomic profiles. Hence, one
of the main questions to understand the molecular basis of diseases is how to
identify significant changes in the regulatory structure in different conditions, in
a similar way we analyze differentially expressed genes in different conditions.

Various techniques have been developed to compare two graphs including
graph matching and graph similarity algorithms (???). However, the problem
addressed in this paper is different from popular graph theory problems in-
cluding graph isomorphism (?) and sub-graph matching (?). Here the goal is
to identify statistically significant differences between two weighted networks
(with or without labels) under the null hypothesis that the two networks are
independent.

One common statistic used to distinguish one graph from another is the Mean
Absolute Difference (MAD) metric defined as: d(A,B) = 1

N(N−1)

∑
i 6=j |aij−bij |

where aij and bij are edge weights corresponding to the topology of networks
A and B. This distance measure is equivalent to the Hamming distance (?)
and has been extensively used in literature to compare networks (??). Another
statistic used to test association between networks is the Quadratic Assignment
Procedure (QAP) defined as: Q(A,B) = 1

N(N−1)

∑
i=1

∑
j=1 aijbij . The QAP

metric (??) is used in a permutation-based procedure to differentiate two net-
works. ? showed that these metrics are not always sensitive to subtle topological
variations.

Our aim is to detect statistically significant differences between two networks
under the premise that any true topological difference between the two networks
would involve only a small set of edges when compared to all the edges in the
network. Recently, a Generalized Hamming Distance (GHD) based method was
introduced to measure the distance between two labeled graphs (?). It was
shown in ? that the GHD statistic is more robust than MAD and QAP metrics
for identifying subtle variations in the topology of paired networks.

The authors in ? propose a non-parametric test for network comparison
where they provide conditions for asymptotic normality such that p-values can
be obtained in closed-form. They also propose a differential sub-network iden-
tification technique namely dGHD. The advantage of this technique is that it
provides closed-form solution for p-values for the sub-network left after itera-
tive removal of the least differential nodes unlike previous differential network
analysis techniques (???). We propose an extension of dGHD, namely Closed-
Form approach that, exploiting the conditions for asymptotic normality (?), is
computationally cheaper and attains better prediction performance than the
Original (dGHD) algorithm. Computational efficiency and prediction accuracy
is crucial in cancer contexts where networks have a large number of nodes and
the topological difference is associated to few driver genes.

The paper is organized as follows: Section 2 introduces the improved algo-
rithm to detect statistically significant sub-network differences; Section 7 defines
the experimental procedures adopted to evaluate the proposed method and dis-
cusses the results of the experiments; Section 8 reports the results of the appli-
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cation of the proposed procedure in the context of glioma cancer showing that
we identify some of the relevant driver genes known in literature; and Section 9
concludes the paper drawing future directions.

6 Methods

6.1 Preliminaries on Generalized Hamming Distance

The Generalized Hamming Distance is a way to estimate the distance between
two graphs (?). Let A = (V,EA) and B = (V,EB) two graphs, with the same
set of nodes V = {1, . . . , N}, and different sets of edges, EX representing the
set of edges in the network X. The Generalized Hamming Distance (GHD) is
defined as:

GHD(A,B) =
1

N(N − 1)

∑
i,j,i6=j

(a′ij − b′ij)2, (1)

where a′ij and b′ij are mean centered edge-weights defined as:

a′ij = aij −
1

N(N − 1)

∑
i,j,i6=j

aij , b′ij = bij −
1

N(N − 1)

∑
i,j,i 6=j

bij (2)

The edge weights, aij and bij , depend on the topology of the network and
provide a measure of connectivity between every pair of nodes i and j in A and
B. Different metrics have been adopted to measure the connectivity between
pair of nodes including topological overlap (TO) measure (??), cosine similarity
and pearson correlation (?). In our experiments, we used the cosine similarity
metric to create the topological network corresponding to graph A and B. We
utilized the cosine similarity metric to capture first order interactions between
the nodes in the network. This is due to its ease of implementation for large
scale sparse networks using set operations. The cosine metric has nearly perfect
correlation with TO measure (Supplimentary Fig 1). Hence it can be used as
a replacement to TO measure, adopted in ?, while constructing the topological
networks for graphs A and B.

The problem of detection differential sub-networks is posed as an inferen-
tial problem with a statistical hypotesis test under the null hypothesis (Ho):
Graphs A and B are independent. The null distribution can be obtained with
a permutation test, as shown in (?), by constructing a sampling distribution
of GHD computed between Aπ = (Vπ, EA) and B = (V,EB), where Vπ is a
permuted version of the set of vertex V . By keeping B as reference network,
each permutation consists of shuffling the labels of the nodes in A while keeping
the edges unchanged.

The authors in ? demonstrated that GHD computed on the permuted ver-
sion follows a normal distribution. So, by providing conditions for asymptotic
normality one can efficiently calculate the p-value circumventing the computa-
tionally expensive of an empirical permutation test. This can be shown as:

GHD(Aπ, B)− µπ
σπ

∼ N (0, 1) (3)
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Here µπ is the asymptotic value of the mean GHD and σπ is the asymptotic
value of the standard deviation of GHD computed between Aπ and B. In order
to calculate the µπ and σπ values we define:

Sta =
N∑
i=1

N∑
j=1,j 6=i

atij , t = 1, 2 and Ta =
N∑
i=1

(
N∑

j=1,j 6=i

aij)
2

Stb =
N∑
i=1

N∑
j=1,j 6=i

btij , t = 1, 2 and Tb =
N∑
i=1

(
N∑

j=1,j 6=i

bij)
2

Here atij and btij are the edge weights with the power t. Furthermore, we require
the following terms:

Aa = (S1
a)2, Ba = Ta − (S2

a) and Ca = Aa + 2(S2
a)− 4Ta

Ab = (S1
b )2, Bb = Tb − (S2

b ) and Cb = Ab + 2(S2
b )− 4Tb

Using these definitions the closed-form expression for mean µπ and variance
σ2
π are expressed as:

µπ =
S2
a + S2

b

N(N − 1)
− 2(S1

a)(S1
b )

N2(N − 1)2
,

σ2
π =

4

N3(N − 1)3
[2(S2

a)(S2
b ) +

4(Ba)(Bb)

N − 2
+

(Ca)(Cb)

(N − 2)(N − 3)
− (Aa)(Ab)

N(N − 1)
]

(4)

Given a significance threshold α (e.g. 0.01), p-values > α indicate that there is
no sufficient evidence to reject the null hypothesis (Ho) that graphs A and B
are independent. Hence, higher p-values indicate more probability that the two
graphs under consideration are independent.

6.2 Differential sub-network detection with GHD

The GHD distance is able to tell us to what extent are two graphs different
but is not able to identify which parts of the graph are similar and which are
different. In this work, we are interested in detecting which part of the graphs
contribute to make the two graphs different. We call such different sub-graphs
differential sub-networks.

The notion of differential sub-networks is based on the idea that when com-
paring two networks only a subset of edges would present altered interaction.
The goal is to identify the set of nodes, namely V ∗, associated with such a
subset of edges and the p-values p∗ corresponding to the nodes in V ∗. This
goal, formulated as a statistical test, requires that for such a subset V ∗ there
is no sufficient evidence to reject the null hypothesis that the corresponding
sub-networks A∗(V ∗, EA∗) and B∗(V ∗, EB∗) are statistically independent.
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The idea here is to adopt an iterative technique to identify the set of nodes
V ∗ that contributes more to the difference. We start from the dGHD algorithm
proposed in ?. The algorithm measures the edge connectivity with topological
overlap metric and benefits from the closed-form solution of p-value (Equations
4). In the dGHD algorithm, an iterative procedure is followed where during each
iteration the change in centralized GHD (cGHD) i.e. cGHD = GHD(A,B)−µπ
is estimated after the removal of one node. The node corresponding to which
the change in cGHD value (i.e. difference in cGHD value before and after
removal of a node) is maximum is removed. The GHD statistic is computed for
remaining sub-networks and the p-value is estimated. This process is repeated
till a user specified minimal set size is reached or it is no-longer possible to have
closed-form representation for p-values which happens for N ≤ 3 as shown in
equation 4. The p-values are adjusted for multiple testing by controlling the
false discovery rate (?).

The dGHD algorithm suffers from the following limitations: a) During the
ith iteration, the GHD measure is calculated N− i times on different sub-graphs
with an overall time complexity ∼ O(N2 × |E|) where E = EA ∪ EB ; b) The
algorithm is prone to discovery of more false positives since it uses the change in
cGHD as a model selection criterion. We overcome such limitations by proposing
the following improvements:

1. Remove nodes by exploiting the Closed-Form. We use the idea that nodes
which have similar topology in networks A and B will contribute the least
to cGHD. So, we first calculate the closed-form contribution of each node
in cGHD once using equation 5 and then iteratively remove nodes with
least contributions. However, this process is continued till we observe that
the p-value of the remaining sub-network becomes greater than a threshold
θ.

2. Using a different model selection criterion. Once the p-value reaches θ,
we follow a procedure similar to the dGHD algorithm but use the more
intuitive criterion of selecting the node that when removed makes the
cGHD value maximum rather than using the change in the cGHD value
(before and after removal of a node) as a model selection criterion. By
using this model selection criterion, we iteratively identify and remove
that node whose contribution is least in the cGHD.

The advantage of the Closed-Form approach is that we significantly reduce
the computational complexity and improve the predictive performance. A
simple alternative to the Closed-Form approach would be to sort all the
nodes based on their contribution to cGHD and thus rank all the nodes
based on their capability to differentiate the two networks with complexity
(O(N logN)). However, then we will not be able to identify statistically
different sub-networks between the two graphs as indicated in (?).
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6.2.1 Closed-Form Approach

We propose a fast approach to perform differential sub-network analysis taking
into consideration the contribution of each node in the GHD and µπ. Using
equations 1 and 4 this can mathematically be represented as:

GHD(A,B)(i) =
1

N(N − 1)
(

N∑
j=1,j 6=i

(a′ij)
2 +

N∑
j=1,j 6=i

(b′ij)
2

−
N∑

j=1,j 6=i

(2a′ij × b′ij))

µπ(i) =
(
∑N
j=1,j 6=i(aij)

2 +
∑N
j=1,j 6=i(bij)

2)

N(N − 1)
−

2(
∑N
j=1,j 6=i aij)(S

1
b )

N2(N − 1)2

−
2(
∑N
j=1,j 6=i bij)(S

1
a)

N2(N − 1)2
+

2(
∑N
j=1,j 6=i aij)(

∑N
k=1,k 6=i bik)

N2(N − 1)2

(5)

We observe that if we add the GHD(A,B)(i) and µπ(i) ∀i, we obtain GHD(A,B)
and µπ. We use the idea that nodes which have similar topology in networks
A and B will contribute the least to centralized GHD, i.e. GHD(A,B) − µπ.
We calculate the Closed-Form contribution of each node in the centralized GHD
(cGHD) once using equation 5 and then iteratively remove nodes with least con-
tribution to the cGHD, i.e. nodes having similar topology in graphs A and B.
Thus, we calculate cGHD once and sort all the nodes based on their contribution
to the cGHD metric.

This process is continued till we observe that the p-value of the remaining
sub-network becomes greater than a threshold θ. Once the p-value reaches
θ, we estimate ∆VK = GHD(A(VK , EA), B(VK , EB)) − µVK where µVK is the
mean of the permutation distribution for the nodes (VK) of the remaining sub-
network. Furthermore, we define ∆VK|i as the value of cGHD after removal of
node i. We adopt a different model selection criterion than that proposed in
? to remove non-differential nodes. We use the intuitive criterion of selecting
that node after removal of which the cGHD value becomes maximum, i.e. the
node whose contribution was least significant in cGHD or the node which was
most similar in terms of topology for the paired-graphs. Finally, the obtained
p-values are adjusted for multiple testing by controlling the false discovery rate
(?). Provided the paired-graphs A and B, the calculation of ∆VK|i can be done
independently for each i. Details of the Closed-Form method is provided in
Algorithm 1. Table 1 summarizes the improvements with respect to the dGHD
algorithm in terms of time complexity.

6.2.2 Alternative Procedure (Fast Approximation)

We propose an alternative procedure to the Closed-Form approach namely the
Fast Approximation method where we first calculate the cGHD value without
including the ith node, ∀i ∈ V once. This helps to estimate the cGHD value
after removal of the ith node and can be performed in parallel. Our aim is to
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Algorithm 1: Closed-Form
Data: Graphs A and B with N vertices V .
Result: Subset V ∗ representing the set of nodes which comprise the differential

sub-network & p-values for GHD measure.
V ∗ = {} // Empty Set for differential sub-network nodes.
VK = V // Initialize a copy of the set of vertices V .
p∗ = {} // Empty Set for p-values.
Calculate contribution of each node i in centralized GHD using equation 5.
Sort all nodes based on their contribution in ascending order and keep in O.
while N > 3 do

z =
GHD(A(VK,EA),B(VK,EB))−µVK

σVK
.

Calculate p-value using z and append p-value to p∗.
if p-value > θ then

∆VK
= {} forall the i ⊂ VK do
t = (GHD(A(VK|i, EA), B(VK|i, EA))− µVK|i ).
Add t to ∆VK

// Perform in parallel.

n∗ = maxi∆VK

// Select that node after removal of which cGHD becomes maxmimum.
Remove node n∗ from VK i.e VK = VK \ n∗ and O = O \ n∗

else if p-value < θ then
n∗ = mini(O) // Select node in the sub-network with least contribution.
Remove node n∗ from O.
// O is sorted so remove 1st node.

if p-value > 0.01 then
Append n∗ to V ∗.

N = N − 1.

Adjust the p-values for false-discovery rate (?).

Computational Complexity
dGHD Closed-Form

O(N2|E|) O(N |E|+N log(N) +K2|E|)

Table 1: Comparison of time complexity. Here K represents the number of
nodes for which p-value is greater than θ and generally K � N . An important
remark is that the cGHD calculation after removal of each node can be done
independently in parallel. So, in case we have T processors, the complexity of
the proposed approach can be reduced ≈ linearly w.r.t. T .

quickly discard those nodes after removal of which the cGHD value becomes
large thereby removing nodes which were contributing least to the cGHD value.
This helps to reduce the dependence between the two sub-networks by removing
nodes which have similar topology in graphs A and B. Again, the idea is
motivated by the premise that only a subset of nodes will form the differential
sub-networks in graph A and B.

In this approach, we iteratively discard those nodes after removal of which
the cGHD value becomes maximal till the p-value for the remaining sub-network
reaches a threshold θ. Once the p-value reaches θ, we return back to the pro-
cedure of estimating ∆VK|i ∀i ∈ VK as described in the Closed-Form approach.
We use the same model selection criterion of selecting that node after removal of
which the cGHD value becomes maximum as used in the Closed-Form approach.
We then adjust the obtained p-values for multiple testing by controlling the false
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discovery rate (?). We refer to this technique as a Fast Approximation to the
Original technique (dGHD (?)). We explain the Fast Approximation technique
in detail in (Supplementary Algorithm 1).

From our experiments, we observe that the results of the Closed-Form ap-
proach and the Fast Approximation technique are identical. Although, in the
case of Closed-Form approach, we calculate closed-form contribution of each
node in the cGHD value and remove the node with least contribution, while in
case of Fast Approximation we select that node after removal of which cGHD
value becomes maximum, the ordered list O obtained for both the methods is
identical. Moreover, the computational complexity of the Fast-Approximation
technique is the same as that of Closed-Form approach.

7 Experimental Results

For all our experiments, we used the Closed-Form approach (since results ob-
tained from Closed-Form and Fast-Approximation techniques are identical) and
compare it with the dGHD method ?.

7.1 Sensitivity to θ

In this experiment, we check the sensitivity of the proposed Closed-Form ap-
proach w.r.t. the heuristic θ. For this experiment, we first generated 100 random
geometric (RG) networks. In a RG network nodes are generated by uniformly
sampling N points on [0, 1]2. An edge is then drawn between these points if the
euclidean distance between the points is less than a parameter d. This parame-
ter d controls the density of the RG network where smaller values of d result in
sparse networks while larger values of d generates dense networks. In our case,
we conducted experiments using two different settings. In the first setting, we
use d = 0.15 while in the second case we use d = 0.3. For both the experiments
we fix N = 250. For each value of d and for each generated RG network A, we
permute the first 50 rows and columns of the network to generate network B.
Therefore, the first 50 nodes in networks A and B form the true positives (TP).

In order to test the sensitivity of the proposed approach w.r.t. θ, we estimate
the fraction of permuted nodes (TP) correctly identified by the Closed-Form
method for various values of θ. We used a grid of θ values varying from Θ =
{e−50, . . . , e−250} in multiplicative steps of e−20. The goal of this experiment is
to show that the fraction of TPs identified w.r.t. various θ ∈ Θ remains nearly
constant for smaller values of θ.

Figure 1 shows the result for RG networks with density parameter d = 0.15
and d = 0.3. From Figure 1, we observe that the median fraction of permuted
nodes identified by the proposed approaches increases slowly before it converges
to a nearly constant value as we decrease the threshold θ (i.e. increase absolute
log of threshold θ). From this experiment, we conclude that:

The fraction of truly differential nodes (TP) identified by the pro-
posed methods increases as we decrease the threshold θ before it starts
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Figure 1: The boxplots represents the distribution of True Positives (TP) iden-
tified by Closed-Form approach for 100 random runs of the experiment.

to converge for smaller values of threshold θ.

We used the threshold θ = e−250 as heuristic for p-value cutoff in future
experiments.
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Figure 2: Comparison of proposed Closed-Form approach with dGHD algo-
rithm. The plot of Closed-Form and dGHD methods are median plots w.r.t. to
AUC metric out of 100 random runs. Clearly, the Closed-Form technique has
better performance than dGHD algorithm.

7.2 Predictive performance validation

The next simulation study that we carried out was to compare the predictive
performance of the proposed approach w.r.t. the dGHD (?) technique. For
this experiment, we generate 100 RG networks with N = 1, 000. For the first
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experiment we fix the density parameter d = 0.3 and permute first 100 nodes in
network A to obtain network B. Thus, these first 100 nodes form the differential
sub-network for the paired networks A and B.

In the second case, we use the same density parameter d = 0.3 to generate
the edges for network A. We then generate a small RG network with 100 nodes
using density parameter d′ = 0.5. This small dense sub-network is then used
to replace the network formed by first 100 nodes in the original network A
to form network B. Thus, in the second experiment, these 100 nodes form
the differential sub-network for the paired networks A and B. This kind of
mechanism can appear in real-life networks, for example, in case of cancer the
transcription activity of some set of genes might get enhanced or suppressed in
patients resulting in more or fewer edges in a sub-network of the gene or DNA
methylation network.

We use the threshold 0.01 as cut-off for p-values in order to determine the
true positives (TP) and true negatives (TN). We use median AUC value for
the Closed-Form and dGHD techniques when comparing the ROC curves. We

evaluate the true positive rate i.e. n(TP )
n(TP )+n(FN) and the false positive rate i.e.

n(FP )
n(FP )+n(TN) to estimate the ROC curve for these methods using the ‘pROC’

package in R. Here n(·) represents the total number of nodes. We also evaluated
the area under the curve (AUC ?) for the 100 runs of Closed-Form and dGHD
methods.

Closed-Form approach achieves better area under ROC curve in
case of differential sub-networks formed by permuted nodes and sub-
networks with higher density as shown in Figure 2.

One of the reasons for relatively poor performance of the dGHD approach
is that it has low true positive rate (TP) and a high false positive rate (FP)
when the differential sub-network has more edges. This is also reflected by the
relatively low Precision values for the dGHD algorithm in Table 2 when d = 0.3.
From Figure 2b, we can observe that the median performance of both the dGHD
and Closed-Form algorithm improves when the differential sub-network is denser
than the remaining network.

AUC value distributions for Closed-Form and dGHD techniques
are statistically different. For this experiment, we use the same set of net-
works as we used in the previous experiment and illustrate the results in (Sup-
plementary Figure 2).

Summary Table 2 highlights the computational efficiency and bet-
ter predictive capabilities of the proposed techniques in comparison
to dGHD algorithm. For this comparison, we report the results obtained on
100 random runs of RG networks with N = 1000, d = 0.15 and d = 0.3 re-
spectively, where the first 100 nodes are permuted. We also report results when
the first 100 nodes form the denser differential sub-networks i.e. in experiments
where d = 0.15 use d′ = 0.3 to form denser sub-network and where d = 0.3
use d′ = 0.5 to form denser sub-network. We also conducted experiments on
undirected Power Law (PL) graphs using N = 1000 and E = 10, 000 with power
law exponents α = {2, 3} respectively. We permuted the first 100 nodes of each
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PL network (B) to form the permuted network (A). We performed 100 random
runs and report the mean values for various evaluation metrics.

Table 2 compares the Closed-Form and dGHD techniques w.r.t. various
standard evaluation metrics like AUC, Precision , Recall, Accuracy, Specificity,
Kappa statistic and computational Time for all the simulation experiments. The
evaluation metric Recall is equivalent to true positive rate used previously in our
experiments. Higher values of these evaluation metrics represents better quality
results. Here the time required by dGHD algorithm is normalized to 1 and the
time required by the efficient implementation of the Closed-Form approach is
scaled by the same normalization factor.

Parameters Configuration Method AUC Precision Recall Accuracy Specificity Kappa Time
Mean ± Sd Mean ± Sd Mean ± Sd Mean ± Sd Mean ± Sd Mean ± Sd Mean

d = 0.15 Permuted Subnet (RG) Closed-Form 0.935 ± 0.051 0.849 ± 0.037 0.846 ± 0.102 0.969 ± 0.011 0.983 ± 0.004 0.828 ± 0.068 0.078
d = 0.15 Permuted Subnet (RG) dGHD 0.926 ± 0.018 0.793 ± 0.021 0.878 ± 0.036 0.965 ± 0.005 0.974 ± 0.003 0.813 ± 0.026 1.0

d = 0.15, d′ = 0.3 Denser Subnet (RG) Closed-Form 0.927 ± 0.048 0.839 ± 0.031 0.862 ± 0.098 0.969 ± 0.008 0.982 ± 0.005 0.825 ± 0.054 0.081
d = 0.15, d′ = 0.3 Denser Subnet (RG) dGHD 0.922 ± 0.022 0.806 ± 0.027 0.868 ± 0.045 0.966 ± 0.006 0.977 ± 0.004 0.816 ± 0.032 1.0

d = 0.3 Permuted Subnet (RG) Closed-Form 0.877 ± 0.067 0.714 ± 0.075 0.789 ± 0.135 0.947 ± 0.016 0.975 ± 0.011 0.716 ± 0.099 0.083
d = 0.3 Permuted Subnet (RG) dGHD 0.724 ± 0.029 0.645 ± 0.049 0.577 ± 0.059 0.921 ± 0.007 0.971 ± 0.006 0.504 ± 0.051 1.0

d = 0.3, d′ = 0.5 Denser Subnet (RG) Closed-Form 0.979 ± 0.005 0.771 ± 0.061 0.930 ± 0.082 0.965 ± 0.012 0.969 ± 0.011 0.821 ± 0.062 0.09
d = 0.3, d′ = 0.5 Denser Subnet (RG) dGHD 0.848 ± 0.071 0.700 ± 0.038 0.731 ± 0.148 0.941 ± 0.010 0.964 ± 0.009 0.672 ± 0.078 1.0

α = 2 Permuted Subnet (PL) Closed-Form 0.797 ± 0.046 0.307 ± 0.307 0.792 ± 0.099 0.801 ± 0.018 0.349 ± 0.051 0.802 ± 0.022 0.09
α = 2 Permuted Subnet (PL) dGHD 0.797 ± 0.013 0.294 ± 0.009 0.809 ± 0.027 0.787 ± 0.008 0.333 ± 0.015 0.784 ± 0.009 1.0
α = 3 Permuted Subnet (PL) Closed-Form 0.825 ± 0.019 0.345 ± 0.015 0.825 ± 0.035 0.826 ± 0.007 0.402 ± 0.024 0.826 ± 0.004 0.085
α = 3 Permuted Subnet (PL) dGHD 0.808 ± 0.027 0.327 ± 0.018 0.799 ± 0.050 0.816 ± 0.008 0.375 ± 0.031 0.817 ± 0.004 1.0

Table 2: Comparison of proposed Closed-Form approach with dGHD algorithm
w.r.t. various evaluation metrics for random geometric (RG) and power law
(PL) networks. Bold represents the best results.

We observe from Table 2 that the Closed-Form approach performs exceed-
ingly well in case of experiments on denser RG networks (d = 0.3). For this
configuration , in case of both permuted and denser differential sub-networks,
the mean AUC of Closed-Form approach is at least 10% higher than the dGHD
algorithm. This is also reflected in higher values of Precision (0.714 and 0.771)
and Recall (0.789 and 0.930) metrics for Closed-Form approach in comparison
to low values of Precision (0.645 and 0.7) and Recall (0.577 and 0.731) for the
dGHD algorithm in case of these experiments. However, in case of sparser net-
works where its relatively easier to identify differential sub-networks (?), both
the methods have similar predictive performance. Taken together these results
show that the proposed Closed-Form approach outperforms dGHD technique
w.r.t. various quality metrics like AUC, Precision, Recall, Specificity, Kappa
and Time for both random geometric and power law graphs.

8 Case study

As a case study, we performed the differential sub-networks analysis of two gene
regulatory networks re-constructed from the glioma dataset available on the
TCGA Research Network (http://cancergenome.nih.gov). We recently reported
that the integrative analysis of 1, 122 glioma samples revealed the presence of
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seven groups with distinct molecular and clinical features (?). In addition,
we and others (?) showed that the majority of gliomas are divided into two
main macro-categories according to the mutation of the gene IDH1. Therefore,
our main biological question, that motivated the development of the reported
methodology, was to identify the sub-networks of differentially activated tran-
scription factors (TFs) in these two major conditions. We re-constructed two
gene regulatory networks belonging to two different glioma subtypes: IDH-
mutant and IDH-wild-type. Both networks were re-constructed with a four step
procedure that extends ARACNE (?): i) Computation of mutual information
between gene expression profiles to determine interaction between TFs and tar-
gets (?); ii) Data processing inequality to filter out indirect relationships (?), iii)
Permutation test with 1, 000 re-samplings to keep only statistically significant
relationships, and iv) Intersection with transcription factor binding sites to keep
only relationships due to promoter binding.

We obtained two final networks consisting of 13, 683 unique connections for
IDH-mutant and 14, 158 for IDH-wild-type between 457 TFs and 4, 085 target
genes. Using these networks, we construct the topological graphs as described
in the Methods section for the 457 TFs. We then perform the proposed dif-
ferential sub-network analysis to identify the TFs which are part of differential
sub-networks in the topological graphs. Figure 3 shows the topmost differential
sub-networks and Table 3 reports the topmost TFs which are part of differen-
tial sub-networks as detected by our algorithm. In the table, GHD and Mu (µ),
represent the generalized hamming distance computed between networks with-
out the transcription factor and the asymptotic mean µπ of GHD. The number
of connections belonging in one network but not in the other is shown in the
Diff targets column. It might happen that for some transcription factors such a
difference is 0. This is because the networks under consideration are weighted
and contribution of each node in the cGHD is dependent on the weighted degree
of the node.

To asses the biological validity, we also assembled a global glioma network
using all the available transcriptional profiles using the same method described
above and performed a master regulator analysis (?) with respect to the molec-
ular phenotype under investigation, i.e. genes differential expressed between
IHD mutant and wild type. Master regulator analysis is extensively adopted
to identify TFs that act as principal regulators in driving the phenotype from
one condition to another. The last three columns of the table show the master
regulator analysis results for each TF (in boldface the most significant master
regulators).

Interestingly, among the topmost TFs (out of 457) forming the differential
sub-networks, we found several genes known to have a central role in control-
ling specific glioma subtypes as well as novel candidates that deserve further
biological validation. In particular, our proposed algorithms reveals that the
sub-network of STAT3 is one the most different between IDH-mutant and IDH-
wild-type networks and a particularly significant Master Regulator of this wild-
type phenotype. Members of our group have previously shown that STAT3,
together with C/EBPβ, is a key regulator of the mesenchymal differentiation
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and predicts the poor clinical outcome of IDH-wild-type gliomas (?). Another
key regulator of the IDH-wild-type gliomas was recently reported by using an
integrative functional copy number analysis is the set of HOXA genes (?). More-
over, another key network hub that our algorithm detects as different is SOX10
which appears to be an active master regulator of the IDH-mutant phenotype.
We recently reported that the GCIMP-low subgroup in the IDH-mutant co-
hort can mediated by loss of CpG methylation and binding of SOX factors
(?). Furthermore, our algorithm identifies methyl-CpG-binding domain protein
2 (MBD2) as a main differential network hub. In particular, MBD2 has no
links in the IDH-wild-type network whereas it is highly connected in the IDH-
mutant network which is characterized by the CpG island methylator phenotype
(GCIMP) (?). MBD2 is a mediator of the epigenetic gene regulation and its role
in glioblastoma is being studied as its over-expression may drive tumor growth
by suppressing the anti-angiogenic activity of key tumor suppressors (?).
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Figure 3: Differential sub-networks in IDH mutant (rigth) and IDH wild type
(left). In blue the most different transcription factors.

9 Conclusions

The comparison of gene expression profiles across different phenotypes is en-
abling the discovery of novel biomarkers for prognosis or diagnosis. They hold
the key to identify novel targets for therapeutical intervention. In this paper
we proposed an improvement to the state-of-the-art for comparing two labeled
graphs that are representative of two conditions (e.g. the macro-categories ac-
cording to the mutation of the gene IDH1 in our case study) and identifying
statistically significant differences in their topology. We used the centralized
GHD (cGHD) metric (?) to calculate the distance between the two labelled
networks. We proposed a Closed-Form approach, an improvement to the dGHD
algorithm, to detect localized topological differences between paired networks.
The Closed-Form approach calculates the closed-form contribution of each node
in the cGHD metric and efficiently removes nodes with the smaller contribu-
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tions in the cGHD value. From our experiments on scale free random geometric
networks, we discovered that the Closed-Form approach was 10-15x faster than
Original method from a computational complexity point of view. For differen-
tial sub-network analysis in very sparse paired graphs, both the Closed-Form
and Original methods had good predictive performance. They reached mean
AUC values of ≈ 0.932 and ≈ 0.924 respectively for 100 random runs of sim-
ulation experiments. However, for relatively denser networks, the Closed-Form
approach outperformed the Original method. The proposed method achieved
a mean AUC of ≈ 0.915 while the Original technique reached a mean AUC of
≈ 0.79. The Closed-Form approach also achieved much higher Precision, Recall
and Kappa values in comparison to the Original method for relatively denser
networks. We applied our algorithm to detect the main differences between
the networks of IDH-mutant and IDH-wild-type glioma tumors and show that
it correctly selects sub-networks centered on important key regulators of these
two different subtypes. In addition its application highlights novel candidates,
such as MBD2, that can be the subject of further biological validations.
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Network differencing Master Regulator Analysis
Diff IDH mut IDH WT

TF P-value GHD Mu targets FDR activity activity

E2F1 0.951 0.059 0.059 35 1.000E+00 -2.018 -1.204
ETV1 0.936 0.059 0.059 54 1.000E+00 1.670 1.161
RUNX3 0.837 0.060 0.060 55 7.192E-05 -1.503 -0.029
CREB1 0.825 0.059 0.059 42 1.000E+00 1.097 0.924
FOXD2 0.740 1.000 0.300 71 8.538E-09 -3.680 -1.274
FOXJ2 0.740 1.000 0.300 119 7.424E-03 0.850 -0.537
MEIS1 0.740 1.000 0.300 82 7.475E-11 -1.181 1.064
MTF1 0.740 1.000 0.300 107 1.000E+00 0.401 0.389
KLF13 0.735 1.000 0.278 80 8.086E-04 1.014 -0.255
SOX10 0.726 0.060 0.060 40 1.573E-07 0.858 -1.130
STAT3 0.717 0.059 0.059 41 1.112E-31 -0.318 1.335
IRF3 0.685 0.840 0.455 91 2.356E-13 -1.505 0.142
HOXD13 0.618 0.060 0.060 44 8.705E-07 -1.840 -0.223
ZNF354C 0.616 0.059 0.059 39 1.000E+00
ZIC1 0.534 0.059 0.059 0 3.319E-19 -2.752 0.475
HOXA2 0.513 0.060 0.060 24 2.541E-02 -1.388 0.201
FOXO1 0.459 0.060 0.059 2 2.572E-02 -2.344 -0.687
DLX6 0.416 0.060 0.060 23 1.000E+00
MAFG 0.414 0.862 0.467 60 1.000E+00 0.739 -0.100
NR4A2 0.394 0.060 0.060 6 1.000E+00 -0.169 -0.318
PAX6 0.331 0.060 0.059 39 9.057E-01 2.209 1.416
MEF2D 0.326 0.060 0.060 56 1.567E-01 0.406 -0.583
NR1H2 0.271 0.059 0.059 44 1.000E+00 -2.363 -0.399
RFX1 0.259 0.060 0.061 26 1.768E-01 -0.060 0.958
STAT4 0.255 0.848 0.486 78 9.025E-01 -0.929 -1.049
SIX4 0.226 0.060 0.059 7 5.592E-03 2.040 0.004
GLIS2 0.196 0.060 0.061 24 4.905E-01 0.332 -0.699
OTP 0.190 0.060 0.060 9 2.156E-05 -1.017 0.911
HOXB4 0.159 0.060 0.060 17 6.416E-03 -2.019 -0.345
BACH1 0.145 0.060 0.060 57 1.000E+00 -0.565 0.223
MBD2 0.139 0.820 0.495 76 2.330E-10 -1.488 0.070
IRF9 0.132 0.060 0.060 15 1.000E+00 0.302 0.675
NR2C1 0.110 0.061 0.060 19 1.000E+00 -0.147 -0.380
KLF6 0.107 0.060 0.061 23 9.536E-07 -1.378 0.333
HMBOX1 0.094 0.196 0.191 28 9.184E-01 0.367 -0.545
CREM 0.094 0.765 0.506 51 1.408E-01 -1.594 -0.324
HOXA9 0.092 0.061 0.060 21 2.526E-01 -2.820 -1.082
ZIC2 0.086 0.198 0.192 39 3.633E-05 -0.786 0.468
MEOX2 0.078 0.200 0.194 53 2.960E-29 -1.420 0.749
ETV4 0.075 0.060 0.061 17 1.661E-01 -0.874 0.782
HOXA13 0.071 0.061 0.060 61 1.000E+00 -2.053 -1.481
SMAD1 0.069 0.202 0.195 51 1.450E-04 -0.013 1.493
RFX4 0.060 0.204 0.197 28 1.000E+00 -0.278 0.819
ZBTB12 0.055 0.206 0.199 37 4.556E-03 1.304 -0.362
STAT1 0.051 0.060 0.061 18 7.839E-29 -1.002 1.002

Table 3: The top most different transcription factors subnetworks detected be-
tween IDH-mutant and IDH-wild-type networks. The first four columns report
differential measures in terms of p-value of the proposed differencing test, GHD
computed between the two networks, the mean of the null GHD distribution,
and the number of targets that belong exclusively in one network. The last
three columns report the False Discovery Rate of the Fisher exact test obtained
with a master regulator analysis, and the mean of transcription factor activity
in IDH mut and wild-type. Transcription factor activity explains whether the
transcription factor regulates directly (> 0) or inversely (< 0) its targets in the
given condition.
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