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Abstract 19 

A number of empirical studies have suggested that individual differences in asocial 20 

exploration tendencies in animals may be related to those in social information use. 21 

However, because the ‘exploration tendency’ in most previous studies has been 22 

measured without considering the exploration-exploitation trade-off, it is yet hard to 23 

conclude that the animal asocial ‘exploration-exploitation’ tendency may be tied to 24 

social information use. Here, we studied human learning behaviour in both asocial 25 

and social multi-armed bandit tasks. By fitting reinforcement learning models 26 

including asocial and/or social decision processes, we measured each individual’s (1) 27 

asocial exploration tendency and (2) social information use. We found consistent 28 

individual differences in the exploration tendency in the asocial tasks. We also found 29 

substantive heterogeneity in the adopted learning strategies in the social task: One-30 

third of participants were most likely to have used the copy-when-uncertain strategy, 31 

while the remaining two-thirds were most likely to have relied only on asocial learning. 32 

However, we found no significant individual association between the exploration 33 

frequency in the asocial task and the use of the social learning strategy in the social 34 

task. Our results suggest that the social learning strategies may be independent from 35 

the asocial search strategies in humans. 36 

  37 

Keywords:  Social learning; individual differences; reinforcement learning; 38 

multi-armed bandit; exploration-exploitation; copy-when-uncertain  39 
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1. Introduction 41 

To find better behavioural options in foraging, mate choice, nest search, etc., group 42 

living animals can benefit from asocial information-gathering strategy (e.g., 43 

reinforcement learning rules (Sutton and Barto, 1998; Trimmer et al., 2012)) and from 44 

strategic use of social information (Boyd and Richerson, 1985; Laland, 2004). 45 

Although there has been much recent interest in the inter-individual variation in both 46 

asocial and social learning behaviour (Mesoudi et al., 2016; Reader, 2015), little is 47 

known about whether and (if so) how they associate with each other.  48 

The adaptive reason of the individual differences in asocial exploration tendency 49 

might be the trade-off between exploration and exploitation. Given the limited 50 

time/energy budget, a single animal must strike the right balance between trying 51 

unfamiliar behaviours to sample information (i.e., ‘exploration’) versus choosing 52 

known best behaviour (i.e., ‘exploitation’) so as to improve the long-term net decision 53 

performance (Cohen et al., 2007; Hills et al., 2014). The optimal balance of 54 

exploration-exploitation depends on the costs and benefits of information gathering, 55 

which may differ between individuals. For example, an individual with poor 56 

information processing performance may have large costs of exploration, an 57 

individual with shorter expected life-span may benefit less from sampling more 58 

information, while an individual experiencing a temporary volatile environment may 59 

be forced to explore so as to update their knowledge (Reader, 2015).  60 

On the other hand, the individual variation in reliance on social information might 61 

come from the balance of cost and benefit of copying others (Mesoudi et al., 2016). 62 

For instance, an individual possessing inaccurate private information will potentially 63 

incur a large cost if relying solely on the private knowledge and hence may tend to 64 

copy others more (e.g., ‘copy-when-uncertain’ (Laland, 2004; Rendell et al., 2011)), 65 

an individual living in a large group may benefit more from following the majority 66 
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(King and Cowlishaw, 2007), while an individual faced with a highly volatile 67 

environment may rely more on private information due to the potentially large cost 68 

from copying an out-of-date behaviour (Aoki and Feldman, 2014).  69 

The increasing body of empirical studies has suggested that the individual 70 

differences in the asocial exploration tendency might associate with those in the 71 

social information use (but see Webster and Laland (2015)). For instance, the 72 

individual exploration propensity negatively correlates with individual tendency of 73 

copying conspecifics in barnacle geese Branta leucopsis (Kurvers et al., 2010a, 74 

2010b) and zebra finches Taeniopygia guttata (Rosa et al., 2012), while the opposite 75 

is true in three-spined sticklebacks Gasterosteus aculeatus (Nomakuchi et al., 2009) 76 

and great tits Parus major (Marchetti and Drent, 2000). The interesting question here 77 

would be why each of these species shows such individual correlations between 78 

asocial and social search behaviour. Several possible mechanisms may be 79 

conceivable to them. For example, environmental volatility may increase asocial 80 

exploration tendency while also decreasing copying tendency. On the other hand, a 81 

common cognitive ability underlying both asocial and social learning may generate a 82 

positive correlation between them (Mesoudi et al., 2016).  83 

However, the term ‘exploration’ has been used rather loosely in the previous 84 

literature, and has been confounded with other personality traits (reviewed in Réale 85 

et al. (2007)), which might have contributed to somewhat incoherent previous 86 

findings on the relation between asocial exploration and social information use. 87 

Broadly speaking, more active, neophilic, or bolder individuals tend to be labelled as 88 

‘explorative’ while more inactive, neophobic, or shyer individuals tend to be labelled 89 

as ‘unexplorative’ (Réale et al., 2007). However, it was untested whether more active 90 

individuals actually gather information more (i.e., explore more) during the learning 91 

process compared to inactive individuals. Also, from the viewpoint of the exploration-92 
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exploitation trade-off, more explorative (exploitative) individuals are not necessarily 93 

bolder (shyer): Especially in a changing environment, individuals who seldom explore 94 

(i.e., who exploit the same option for a long time) may also be seen as very ‘bold’ 95 

(e.g., Carere and Locurto, 2011; Groothuis and Carere, 2005; Koolhaas et al., 1999). 96 

Therefore, it is yet hard to conclude that animal asocial ‘exploration-exploitation’ 97 

tendency may be tied to the social information use. A more clear-cut measurement of 98 

exploration behaviour is needed.  99 

In this study, we focused on human learning behaviour in a multi-armed bandit (MAB) 100 

problem, and saw whether the individual differences in asocial exploration tendency 101 

might predict the reliance on social learning. In the MAB task, individuals have 102 

multiple choice options, but at the outset they do not have exact knowledge of which 103 

option is the most profitable (Figure 1a). In every round, each individual has to make 104 

a decision whether to exploit (i.e., choosing the option that has higher estimated 105 

reward value as of that round; see Methods section) or to explore (i.e., choosing the 106 

other option with lower estimated reward value). Because the MAB problem embeds 107 

the exploration-exploitation trade-off in its heart (Sutton and Barto, 1998), it is a 108 

suitable test bed for unambiguously measuring exploration behaviour (Daw et al., 109 

2006; Keasar et al., 2002; Racey et al., 2011; Toyokawa et al., 2014). Fitting a 110 

reinforcement learning model to each participant’s decision data (O’Doherty et al., 111 

2003), we quantified each participant’s asocial exploration tendency.  112 

In addition to the asocial situation where participants engaged in the MAB task alone 113 

(hereafter, ‘solitary task’), participants also played the MAB task in a pairwise 114 

situation (‘paired task’) in which they were able to observe the other participant’s 115 

choice (but not the peer’s earned payoff) displayed on the monitor. To examine 116 

whether the participants adopted social learning strategy in the paired task, we fitted 117 

several asocial- and social-learning models to each participant’s decision data, and 118 
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then selected the most likely learning model individually. Also, we analysed each 119 

participant’s gaze movement measured by an eye-tracker in order to confirm the 120 

participant’s information use during the task. Finally, we examined whether the 121 

exploration tendency in the solitary task (i.e., asocial exploration) might predict the 122 

use of social learning strategy in the paired task. 123 

 124 

2. Material and methods 125 

2-1 Participants 126 

Fifty-six right-handed undergraduate students were randomly selected from a subject 127 

pool at Hokkaido University in Japan to participate in the experiment. Of these 56 128 

participants, 8 participants failed at eye tracker calibration, leaving us with 48 129 

participants (24 females; Mean Age ± S.D. = 19.0 ± 0.90) to be included in data 130 

analysis. After the experimental session, participants received monetary rewards 131 

based on their performance in the experimental tasks as compensation for their 132 

participation (mean ± S.D. = 1253 ± 18.5 JPY). 133 

2-2 Task overview: the restless 2-armed bandit 134 

Participants performed a restless 2-armed bandit task on a computer screen (Figure 135 

1a). We used a ‘2-armed’ task as the simplest case of a MAB. Each participant had 136 

to repeatedly choose between two slot machines. The participant’s goal was to 137 

maximise the total reward earned over a sequence of plays by deciding which 138 

machine to play for how many times.  139 

Each round started with a 1-second interval during which a crossbar was shown at 140 

the centre of the grey background. After this interval, two boxes (i.e., slot machines) 141 

appeared on the left and right side of the screen. Participants chose the left box or 142 
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right box by pressing the 'left' or 'right' key (respectively) on a keyboard with their 143 

right hand. Participants had a maximum of 2 seconds to make their choices (decision 144 

interval): If no choice was made during the decision interval, a 'TIME OUT' message 145 

appeared in the centre of the screen for 2.5 seconds to signal a missed round 146 

(average number of missed rounds per participant was 0.44 out of 80 rounds in the 147 

‘first solitary task’, 0.52 out of 180 rounds in the ‘paired task’, and 0.15 out of 80 148 

rounds in the ‘second solitary task’). If participants responded within 2 seconds, the 149 

frame of the chosen option turned to be bold for 1.5 + (2 – response time) seconds 150 

so as to confirm their choice, followed by a 1-second display of earned points in the 151 

chosen box. After showing the rewards (or showing ‘TIME OUT’), i.e., after 4.5 152 

seconds from the outset of the decision interval, the next round started with a 153 

crossbar.  154 

Each option yielded random points (50 points = 1 JPY) from a normal probability 155 

distribution unique to each box, rounded up to the next integer, or truncated to zero if 156 

it would have been a negative value (although this never happened). The mean 157 

values of the probabilistic payoff were different between the two options. Additionally, 158 

the mean values of payoff were changing during the task (Figure 1b). The standard 159 

deviations of the probabilistic payoff distributions were identical for both boxes and 160 

did not change during the task (S.D. = 10). Before each task started, participants 161 

were informed about the total number of rounds (80 rounds in the first and second 162 

solitary tasks, respectively; 180 rounds in the paired task) as well as about the 163 

possibility that the mean payoff from the options might change at some points during 164 

the task. However, they were not informed of the actual value of mean payoff from 165 

each slot, when or how it would actually change, or the exact rate at which the payoff 166 

points would be transformed into JPY after the experiment. To confirm that our 167 

results would not change in different bandits’ settings (e.g., mean payoff, pattern or 168 

schedule of payoff changing), we used four different settings (hereafter, conditions) 169 
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for the paired task as a between-pair design, randomly assigned for each pair (Online 170 

Supporting Material Figure S2). 171 

The computer-based task was constructed using Python with PsychoPy package 172 

(Peirce, 2007, 2009) with Tobii SDK 3.0 for Python. Python code used for the task is 173 

available from the corresponding author. Further details of the settings of each task 174 

are available in Online Supporting Material S1-1.  175 

 176 

 177 

 178 

 179 

 180 

 181 
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 182 

Figure 1. The restless 2-armed bandit task. (a) Illustration of the time line within a 183 
round. After fixation with a crossbar for one second, two slots (boxes) were 184 
presented. The participant had to choose one within 2 seconds (decision interval). 185 
When choosing one, the frame of the chosen option turned to be bold. Up to 3.5 186 
seconds later, the number of payoff points earned was revealed to the participant 187 
(120 points in this example). After a further second, the next round started with a 188 
crossbar. (b) Example of mean payoffs for each option in paired task (bold lines). The 189 
payoff received for a particular choice is drawn from a Gaussian noise around each 190 
mean (shaded areas show 1 S.D. of this noise). Note that the most profitable slot 191 
(‘optimal option’) was switched several times due to the volatility; only one box was 192 
volatile and the other box’s mean was fixed. The left-right location of the volatile box 193 
was counterbalanced across pairs in the paired task (the right box was volatile in this 194 
example). (c) Example of social information in the paired task. The other participant’s 195 
choice in the preceding round was marked by a downward triangle (left in this 196 
example) while their own choice in the preceding round was marked by an upward 197 
triangle (right in this example). 198 

 199 
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2-3 Experimental procedure 200 

For each experimental session, two participants of the same sex, randomly selected 201 

from the participant pool, were called to the laboratory. Upon arrival, each participant 202 

was seated in a separate soundproof chamber equipped with a computer terminal 203 

and received general instructions about the experiment. After filling in the consent 204 

form (see Ethics section), they read further paper-based instructions individually. 205 

Participants remained strictly anonymous to each other throughout the experiment.  206 

A single experimental session was composed of three tasks: (1) first solitary task, (2) 207 

paired task, and (3) second solitary task. Although participants were informed that 208 

there would be three tasks in total, they did not know any details of each task until 209 

reading the instruction about the next task during the 5-minute break between the 210 

tasks. The three tasks differed in both the mean payoffs of slots and their changing 211 

pattern over time (see Online Supporting Material S1-1 for details). Furthermore, only 212 

in the paired task were participants able to see social information—the other 213 

participant’s choice made in the preceding round—in addition to their own preceding 214 

choice (Figure 1c). They were explicitly informed that both participants played the 215 

identical task so that they were able to understand that the social information could 216 

be informative. The session lasted for about 70 minutes in total. 217 

2-4 Acquisition and processing of gaze data 218 

We recorded each participant’s gaze movement during the task at 300 Hz using Tobii 219 

TX300 eye trackers connected to 23-inch monitors (Tobii Technology, Stockholm, 220 

Sweden). Participants were seated with their head positioned on a chinrest, 70 cm in 221 

front of the screen. Before each task, the calibration of the eye-tracker was validated 222 

with five fixation points and re-calibrated if needed. 223 
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We used Tobii’s default setting of noise reduction and fixation classification to 224 

process the gaze data. Because we were interested in participants’ information use 225 

before making each decision, we focused upon the gaze positions in the 1-second 226 

time window before each choice was made. Note that, because there was a 1-227 

second interval between rounds, the 1-second time window did not include gaze 228 

positions in the previous round. The fixation positions of gazes were classified into 229 

the following five categories: gazing-at-social-information, gazing-at-own-preceding-230 

choice, gazing-at-the-left-box, gazing-at-the-right-box, and others (see Online 231 

Supporting Material S1-2 for the gaze data processing). All eye-tracking data and 232 

Python code used in the gaze data processing are available from the corresponding 233 

author upon request.  234 

2-5 Testing exploration tendency 235 

In order to classify each choice in the solitary tasks as either exploration or 236 

exploitation, we fitted a standard reinforcement learning model to each participant’s 237 

choice data using maximal likelihood estimation method (Daw et al., 2006; O’Doherty 238 

et al., 2003). Following the previous empirical studies on social learning strategies in 239 

humans (McElreath et al., 2005, 2008), our learning model consists of two parts. First, 240 

the values for choosing the options (i.e., Q-values (Sutton and Barto, 1998)) are 241 

recursively updated by experienced reward according to the Rescorla-Wagner rule 242 

(Trimmer et al., 2012) that is commonly used in the animal learning literature. Second, 243 

the Q-values are transformed to the choice probability for each option by the ‘softmax’ 244 

choice policy (Daw et al., 2006). The mathematical expression of this asocial learning 245 

model is shown in the next sub-section (Eq.1 and Eq.2; see Online Supporting 246 

Material S1-3 for full details of the model fitting procedure).  247 

After obtaining the most likely parameters of the asocial learning model separately for 248 

each participant, we classified each choice of each participant as either exploitative 249 
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or explorative according to whether the chosen box had the larger Q-value 250 

(exploitation) or the smaller Q-value (exploration) between the two options. Then, we 251 

summed up the number of explorations for each participant for each of the solitary 252 

tasks. We calculated Pearson’s correlation coefficient between the numbers of 253 

explorations in the first and second solitary tasks so as to examine the individual 254 

consistency in exploration tendency. 255 

2-6 Determining learning strategies 256 

We examined four different learning models as candidates of participants’ strategies 257 

in the paired task: asocial learning model (AL), unconditional-copying model (UNC), 258 

copy-when-uncertain model (CWU), and random choice model (Random). AL and 259 

Random are asocial, while UNC and CWU are social learning models. Since each 260 

participant interacted with only one anonymous peer without seeing the peer’s 261 

earned payoff, we could not consider any ‘frequency based’ strategies (e.g., copy the 262 

majority) and ‘model based’ strategies (e.g., copy the prestigious individual or payoff-263 

based copying) (Rendell et al., 2011). We fitted each of the models to each 264 

participant’s choice data individually. 265 

All models have the same updating rule for Q-values, called the Rescorla-Wagner 266 

rule. Q-value for the left option is updated as follows: 267 

 𝑄!!!,! ← 1 − 𝛼 𝑄!,! + 𝛼𝜋!,!, (Eq.1) 

where 𝛼 (0 ≤ 𝛼 ≤ 1) is a parameter determining the weight given to new experience 268 

(learning rate) and  𝜋!,! is the amount of payoff obtained from choosing the left option 269 

( 𝑙) in round  𝑡. When the left option was not chosen in round 𝑡, the left option’s Q-270 

value was not updated (𝑄!!!,! = 𝑄!,!). The same updating rule applied to the right 271 

option. We set 𝑄!,! = 𝑄!,! = 0 because there was no reason to expect participants to 272 

have any prior preference for either option at the outset (McElreath et al., 2008).  273 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 30, 2016. ; https://doi.org/10.1101/061473doi: bioRxiv preprint 

https://doi.org/10.1101/061473
http://creativecommons.org/licenses/by-nd/4.0/


 13 

Of course, we could have considered any other updating rules (e.g., Bayesian 274 

updating model (Payzan-LeNestour and Bossaerts, 2011)). However, because our 275 

scope here is examining whether the participants might conduct social learning or not, 276 

rather than quantifying detailed computational learning algorithms, we decided to 277 

focus only on the simple Rescorla-Wagner rule which has been shown to be 278 

evolutionary adaptive across a broad range of environmental conditions (Trimmer et 279 

al. 2012).  280 

The Q-values were transformed into the choice probability in different ways between 281 

the four models, shown as follows. 282 

2-6-1 Asocial learning model (AL) 283 

In the asocial learning model, the probability of choosing the left option in round 𝑡 + 1 284 

is given by the following softmax rule: 285 

 𝑃!!!,! =
!"# (!!,! !)

!"# (!!,! !)!!"# (!!,! !)
, (Eq.2) 

where 𝛽  (𝛽 > 0 ) is a parameter that measures the influence of the difference 286 

between Q-values on choice (‘temperature’ parameter). As 𝛽 → ∞ , choice is 287 

completely random (i.e., 𝑃!!!,! = 1 2; highly explorative). As 𝛽 → 0, choice becomes 288 

deterministic, in favour of the option with the higher Q-value (i.e., highly exploitative). 289 

Therefore, 𝛽 regulates the individual’s asocial exploration tendency. 290 

This asocial learning model was also used in the last subsection (section 2-5) to 291 

estimate the exploration tendencies in the solitary tasks. 292 

2-6-2 Unconditional-copying model (UNC) 293 

Next we considered unconditional/unselective copying, the simplest case of social 294 

information use (Laland, 2004). The individuals copied the other participant’s choice 295 
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at the fixed rate 𝜆 (0 ≤ 𝜆 ≤ 1), otherwise their decisions were determined by the 296 

softmax rule (Eq. 2). In the case that the peer chose the left option in round 𝑡, the 297 

focal participant’s probability of choosing the left option at round 𝑡 + 1 is given by: 298 

 𝑃!!!,! = 1 − 𝜆 !"# (!!,! !)
!"# (!!,! !)!!"# (!!,! !)

+ 𝜆, (Eq.3-1) 

whereas when the peer chose the right option in round 𝑡, the participant’s probability 299 

of choosing the left option at round 𝑡 + 1 is given by:  300 

 𝑃!!!,! = 1 − λ !"# (!!,! !)
!"# (!!,! !)!!"# (!!,! !)

. (Eq.3-2) 

When 𝜆 = 1 , the individuals always copy the peer’s choice. When 𝜆 = 0 , the 301 

individuals rely only on asocial learning. We assumed that the individuals also relied 302 

only on the asocial learning rule when the peer missed the preceding round (i.e., 303 

when no choice was made by the peer).  304 

2-6-3 Copy-when-uncertain model (CWU) 305 

A number of studies have suggested that animals are selective in timing to use social 306 

information, depending on the degree of uncertainty that they are experiencing (e.g., 307 

Coolen et al., 2003; Galef, 2009; van Bergen et al., 2004). To quantify the uncertainty 308 

level concerning which of the two slots is more rewarding at a given round, we used 309 

absolute difference in Q-values: The closer the Q-values between the two options, 310 

the higher the uncertainty. In the copy-when-uncertain model, when the peer chose 311 

the left option in round 𝑡, the focal participant’s choice probability for the left option at 312 

𝑡 + 1 is given by: 313 

 𝑃!!!,! = 1 − 𝛾𝐻!
!"# (!!,! !)

!"# (!!,! !)!!"# (!!,! !)
+ 𝛾𝐻!, (Eq.4-1) 

whereas when the peer chose the right option in round 𝑡, 314 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 30, 2016. ; https://doi.org/10.1101/061473doi: bioRxiv preprint 

https://doi.org/10.1101/061473
http://creativecommons.org/licenses/by-nd/4.0/


 15 

 𝑃!!!,! = 1 − 𝛾𝐻!
!"# (!!,! !)

!"# (!!,! !)!!"# (!!,! !)
, (Eq.4-2) 

where 315 

 𝐻! = − !!,!
!!,!!!!,!

𝑙𝑜𝑔!
!!,!

!!,!!!!,!! . (Eq.4-3) 

𝛾 (0 ≤ 𝛾 ≤ 1) is a parameter that determines the upper limit of copying probability, 316 

and 𝐻! (i.e., information entropy, 0 ≤ 𝐻! ≤ 1) determines the actual copying rate at 317 

round 𝑡, where 𝑘 ∈ 𝑙, 𝑟 . When both Q-values are equal (𝑄! = 𝑄!), the uncertainty 318 

becomes max (𝐻 = 1), leading the copying probability to be maximal (i.e., the 319 

individual copies the peer at the probability 𝛾 when uncertainty is the highest). As the 320 

difference between Q-values becomes larger, 𝐻 approaches to 0, with the result that 321 

the choice is mostly determined by the asocial learning.  322 

2-6-4 Random choice model 323 

We also considered the case that the choices are made randomly at fixed rate 324 

regardless of the Q-values, so as to verify that the participants did not behave just 325 

randomly in the experiment. The choice probability for the left option is always a fixed 326 

rate 𝜀 (0 ≤ 𝜀 ≤ 1); hence, the probability of choosing the right option is 1 − 𝜀.  327 

2-7 Model selection 328 

We used Bayesian Model Selection (BMS) (Rigoux et al., 2014; Stephan et al., 2009) 329 

that estimates how likely it is that each learning model generated the data of a 330 

randomly chosen participant (see Online Supporting Material S1-4). Using BMS, we 331 

were also able to calculate the probability that each model had generated a given 332 

participant’s data (Stephan et al., 2009). Because here we were interested in inter-333 

individual variation of social information use, we mainly focused on the latter 334 

‘individual-level’ probabilities for each model, rather than the former ‘group-level’ 335 
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probability that BMS was originally aimed at. To verify this BMS estimation for each 336 

participant’s learning model, we also conducted the standard AIC comparison (see 337 

Online Supporting Material S1-5). 338 

2-8 The relation between gaze movement and learning strategy 339 

We examined the gaze movement so as to confirm the participants’ information use 340 

during the paired task. We focused on ‘gazing-at-social-information before choice’ 341 

(yes = 1/no = 0) for each round as a binary response variable in a binomial 342 

generalised linear mixed model (GLMM), including the following three random 343 

effects: individuals, pairs, and bandit’s conditions. We considered estimated learning 344 

strategy (social = 1/asocial = 0), information uncertainty (i.e., similarity between Q-345 

values [Eq. 4-3]), rounds, and possible 2-way interactions as fixed effects. Model 346 

selection was done based on each AIC value (Online Supporting Material S1-6). 347 

2-9 The relations between asocial exploration and social learning 348 

To examine whether the asocial exploration tendency might predict the use of social 349 

learning strategy, we analysed a binomial GLMM with social = 1/asocial = 0 learning 350 

as a binary response variable, with random effects of pairs and bandit’s conditions. 351 

We considered the asocial exploration tendency (frequency of explorative choices in 352 

the first solitary task), asocial learning performance (average payoff earned per 353 

choice in the first solitary task), and possible 2-way interactions as fixed effects. 354 

Model selection was done based on each AIC value (Online Supporting Material S1-355 

7). 356 

 357 

3. Results 358 
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3-1 Individual consistency in the asocial exploration tendency 359 

The frequency of explorative choices in the first solitary task was positively correlated 360 

with that in the second solitary task (r = 0.58, p < 0.001; Figure 2). This result 361 

indicates that participants exhibited a stable asocial exploration tendency across the 362 

two solitary tasks. Results of the fitting of the asocial learning model are shown in 363 

Online Supporting Result S2-1. 364 

 365 

 366 

Figure 2. Individual consistency in the asocial exploration frequency. The x-axis 367 
shows the frequency of explorative choices in the first solitary task. The y-axis shows 368 
the frequency of explorative choice in the second solitary task. The dotted line is a 369 
linear regression. 370 

 371 

3-2 Detecting social learning strategies 372 

The Bayesian Model Selection (BMS) resulted in the heterogeneous distribution of 373 

learning strategies among the participants (Figure 3a). The estimated likelihood of 374 
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each model for the whole data was 0.47 for the Asocial Learning model (AL), 0.10 for 375 

the Unconditional Copying model (UNC), 0.41 for the Copy-when-uncertain model 376 

(CWU), and 0.02 for the Random model. 377 

Focusing on each individual’s probabilities for each model, the BMS revealed that 32 378 

participants were most likely to have adopted AL, while the remaining 16 participants 379 

were most likely to have adopted CWU (Figure 3b). No individuals were most likely to 380 

have used UNC or Random. We hereafter call the former 32 individuals ‘asocial 381 

learners’ and the latter 16 individuals ‘social learners’ for simplicity. We also checked 382 

each model’s AIC values for each participant and confirmed that the result was not 383 

qualitatively changed (although three participants were most likely to have adopted 384 

the UNC model instead; see Online Supporting Material S2-2 and Figure S6). 385 

Table 1 shows means (± 1 SDs) of best-fitted parameters for asocial and social 386 

learners. The mean value of 𝛾 (i.e., maximum copying probability) for social learners 387 

(CWU) was 0.162 (± 0.072), which means that, when uncertainty level was max (i.e., 388 

setting 𝑄! = 𝑄!  so that 𝐻 = 1 and exp 𝑄! 𝛽 exp 𝑄! 𝛽 = 0.5, see Eq. 4), there 389 

was about 58% chance of choosing the same option as chosen by the other 390 

participant in the preceding round. Note that asocial learners should choose 391 

whichever option by 50% chance (i.e., randomly) when they have the maximum 392 

uncertainty. Therefore, there was at most 8% increase in the probability of “copying 393 

others’ choice” by social learners as compared to asocial learners. Together with the 394 

smaller frequency of social learners (N = 16) than asocial learners (N = 32), we will 395 

revisit this rarity of social learning in Discussion.  396 
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 397 

Table 1. Fitted parameter values (mean ± 1 S.D.) that provide the maximum 398 
likelihood for asocial learners (N = 32) and for social (copy-when-uncertain) learners 399 
(N = 16). 400 

 401 

 402 
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Figure 3. Results of Bayesian Model Selection. We considered the following four 403 
models: random choice model, asocial learning model (AL), unconditional copying 404 
model (UNC), and copy-when-uncertain model (CWU). (a) Distributions of 405 
probabilities concerning how likely it is that each model was adopted by a randomly 406 
chosen participant (i.e., group-level model likelihood). (b) Likelihood of each model 407 
for each participant (i.e., individual-level model likelihood). The numbers shown 408 
above each cell indicate participants’ IDs. Thirty-two participants were most likely to 409 
have used the asocial learning strategy (shown in grey); the remaining 16 410 
participants were most likely to have used the copy-when-uncertain strategy (shown 411 
in orange). 412 

 413 

3-3 Social learning did not improve the performance 414 

Given the result that some participants used social learning, an interesting question 415 

is whether social learners performed better than asocial learners in the paired task. 416 

We compared each individual’s average payoff earned per choice using a Gaussian-417 

GLMM with a fixed effect of learning type (asocial = 0/social = 1), and with two 418 

random effects of pairs and bandit’s conditions. The fixed effect was not significant, 419 

implying that social learners performed no better than asocial learners (coefficient 420 

[95% confidence interval] = 0.38 [-0.33, 1.12], p = 0.28; see Online Supporting Figure 421 

S8).  422 

3-4 The relation between gaze movement and learning strategy 423 

The result of BMS could be argued as an artefact of the limited number of models 424 

considered. To confirm that estimated ‘social learners’ actually saw the social 425 

information, we also examined the participants’ gaze patterns. We used the 426 

estimated learning strategy as a dummy fixed effect (i.e., asocial learner = 0; social 427 

learner = 1). The binomial-GLMM for the probability of looking at social information 428 

revealed the significant effects of uncertainty (coefficient [odds ratio] = -0.63 [0.53], p 429 

= 0.036), round (coefficient [odds ratio] = 0.24 [1.25], p < 0.001), the interaction 430 
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between uncertainty and learning type (coefficient [odds ratio] = 1.45 [4.25], p = 431 

0.0028), and the intercept (coefficient [odds ratio] = -3.25 [0.039], p < 0.001). 432 

However, the fixed effect of learning strategy itself was not significant (coefficient 433 

[odds ratio] = -0.65 [0.52], p = 0.37). The confidence intervals are shown in Online 434 

Supporting Table S2. 435 

The significant negative effect of uncertainty suggests that the participants tended 436 

not to look at the social information when uncertainty (here defined as the closeness 437 

of the two options in terms of Q-values) was high. However, the significant positive 438 

interaction between uncertainty and learning strategies suggests that, when 439 

uncertainty was high, the social learners tended to look at the social information more 440 

frequently than asocial learners. This interaction effect is thus consistent with the 441 

behavioural-choice pattern predicted by the CWU model as compared to the AL 442 

model.  443 

3-5 The relation between asocial exploration tendency and social learning strategy 444 

Our results showed that (1) there were consistent individual differences in asocial 445 

exploration tendency across the two solitary tasks and that (2) use of social learning 446 

was heterogeneous between individuals. Given this, we finally examined whether the 447 

asocial exploration tendency in the solitary task might predict the use of social 448 

learning strategy in the paired task. We analysed a binomial GLMM that predicts the 449 

use of social learning strategy in the paired task (Online Supporting Material S1-7). 450 

The selected GLMM contains both fixed effects of exploration frequency at the first 451 

solitary task and performance at the first solitary task. However, none of them were 452 

statistically significant (exploration tendency: coefficient [odds ratio] = -1.21 [0.30], p 453 

= 0.16, performance: coefficient [odds ratio] = -1.05 [0.35], p = 0.07). Hence, we 454 

cannot say either of them predicts a participant’s reliance on social learning. Looking 455 
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at the scatter plots (Online Supporting Material Figure S8) rather than just 456 

considering p-values of the GLMM parameters, however, the average performance of 457 

the social learners in the first solitary task was not higher than the expected 458 

performance from completely random choices (Student’s t-test: t15 = 0.64, p = 0.53), 459 

while that of asocial learners was better than the chance-level (Students’ t-test: t31 = 460 

6.15, p < 0.001; Figure S8a). It might suggest that the asocial learning performance 461 

in the first solitary task has a negative effect on the use of social learning in the 462 

paired task. On the other hand, the frequencies of explorations in the first solitary 463 

task were not different between asocial and social learners (Figure S9).  464 

 465 

4. Discussion 466 

In this study, we investigated human search strategies in the asocial/social 2-armed 467 

bandit tasks, respectively, and tested whether the individual differences in asocial 468 

exploration tendency in isolated settings might predict the use of social learning in 469 

group settings.  470 

Across the first and second solitary tasks, our results showed the consistent 471 

individual differences in asocial exploration tendency (Figure 2). Since participants 472 

were not informed how the environmental change would occur in advance, it was 473 

virtually impossible for them to calculate the optimal exploration schedule (Gittins et 474 

al., 2011). Therefore, individual differences in calculation abilities are unlikely to 475 

explain this individual variation. Instead, it is known that human exploration tendency 476 

in a learning/decision task may be dependent on dopaminergic functions in the 477 

prefrontal cortical region of the brain (Daw et al., 2006; Frank et al., 2009), which is 478 

associated with tracking informational uncertainty (Yoshida and Ishii, 2006). Sensing 479 

decision uncertainty accurately is important in deciding when to explore in multi-480 
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armed bandit problems (Cohen et al., 2007). The individual differences in asocial 481 

exploration tendency shown in our result may be related to such individual 482 

differences in neural activity for sensing uncertainty, although we did not investigate 483 

direct neural mechanisms here.  484 

As for the social task, we found a heterogeneous distribution of learning strategies: 485 

Two-thirds of the participants seems to have used the asocial learning strategy while 486 

the rest seems to have used the copy-when-uncertain strategy (Figure 3b), even 487 

though a few of them might have adopted the unconditional-copying strategy instead 488 

(Online Supporting Figure S6). The copy-when-uncertain type of social information 489 

use is predicted by adaptive evolutionary models (e.g., Boyd and Richerson, 1988), 490 

and has been repeatedly reported in empirical studies about non-human animals 491 

(e.g., Galef et al., 2008; Kendal et al., 2009) as well as humans (e.g., Kameda and 492 

Nakanishi, 2002; Morgan et al., 2011; Muthukrishuna et al., 2015). Our result 493 

replicated those findings. However, in the previous empirical studies, uncertainties 494 

were externally manipulated by, for example, varying the task difficulty (Morgan et al., 495 

2011), changing the option numbers (Muthukrishuna et al., 2015), or changing costs 496 

required for getting asocial information (Kameda and Nakanishi, 2002). Instead of 497 

fixing such parameters via experimental manipulations, our copy-when-uncertain 498 

model tracks each individual’s internal information uncertainty (i.e., entropy) that can 499 

dynamically change during the course of learning. Our result thus provides a finer 500 

picture about possible plasticity in human learning strategies, shedding light on the 501 

individual flexibility of social information use during the course of problem solving.  502 

It is noteworthy that, however, there were other forms of uncertainty that we did not 503 

consider here. For example, there were uncertainties concerning how noisily the 504 

payoff would be generated from a slot machine (i.e., variance of the payoff 505 

distribution), how often the environment would change (i.e., ‘unexpected uncertainty’), 506 
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and what kind of distribution payoff was generated from (i.e., ‘structural uncertainty’ 507 

or ambiguity) (Cohen et al., 2007; Payzan-LeNestour and Bossaerts, 2011; Payzan-508 

LeNestour et al., 2013). Further study is needed to investigate how those different 509 

types of uncertainty may affect the timing of social information use.  510 

Technically, we used AIC as an approximation to the log-evidence for the Bayesian 511 

Model Selection (see Online Supporting Method). Compared to other forms of 512 

calculation (e.g., Free Energy approximation), AIC tends to prefer complex models 513 

because of the weak penalty for having more parameters (Penny, 2012; Stephan et 514 

al., 2009). It might thus have caused over-estimation of the frequency of social 515 

learners because our social learning models have more parameters than do asocial 516 

models. Nevertheless, the gaze movement patterns were consistent with the 517 

behavioural-choice pattern from the BMS result—individuals categorised as copy-518 

when-uncertain learners saw the social information more often than asocial learning 519 

individuals when they faced high uncertainty (Result 3-4). Importantly, the BMS only 520 

considered the behavioural (i.e., choice) data, which was measured independently 521 

from the eye-tracking. Therefore, the result confirmed that we successfully captured 522 

the significant pattern of individual differences in learning strategies. 523 

Although evolutionary theory generally tends to suggest heavy reliance on social 524 

learning in a broader range of situations (Rendell et al., 2011), only one-third of 525 

participants seemed to have used social information in our experiment. In addition to 526 

the low prevalence of social learners among participants, the maximum copying 527 

probability of social learners was also low (at most 8% higher than that of asocial 528 

learners). This rarity of social learning might be because social learning was not so 529 

useful in the paired task (Result 3-3). Social information is useful if and only if others’ 530 

behaviours can filter better options (Rendell et al., 2010). In our paired task, however, 531 

there was only one other individual playing the same task. Thus, the filtering effect 532 
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from social learning was minimal. Also, there might be no ‘worth-copying’ peer (e.g., 533 

expert or veteran) because both participants started the task at the same time: When 534 

a focal participant was naïve to the task, so was the other participant. Therefore, 535 

information about the peer’s choice might not be so accurate compared to the own 536 

(asocial) learning experiences. Additionally, a recent empirical study suggests that 537 

the reliance on social information becomes stronger as the number of choice options 538 

increases (Muthukrishuna et al., 2015). Having only two options, therefore, our 539 

current study might underestimate the potential use of social learning. Further studies 540 

are needed to investigate whether social information use may change with group size 541 

and/or number of options.  542 

We also explored the possible associations between behaviour in the solitary task 543 

and social learning in the paired task. Different from the previous empirical findings 544 

about non-human animals, we found no relation between asocial exploration 545 

tendency and the reliance on social learning. One possible reason for this difference 546 

might come from the inconsistent definition of ‘exploration’ in the previous literature. 547 

As described in Introduction, asocial exploration tendency has often been 548 

confounded with other personality traits that could relate to more general asocial 549 

learning ability (Réale et al., 2007). Better asocial learners may show less social 550 

information use because they possess more accurate private information (e.g., 551 

Kurvers et al., 2010a, 2010b), while the opposite (better asocial learners rely more on 552 

social learning) could also be plausible if both asocial and social learning reflect a 553 

common basic cognitive ability (Mesoudi et al., 2016). Indeed, a number of studies 554 

have shown that asocial learning ability correlates with the use of social information 555 

(Bouchard et al., 2007; Katsnelson et al., 2011; Mesoudi, 2011). Although it was not 556 

statistically significant, our result might also suggest that better asocial learners tend 557 

to ignore social information (Result 3-5; Figure S8a). Importantly, in our task, the 558 

asocial exploration tendencies were not correlated with the asocial learning 559 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 30, 2016. ; https://doi.org/10.1101/061473doi: bioRxiv preprint 

https://doi.org/10.1101/061473
http://creativecommons.org/licenses/by-nd/4.0/


 26 

performance (first solitary task: r = -0.20, p = 0.17; second solitary task: r = -0.14, p = 560 

0.35; Online Supporting Figure S7). Our results that the asocial learning performance 561 

might have a negative effect on the use of social learning (but not exploration 562 

tendency) may suggest the importance of drawing a distinction between information-563 

gathering behaviour (e.g., exploration tendency) and learning performance.  564 

Overall, our study supports that humans are very selective about when to use social 565 

information. On the other hand, we should also acknowledge that our experimental 566 

set-up did not allow considering any ‘copy-from-whom’ (Heyes, 2015; Laland, 2004; 567 

Rendell et al., 2011) types of strategies, which might cause overlooking the potential 568 

social information use. Comparing ‘who’ strategies with ‘when’ strategies in the same 569 

framework will provide more comprehensive understanding on social learning for 570 

both human and non-human animals. We also believe that the computational 571 

learning model can be a strong tool for quantitative empirical investigations on animal 572 

social learning strategies (Daw et al., 2006; McElreath et al., 2005, 2008; O’Doherty 573 

et al., 2003; Sutton and Barto, 1998). 574 
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5. Ethics 576 

This study was approved by the Institutional Review Board of the Centre for Experimental 577 

Research in Social Science at Hokkaido University (No. H26-01). Written informed consent 578 

was obtained from all participants before beginning the task. 579 

 580 

6. Data accessibility 581 

Behavioural data are available in Online Supporting Materials 582 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 30, 2016. ; https://doi.org/10.1101/061473doi: bioRxiv preprint 

https://doi.org/10.1101/061473
http://creativecommons.org/licenses/by-nd/4.0/


 27 

 583 

7. Competing interest 584 

We have no competing interest. 585 

 586 

8. Authors’ contributions 587 

WT designed the study, performed the experiment, carried out the data analysis and 588 

drafted the manuscript; YS carried out the acquisition of gaze data and participated in 589 

the data analysis; TK participated in the design of the study, supervised the study 590 

and participated in writing the manuscript. All authors gave final approval for 591 

publication. 592 

 593 

9. Acknowledgments  594 

We are grateful to Shinsuke Suzuki for valuable discussions related to the 595 

computational learning models, and Mike Webster for helpful comments on earlier 596 

draft of this manuscript. 597 

 598 

10. Funding 599 

JSPS KAKENHI Grant Number 25245063 and 25118004 to Tatsuya Kameda, and 600 

JSPS KAKENHI grant-in-aid for JSPS fellows 24004583 to Wataru Toyokawa. The 601 

funders had no role in design study, data collection and analysis, decision to publish, 602 

or preparation of the manuscript.  603 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 30, 2016. ; https://doi.org/10.1101/061473doi: bioRxiv preprint 

https://doi.org/10.1101/061473
http://creativecommons.org/licenses/by-nd/4.0/


 28 

 604 

11. References 605 

Aoki K, Feldman MW. 2014 Evolution of learning strategies in temporally and 606 

spatially variable environments: A review of theory. Theor. Popul. Biol. 91, 3-607 

19. (doi:10.1016/j.tpb.2013.10.004) 608 

Bouchard J, Goodyer W, Lefebvre L. 2007 Social learning and innovation are 609 

positively correlated in pigeons (Columba livia). Anim. Cogn. 10, 259–266. 610 

(doi: 10.1007/s10071-006-0064-1) 611 

Boyd R, Richerson PJ. 1985 Culture and the evolutionary process. Chicago, IL: 612 

University of Chicago Press. 613 

Boyd R, Richerson PJ. 1988 An evolutionary model of social learning: The effects of 614 

spatial and temporal variation. In T. Zentall & B. G. Galef (Eds.), Social 615 

learning: A psychological and biological approach (pp. 29-48). Hillsdale, NJ: 616 

Erlbaum. 617 

Carere C, Locurto C. 2011. Interaction between animal personality and animal 618 

cognition. Curr. Zool, 57(4), 491-498. 619 

Cohen JD, McClure SM, Yu AJ. 2007 Should I stay or should I go? How the human 620 

brain manages the trade-off between exploitation and exploration. Phil. Trans. 621 

Roy. Soc. B. 362, 933–942. (doi: 10.1098/rstb.2007.2098) 622 

Coolen I, van Bergen Y, Day RL, Laland KN. 2003 Species difference in adaptive use 623 

of public information in sticklebacks. Proc. Roy. Soc. B. 270, 2413-2419. (doi: 624 

10.1098/rspb.2003.2525) 625 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 30, 2016. ; https://doi.org/10.1101/061473doi: bioRxiv preprint 

https://doi.org/10.1101/061473
http://creativecommons.org/licenses/by-nd/4.0/


 29 

Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ. 2006. Cortical substrates 626 

for exploratory decisions in humans. Nature 441, 876–879. 627 

(doi:10.1038/nature04766) 628 

Frank MJ, Doll BB, Oas-Terpstra J, Moreno F. 2009 Prefrontal and striatal 629 

dopaminergic genes predict individual differences in exploration and 630 

exploitation. Nat. Neurosci. 12, 1062–1068. (doi:10.1038/nn.2342) 631 

Galef, B. G. 2009 Strategies for Social Learning: Testing Predictions from Formal 632 

Theory. Adv. Study Behav. 39, 117-151. (doi: 10.1016/S0065-633 

3454(09)39004-X) 634 

Galef BG, Dudley KE, Whiskin EE. 2008 Social learning of food preferences in 635 

‘dissatisfied’ and ‘uncertain’ Norway rats. Anim. Behav., 75(2), 631-637. 636 

(doi:10.1016/j.anbehav.2007.06.024) 637 

Gittins J, Glazebrook K, Weber R. 2011 Multi-armed Bandit Allocation Indices 2nd 638 

Edition. Sussex: John Wiley & Sons, Inc.  639 

Groothuis TG, Carere C. 2005 Avian personalities: characterization and epigenesis. 640 

Neuroscience & Biobehavioral Reviews, 29(1), 137-150. 641 

Heyes C. 2015 Who Knows? Metacognitive Social Learning Strategies. Trends. Cog. 642 

Sci. 20, 204–213. (doi: 10.1016/j.tics.2015.12.007) 643 

Hills TT, Todd, PM, Lazer D, Redish AD, Couzin ID, CSR Group. 2014 Exploration 644 

versus exploitation in space, mind, and society. Trends Cog. Sci. 19, 46-54. 645 

(doi: http://dx.doi.org/10.1016/j.tics.2014.10.004) 646 

Kameda T, Nakanishi D. 2002 Cost-benefit analysis of social/cultural learning in a 647 

nonstationary uncertain environment: an evolutionary simulation and an 648 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 30, 2016. ; https://doi.org/10.1101/061473doi: bioRxiv preprint 

https://doi.org/10.1101/061473
http://creativecommons.org/licenses/by-nd/4.0/


 30 

experiment with human subjects. Evol. Hum. Behav. 23, 373–393. 649 

(doi:10.PiiS1090-5138(02)00101-0) 650 

Katsnelson E, Motro U, Feldman MW, Lotem A. 2011. Individual-learning ability 651 

predicts social- foraging strategy in house sparrows. Proc. Roy. Soc. B 278, 652 

582–589. (doi: 10.1098/rspb.2010.1151) 653 

Keasar T, Rashkovich E, Cohen D, Shmida A. 2002 Bees in two-armed bandit 654 

situations: foraging choices and possible decision mechanisms. Behav. Ecol. 655 

13, 757–765. (doi: 10.1093/beheco/13.6.757) 656 

Kendal RL, Kendal JR, Hoppitt W, Laland KN. 2009 Identifying Social Learning in 657 

Animal Populations: A New ‘Option-Bias’ Method. PLoS ONE 4, e6541. 658 

(doi:10.1371/journal.pone.0006541) 659 

King AJ, Cowlishaw G. 2007 When to use social information: the advantage of large 660 

group size in individual decision making. Bio. Lett. 3, 137-139. (doi: 661 

10.1098/rsbl.2007.0017) 662 

Koolhaas JM, Korte SM, De Boer SF, Van Der Vegt BJ, Van Reenen CG, Hopster H, 663 

De Jong IC, Ruis MAW, Blokhuis HJ. 1999 Coping styles in animals: current 664 

status in behavior and stress-physiology. Neuroscience & Biobehavioral 665 

Reviews, 23(7), 925-935. 666 

Kurvers RHJM, Prins HHT, van Wieren SE, van Oers K, Nolet BA, Ydenberg RC. 667 

2010a The effect of personality on social foraging: shy barnacle geese 668 

scrounge more. Proc. R. Soc. B. 277: 601–608 (doi: 10.1098/rspb.2009.1474) 669 

Kurvers RHJM, van Oers K, Nolet BA, Jonker RM, van Wieren SE, Prins HHT, 670 

Ydenberg RC. 2010b Personality predicts the use of social information. Ecol. 671 

Lett. 13: 829–837 (doi: 10.1111/j.1461-0248.2010.01473.x.) 672 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 30, 2016. ; https://doi.org/10.1101/061473doi: bioRxiv preprint 

https://doi.org/10.1101/061473
http://creativecommons.org/licenses/by-nd/4.0/


 31 

Laland KN. 2004 Social learning strategies. Learn. Behav. 32, 4–14. 673 

(doi:10.3758/BF03196002) 674 

Marchetti C, Drent PJ. 2000 Individual differences in the use of social information in 675 

foraging by captive great tits. Anim. Behav. 60, 131–140. 676 

(doi:10.1006/anbe.2000.1443) 677 

McElreath R, Lubell M, Richerson PJ, Waring TM, Baum W, Edsten E, Efferson C, 678 

Paciotti B. 2005 Applying evolutionary models to the laboratory study of social 679 

learning. Evol. Hum. Behav. 26, 483–508. 680 

(doi:10.1016/j.evolhumbehav.2005.04.003) 681 

McElreath R, Bell AV, Efferson C, Lubell M, Richerson PJ, Waring T. 2008 Beyond 682 

existence and aiming outside the laboratory: Estimating frequency-dependent 683 

and pay-off-biased social learning strategies. Phil. Trans. Roy. Soc. B 363, 684 

3515–3528. (doi: 10.1098/rstb.2008.0131) 685 

Mesoudi A. 2011 An experimental comparison of human social learning strategies: 686 

payoff-biased social learning is adaptive but underused. Evol. Hum. Behav. 687 

32, 334-342. (doi: 10.1016/j.evolhumbehav.2010.12.001) 688 

Mesoudi A, Chang L, Dall SRX, Thornton A. 2016 The Evolution of Individual and 689 

Cultural Variation in Social Learning. Trends. Ecol. Evol. (doi: 690 

http://dx.doi.org/10.1016/j.tree.2015.12.012) 691 

Muthukrishuna M, Morgan TJH, Henrich J. 2015 The when and who of social 692 

learning and conformist transmission. Evol. Hum. Behav. 37, 10-20. 693 

(doi:10.1016/j.evolhumbehav.2015.05.004) 694 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 30, 2016. ; https://doi.org/10.1101/061473doi: bioRxiv preprint 

https://doi.org/10.1101/061473
http://creativecommons.org/licenses/by-nd/4.0/


 32 

Morgan TJH, Rendell LE, Ehn M, Hoppitt W, Laland KN. 2011 The evolutionary basis 695 

of human social learning. Proc. R. Soc. B 279, 653–662. (doi:10. 696 

1098/rspb.2011.1172) 697 

Nomakuchi S, Park PJ, Bell MA. 2009 Correlation between exploration activity and 698 

use of social information in three-spined sticklebacks. Behav. Ecol. 20, 340–699 

345. (doi: 10.1093/beheco/arp001) 700 

O’Doherty JP, Dayan P, Friston K, Critchley H, Dolan, RJ. 2003 Temporal difference 701 

models and reward-related learning in the human brain. Neuron 38, 329–702 

337.  (doi:10.1016/S0896-6273(03)00169-7) 703 

Payzan-LeNestour E, Bossaerts P. 2011 Risk, Unexpected Uncertainty, and 704 

Estimation Uncertainty: Bayesian Learning in Unstable Settings. PLoS 705 

Comput. Biol. 7, e1001048. (doi:10.1371/journal.pcbi.1001048) 706 

Payzan-LeNestour E, Dunne S, Bossaerts P, O’Doherty, JP. 2013 The Neural 707 

Representation of Unexpected Uncertainty during Value-Based Decision 708 

Making. Neuron 79, 191-201 (doi: 709 

http://dx.doi.org/10.1016/j.neuron.2013.04.037) 710 

Peirce, JW. 2007 PsychoPy - Psychophysics software in Python. J. Neurosci. 711 

Methods 162, 8-13. (doi:  10.1016/j.jneumeth.2006.11.017) 712 

Peirce JW. 2009 Generating stimuli for neuroscience using PsychoPy. Front. 713 

Neuroinform. 2:10. (doi:10.3389/neuro.11.010.2008) 714 

Penny WD. 2012 Comparing dynamic causal models using AIC, BIC and free energy. 715 

NeuroImage, 59, 319–330. (doi: 10.1016/j.neuroimage.2011.07.039) 716 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 30, 2016. ; https://doi.org/10.1101/061473doi: bioRxiv preprint 

https://doi.org/10.1101/061473
http://creativecommons.org/licenses/by-nd/4.0/


 33 

Racey D, Young ME, Garlick D, Pham JNM, Blaisdell AP. 2011 Pigeon and human 717 

performance in a multi-armed bandit task in response to changes in variable 718 

interval schedules. Learn. Behav. 39, 245–258. (doi: 10.3758/s13420-011-719 

0025-7) 720 

Reader SM. 2015 Causes of Individual Differences in Animal Exploration and 721 

Search, Topics in Cognitive Science 7, 451–468. 722 

Réale D, Reader SM, Sol D, McDougall PT, Dingemanse, NJ. 2007 Integrating 723 

animal temperament within ecology and evolution. Biological Reviews, 82, 724 

291–318. 725 

Rendell L, Boyd R, Cownden D, Enquist M, Eriksson K, Feldman MW, Forgaty L, 726 

Ghirlanda S, Lillicrap T, Laland KN. 2010 Why copy others? Insights from the 727 

social learning strategies tournament. Science 328, 208–213. (doi: 728 

10.1126/science.1184719) 729 

Rendell L, Fogarty L, Hoppitt WJE, Morgan TJH, Webster MM, Laland KN. 2011 730 

Cognitive culture: theoretical and empirical insights into social learning 731 

strategies. Trends. Cog. Sci. 15, 68-76. (doi:10.1016/j.tics.2010.12.002) 732 

Rigoux L, Stephan KE, Friston KJ, Daunizeau J. 2014 Bayesian model selection for 733 

group studies — Revisited. NeuroImage 84, 971-985. (doi:  734 

10.1016/j.neuroimage.2013.08.065) 735 

Rosa P, Nguyen V, Dubois F. 2012 Individual differences in sampling behaviour 736 

predict social information use in zebra finches. Behav. Ecol. Socio. Biol. 66,  737 

1259-1265. (doi: 10.1007/s00265-012-1379-3) 738 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 30, 2016. ; https://doi.org/10.1101/061473doi: bioRxiv preprint 

https://doi.org/10.1101/061473
http://creativecommons.org/licenses/by-nd/4.0/


 34 

Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ. 2009 Bayesian model 739 

selection for group studies. NeuroImage 46, 1004–1017. (doi: 740 

10.1016/j.neuroimage.2013.08.065) 741 

Sutton RS, Barto AG. 1998 Reinforcement Learning: An Introduction. Cambridge, 742 

MA: MIT press. 743 

Toyokawa W, Kim H, Kameda T. 2014 Human Collective Intelligence under Dual 744 

Exploration-Exploitation Dilemmas. PLoS ONE 9, e95789. (doi:10. 745 

1371/journal.pone.0095789) 746 

Trimmer PC, McNamara JM, Houston AI, Marshall JAR. 2012 Does natural selection 747 

favour the Rescorla-Wagner rule? Journal of Theoretical Biology, 302,39-52. 748 

(http://dx.doi.org/10.1016/j.jtbi.2012.02.014) 749 

van Bergen Y, Coolen I, Laland KN. 2004 Nine-spined sticklebacks exploit the most 750 

reliable source when public and private information conflict. Proc. Roy. Soc. B. 751 

271, 957-962. (doi: 10.1098/rspb.2004.2684) 752 

Webster M, Laland K. 2015 Space-use and sociability are not related to public-753 

information use in ninespine sticklebacks. Behav. Ecol. Scio. Biol. 69, 895-754 

907. (doi: 10.1007/s00265-015-1901-5) 755 

Yoshida W, Ishii S. 2006 Resolution of uncertainty in prefrontal cortex. Neuron 50, 756 

781–789. 757 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 30, 2016. ; https://doi.org/10.1101/061473doi: bioRxiv preprint 

https://doi.org/10.1101/061473
http://creativecommons.org/licenses/by-nd/4.0/

