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Abstract. Visualizations of biomolecular networks assist in systems-level data exploration in
myriad cellular processes in health and disease. While these networks are increasingly informed by
data generated from high-throughout (HT) experiments, current tools do not adequately scale with
concomitant increase in their size and complexity. We present an open-source software platform,
interactome-CAVE, (iCAVE), that leverages stereoscopic (3D) immersive display technologies for
visualizing complex biomolecular interaction networks. Users can explore networks (i) in 3D in any
computer and (ii) in immersive 3D in any computer with an appropriate graphics card as well as in
CAVE environments. iCAVE includes new 3D network layout algorithms in addition to extensions of
known 2D network layout, clustering and edge-bundling algorithms to the 3D space, to assist in
understanding the underlying structures in large, dense, layered or clustered networks. Users can
perform simultaneous queries of several databases within iCAVE or visualize their own networks
(e.g. disease, drug, protein, metabolite, phenotype, genotype) utilizing directionality, weight or
other properties by using different property settings. iCAVE has modular structure to allow rapid
development by the addition of algorithms, datasets or features without affecting other parts of the
code. Overall, iCAVE is a freely available open source tool to help gain novel insights from complex
HT datasets.
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Introduction

Interaction networks are one of the primary visual metaphors for communicating and
understanding -omics data at a systems level. From cellular organisms to human society, they
provide critical clues on systems-level behaviorl-3, and in biomedicine they are essential for
understanding both normal45 and disease statest-9, and instrumental for drug discovery10-12 as well
as biomarker identification!3-15. Changes in networks have been shown to help in prognosis for
breast cancer patientsé, analyzing systematic inflammation in humans8, or studying emerging
tumor markers16. Network visualizations have thus become key tools in basic and translational
biomedical research. Consequently, there is an abundance of tools for their interpretation and
exploration!”18, Many of these tools are also coupled with public databases, allowing data
visualization and interpretation in the context of previous knowledge?’. In fact, currently there are
more than five hundred resources listed at http://pathguide.org that provide access to thousands
of networks, cataloging millions of interactions between biomolecules?°.

Among the currently available biomolecular network visualization tools, the most popular is an
open-source and freely available tool, Cytoscape2?, which enables explorations with different filter,
layout, color and cluster options, and includes estimations of network topology parameters and
centrality measures. There are also a number of JavaScript network visualization libraries (e.g.
sigma.js http://sigmajs.org/), and software packages (e.g. iGraph http://igraph.org) on the web.
However, the currently available layout algorithms in these libraries and employed in Cytoscape??,
in addition to other tools like Ingenuity?22, Osprey?23, VisANT24, BINA25 to name a few, are inherently
limited by the number of molecules and interactions that can be displayed in the 2D-space of a
screen, and the associated layout and representation challenges. As the databases that supplement
biomolecular interaction networks are growing at an unprecedented rate due to the increasing size
and complexity of -omics experimental techniques, innovations are necessary to address the
challenges the concomitant large, dense, and/or multi-layered networks present. Furthermore,
because increasingly powerful technologies have enabled the collection of data from multiple types
of cellular events simultaneously, in order to achieve better understandings of such complex
processes, it may be necessary to maximally integrate data across multiple dimensions, pushing the
limits of current visualization tools.

New visualization solutions can bring substantial benefits by improving our understanding of
complex mechanisms in human disease, reducing the time to discovery and diagnosis. One
approach has been to shift to 3D, and even to immersive 3D space by employing cave automatic VR
environments (CAVEs), which are immersive VR environments that include projectors directed to
several walls of a room-sized cube?6. While the relative benefits of immersive 3D in network
visualization are still being debated?7-29, a recent study that visualized the same network in an
immersive 3D CAVE environment vs. 2D display identified a global network property due to the
additional features of the CAVE, and quantitatively validated this result by comparing to 1000
random permutations of networks of the same size and distribution26. These beneficial features
were stereoscopic visualization, magnification and wide field-of-view?26, Stereoscopic visualization
creates the illusion that objects seen are volumes in 3D-space, which results from the projection of
separate left and right eye images of each object, and then combining them in stereo-enabled
eyeglasses. Additionally, motion sensors on the eyeglasses enable automatic detection of the user’s
location if she is moving, and adjust the image perspective, and hand-held controls enable user-
network interactions such as zooming and rotating the view. However, the study has not introduced
a tool to the community. Also, the researchers only utilized an extension of the standard force-
directed network layout of Fruchterman-Reingold3® to 3D, and did not test performance of
additional existing or new layout or clustering algorithms or topology parameter measurements. To
perform similar comparative immersive 3D vs. 2D studies, to test alternative algorithms or to
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analyze networks in immersive 3D other researchers would need to write their own code. They
would also need a CAVE, which is a substantial investment to build and maintain.

Note that while several network visualization tools incorporate 3D layouts3!-33, they are not
immersive 3D, meaning that they do not have interoperation capability with Virtual Reality (VR)
technologies, and their displays are in 2D. For example, Arena 3D3! mixes 3D properties with 2D, by
arranging data in multilayered graphs in 2D, with each layer representing a different data type.
While the tool then implements several layout and clustering algorithms for each layer, and layers
can be zoomed in/out and rotated, it does not offer global layout and clustering algorithms to make
full use of the third dimension: each layer still has a 2D layout on its surface. Directed edges are also
not supported3l. 3DScapeCS32 is a Cytoscape Plugln written in Java, with built-in network layout
algorithms that are extensions of the classic 2D force-directed layouts. The tool does not allow
users to add new layouts or functionalities30 and does not utilize 3D effects to help improve
comprehension, such as transparency, or advanced shadow effects. BioLayoutExpress33 (current
name Miru) is a stand-alone 3D application specifically for gene expression networks, which
currently provides three network layout algorithms, a single clustering method, no edge bundling
and a limited number of network topology statistics, which cannot be saved by the user and does
not allow directional edges. Importantly, the tool has a licensing fee and thus is not freely available.

In summary, 3D network visualization field is still somewhat nascent. We need freely available
open-source tools for biologists to visualize their biomolecular networks, and at the same time for
algorithm developers to add and test their methods that take advantage of the third dimension.
This will help the community to understand how best to exploit features unique to 3D in
biomolecular network exploration, providing insights to the ongoing debate on the advantages of
(immersive) 3D vs. 2D.

Here, we introduce interactome-CAVE (iCAVE), an open-source tool for 3D and immersive 3D
visualization of complex networks. It is designed primarily to assist biomedical researchers in data
exploration, though it can be used in any field that involves networks. iCAVE development is made
possible by the continuous evolution of data analysis tools in VR, stereoscopic visualization and
emerging 3D technologies. Use of VR technology in life sciences research is still nascent34-37, and so
far do not include freely available open source tools for biomolecular network visualizations,
mainly due to the limited portability of the technology to personal computers until recently. We
designed iCAVE without this limitation, by taking advantage of recent advances in computer
graphics hardware, software and content creation that are leading to a proliferation of stereoscopic
visualization capabilities in personal computing. Driven primarily by gaming and movie industries,
computers can now be upgraded to display high quality stereoscopic 3D visuals with wireless
glasses and advanced software38 at nominal prices. As most scientific computers are becoming 3D-
capable and the glasses are going mainstream, iCAVE is on the leading edge of this larger trend in
the evolution of visual computing technology. While iCAVE works in CAVE environments, its real
benefit comes from enabling immersive 3D network visualization in stereo-enabled computers.
Therefore, if a computer is equipped with stereo capabilities, users can display immersive 3D
visualizations. If the computer is not equipped with stereo capabilities (or if users choose to turn off
stereo), iCAVE provides an interactive (non-immersive) 3D environment that still offers most of its
features.

As a visualization and analysis tool, iCAVE enables network explorations in hypothesis-driven
contexts that is flexible, collaborative and user friendly. It introduces new 3D algorithms that are
built-in for laying out nodes and their connections in 3D space (hemispherical and multi-level
layouts) as well as graph clustering algorithms for clustering the nodes based on network structure
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and connectivity and then laying out the resulting clusters in 3D space. It also allows the users to
add their own layout or clustering algorithms. Furthermore, users can visually integrate multiple
clusters or data types from several databases within the same graph as a multi-layered network
(e.g. metabolomic, proteomic, genomic, GWAS-disease, protein-drug interactions). iCAVE reports
several network topological properties and centrality measure statistics as 2D reports (now
shown). While not extensive, it also includes several built-in databases, to assist in preliminary
mapping of High-Throughput (HT) experimental data in the early discovery phase of network
building. Customizable color, texture, size and layout options assist in displaying maximum
information in a graph in an optimized manner. Edges can be in user-defined colors, weights and
directions and can be bundled together for simplified views. Data can be uploaded to iCAVE in a
simple tab-delimited text file format; output can be saved as 2D snapshots or movies configured
with user-defined rotation, zoom and speed parameters.

Results

iCAVE users can utilize features that are unique to 3D or immersive 3D visualizations and test
whether these improve the quality of their network exploration. These features include
stereoscopic visualization, wide field of view, magnification, motion sensors and hand-held
controls, as described in introduction section. For example, consider rendering a 2D biomolecular
network affected by genomic alterations in glioblastoma39. In this example, the network layout
algorithm is a simple 3D extension of the classical force-directed Fruchterman-Reingold3? (Fig 1).
Note that instead of the static 2D network in Fig. 1A, iCAVE users experience full 3D depth
perception at the comfort of their own stereo-equipped computer (Fig. 1B), or inside a CAVE (Fig.
1D). Furthermore, users without a stereo-equipped computer are also able interact with the 3D
network: by using their mouse (in lieu of hand-held controls), they can zoom or rotate the network
to a view without occlusions. This ability to rotate and zoom enables viewing of the network from
different view angles, such as the screenshot in Fig. 1C. Such easy exploration enables users to
visually identify a feature unique to the topology of this example network. The network feature was
not intuitive from the original 2D layout in Fig. 1A: nodes CBL and SPRY2 (with *) are connectors
between two dense network regions (modules) (Fig 1A-C). A targeted attack to these genes can
split the network into two. Such discoveries of network topological features, among others, give a
richer, more intuitive and ultimately more insightful understanding of network data.

Addressing Large Networks.

When exploring large networks, researchers may miss important characteristics if they cannot
interact with the complete network. In the simplest case, the nodes may form (i) dense sub-
networks that are interconnected by a small number of connector nodes which render them critical
or (ii) multiple networks (often one giant and few smaller ones) where the smaller sub-networks
may represent functional groups of importance, such as a critical enzyme complexes. Thus, there
are benefits visualizing the complete network even if it is very large. At the same time, while the
human brain has a remarkable capacity to visually identify patterns, enabling interpretation of data,
visualizations of large networks may exhibit problems with display clutter, molecular positioning
or perceptual tension, which may lead the user to misinterpret closely positioned molecules as
related4’. Such misinterpretations are inherent in the limitations of human visual perception, and
have been well-studied in (Gestalt) psychology: people tend to organize visual elements into
groups*s.

Using 3D layouts, the elements that appear to form a pattern because of their visual positioning in
one viewpoint can be interpreted correctly by rotating the image to a different viewpoint (as shown
in Fig. 1). Furthermore, in networks that are denser or larger than that of Fig.1, the potential 2D
hairball effect can obscure important interactions. Using iCAVE, the user can simply navigate to a
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view without occlusions by moving her head, rotating the image, and zooming in or out, so that
edge-crossings causing the hairball effect in 2D are eliminated. To further address cluttering
problem, iCAVE provides an edge-bundled display*® option for visually bundling adjacent edges
together, analogous to bundling of electrical wires or cables. Bundling is extremely useful in
identifying global patterns in very large networks and can suggest vulnerabilities as targets. There
are several layout algorithms built-in within iCAVE to address the molecular positioning problem;
depending on the topology of the network to be visualized, one layout may work better than
another. We suggest testing each layout to see which works best. We provide examples of how
these features can help with exploring a network in the following sections.

New biological insights gained from networks with known 3D physical coordinates. Users can
generate visualizations of physically constrained networks at multiple scales, ranging from proteins
(Fig. 2A) to the whole brain (Fig. 2B). Visualizations that employ physical positions of a 3D network
coupled with edge bundling can provide insights during hypothesis generation.

For example, Fig. 2A represents a snapshot of bacterial leucine transporter (LeuT) residue
correlation network, where the nodes represent 3D coordinates of alpha-carbon of a residue and
edges represent top 3,000 (Pearson) correlations between residue pairs from a Molecular
Dynamics simulation (from Michael LeVine, personal communication). Remarkably, bundling the
edges of this network enables the representation of highest density correlation highways that travel
through substrate permeation core in protein center, connecting extracellular and intracellular
domains. While these highways are visually fascinating, they also enable users to identify specific
residues that have dense correlation highways outside of the protein core, which are unexpected.
These residues may have previously unidentified importance in protein structure and are potential
candidates for follow-up studies.

Automated Layouts utilize 3D for molecular positioning.

The topology of cellular and disease networks tend to follow basic and reproducible organizing
principles, and navigating the entire network provides a good initial understanding of such a
network. The network layout algorithm must address the complex problem of arranging the nodes
to clearly disseminate the topology, and at the same time be visually pleasant and user-friendly.
iCAVE offers several algorithmic options for network layout to achieve these aims.

Due to user familiarity, we extended several variations of the force-directed layout approach to 3D:
(i) the classical force-directed algorithm30 treats the network as a physical system with edges
analogous to springs and nodes to electrically charged particles that repel each other. The final
layout is established at the state at which the repulsive and attractive forces balance each other40
(see Figure 3); (ii) Lin-log layout! is better suited for larger networks because it keeps highly
connected nodes in close proximity with minimal number of edge crossings; and (iii) hybrid force-
directed layout*? partitions the graph into smaller units before applying the force-directed
algorithm (see Methods). We further implemented two novel layout algorithms to take full
advantage of immersive 3D:

Semantic levels layout algorithm segregates the network into separate layers (default 7) in the third
dimension. The layout within individual layer is calculated using a 3D extension of the force-
directed approach. Semantic layers layout can be especially useful for user-defined networks where
the number of layers and node assignments to layers can correspond to different data types (e.g.
see a 2D projection in Figure 5 and 3D video in Supplementary Video 3, where layerl: genes;
layer2: diseases; layer3: drugs).
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Hemispherical layout is a novel layout algorithm we have developed, that positions the network on
the surface of a 3D hemisphere. The most connected node is positioned at the top center of the
hemisphere. Then, the whole hemisphere surface is populated based on a decreasing rank-order of
connectivity. The node positions are fixed and the edges are drawn on the hemisphere surface (e.g.
see a 2D projection in Figure 6C and 3D video in Supplementary Video 4).

Each layout algorithm has unique strengths and we recommend the user to test different options.
Semantic layout is often ideal for hierarchical networks. Force-directed layout often captures the
essence of large networks. Hemispherical layout leads to clean images with optional edge bundling
(Fig. 6C and Supplementary Video 4).

Statistics on Network Topological Properties.

Most real-world networks exhibit substantial and non-trivial topological features, where
connections are neither purely regular nor random. iCAVE automatically generates and reports
network topology statistics and centrality measures both graphically and in tabular form (not
shown). These statistics include the number of nodes, the number of edges, network diameter,
node-betweenness centrality, closeness centrality, neighborhood connectivity, shortest path,
topological coefficient, and node degree distribution properties of the network.

COMBO Database for Simultaneous Query of Multiple Data Types.

The currently publicly available biomolecular interaction data are often contained in databases that
are massive in sizel%. While not comprehensive, iCAVE combines data from multiple resources into
a single COMBO repository to enable quick queries. This includes protein-protein interaction
databases Human Protein Reference Database (http://www.hprd.org) and intAct
(http://www.ebi.ac.uk/intact), disease and associated gene variants database
(http://www.genome.gov/gwastudies); and drug-target databases STITCH (http://stich.embl.de)
and DRUGBANK (http://www.drugbank.ca). = Pathways database SuperPathway is stored
separately (personal communication with Josh Stuart, UCSD). Users can add their own databases
without affecting other parts of the code. Details on the COMBO database are given in
Supplementary Table 1.

Visualizing Multiple Layers of Information.

Effective usage of genomic information can depend on finding systems-level connections between
multiple types of information, such as that of between genomic variation, disease and drugs43-4¢.
Visualizing such data by using semantic layout can assist in exploration in higher-level organization,
all in one graph. User can pick a gene (e.g. AHR, dark blue, Fig 5A), query the COMBO database for
diseases associated with its variants (purple); identify drugs that target it (green) and drug
candidates that may target (light blue) due to guilt by association for having common targets with
AHR-targeting drugs. These serve as initial candidates for subsequent binding site characterization.
Querying COMBO database further generates a hierarchical network of proteins that interact with
AHR (Figure 5B, middle layer), diseases associated with gene variants of AHR-interacting proteins
(purple) and AHR targeting drugs (green).

Hlustrative Examples.

Example 1. Visualizing the complete global network, even if it is very large, can enable visual
identification of a pattern. For example, consider a large probabilistic causal network constructed
from human omental adipose tissue in a morbidly obese patient cohort in Fig. 4A. The network
consists of 7,601 nodes, 13,979 edges>50. Nodes are the genes expressed in tissue; edges are derived
from a Bayesian network reconstruction algorithm that leverages DNA variation for causality. Here,
we highlight nodes that represent a signature of genes causally associated with inflammatory bowel
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disease (IBD) SNPs or disease pathways. Notice that within this global view of the massive network,
there is a pattern of the IBD genes clustering together, which visually supports the hypothesis of
functional relatedness.

Example 2. While force-directed layout algorithms can help identify global patterns as in previous
example, if the interaction network has a hierarchy, the semantic layers layout can help visualize
the hierarchical nature of the interactions easily. For example, Fig 4B displays the global view of
network  generated from The Encyclopedia of DNA Elements (ENCODE
https://www.encodeproject.org/) study data. The ENCODE Consortium is generating a
comprehensive parts list of the human genome functional elements, including those that control
active genes, such as transcription factors (TFs). Utilizing these unprecedented volumes of data,
Gerstein and co-workers have generated the massive network in Fig 4B that includes 119 TFs that
target 9,057 genes (nodes) via 26,037 interactions (edges)5! . Using force-directed layouts, users
can capture the general network structure and differentiate a TF from its neighbors by zooming
in/out, adding labels to that specific TF, etc, as well as obtain statistics on its network centrality and
other global topological properties as they pertain to the network. However, the semantic layers
layout is useful in visualizing the hierarchical nature of this network, integrating TF, non-coding
RNA (ncRNA), miRNA and protein-protein interaction data (Fig 4D and Supplementary Video 2). In
this figure, network connectivity and hierarchy reflects genomic properties:top level TF-binding
correlates with target expression, mid-level contains ‘information flow bottlenecks’ and
connections with miRNA and distal regions, revealing ideal drug targets. Such multi-layered
heterogenous information integration assists in differentiating intra-level interconnections as well
as inter-level edge types and node labels. Note that nodes in each layer are also arranged in 3D
using 3D force-directed layout.

Example 3. Visualizing the global network of interactions while scaling or coloring a subset of the
nodes based on their specific properties can enable hypothesis support. In this example, the
visualization helps support the principle that functionally significant and highly conserved genes
tend to be more central in physical protein-protein and regulatory networks52. Based on this
hypothesis, Fig. 4C visualizes a network of tolerance to loss-of-function (LoF) mutations and
evolutionary conservation, with nodes for (LoF) tolerant (blue) and essential genes (red) easily
distinguishable52. Node size is based on the degree centrality of a gene?. While essential genes tend
to be bigger and central, LoF-tolerant genes are smaller and located in the periphery. Both the 2D
snapshot (Figure 4C) and 3D Supplementary Video 1 provide clear visualizations of this complex
data that lead to easy interpretation. Note that we have published an iCAVE-generated visualization
of a network with similar properties that enabled help support this hypothesis 53.

Graph Clustering To Identify Network Motifs.
Clustering is critically important during network exploration, as biomolecules that cluster together
tend be functionally related. iCAVE offers the following graph clustering algorithms:

Edge-Betweenness clustering (EBC). The number of shortest paths going through a particular edge is
EB. An edge with a high EB value connects multiple communities. At each step, the EBC algorithm
removes the edge with the highest EB value until it has optimized a modularity metric on how
unlikely the in-cluster degree of a node is in comparison to a random edge. EBC54 is an attractive
algorithm since it does not require an estimate of the number of clusters a priori, unlike a majority
of existing graph clustering algorithms.

Markov clustering (MCL)55 is a scalable and unsupervised algorithm which assumes that the
number of intra-cluster connections is large and inter-cluster connections is small. It is based on a
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bootstrapping procedure that simulates random walks (flow) through the network that expands or
contracts in parallel with regional connectivity.

Modularity clustering (MC) uses the first eigenvector of the modularity matrix to assign nodes to
clustersS6. While ideal for weighted networks, MC delivers intuitive layouts for networks that do not
have weights as well.

Layout Options for Cluster Visualization.

iCAVE can easily visualize the clusters generated by iCAVE or another tool. By default, each cluster
is positioned in space with force-directed layout3?, analogous to node positioning. Every cluster is
embedded inside a transparent bubble, with members and their connections organized using the
hemispherical layout. This arrangement provides a visual aesthetic, and (optional) edge bundling
further clarifies the global topology (i.e. thicker bundles for high intra-cluster connectivity). Users
can choose alternative layouts for cluster bubble positioning. Lin-log cluster layout is a variation of
the force-directed model39, where highly connected clusters are arranged in closer proximity. Circos
cluster layout is an innovative algorithm we developed as a 3D adaptation of the popular 2D Circos
layout>’. In this algorithm, we arrange the nodes in 3D space as in hemispherical layout, where the
most connected node is located at the center of the hemisphere. We then slice the hemisphere with
(pie-like) panels that correspond to separate clusters. Cluster representations can be optimized by
variations in node/ slice colorings or edge bundling. Fig. 6 illustrates different cluster layout
options using a metabolite network example.

User Interface. Investigators can easily toggle between alternative layouts of a single graph to
emphasize different network aspects. Users without stereo equipment can rotate, zoom or scale the
visual to investigate special structures, print 2D snapshots and save movies of a rotating network.
Rotation allows multiple views for users without 3D. Exporting and exchanging such movies is very
convenient in the YouTube era, enabling easy publication and sharing with collaborators without
iCAVE or stereo. Those with a stereo-enabled computer (or a CAVE facility) wear stereoscopic LCD
shutter glasses that convey 3D image and allow immersive interaction. In a CAVE, sensors track the
user’s eye position and adjust perspective according to user movements. The mouse (or wand)
gestures are mapped to logical events that the network layout application handles. Zoom and rotate
options activated with a simple mouse (or wand) click help focus on a particular node or edge.

Shape, color, texture for easier visual data dissemination. In iCAVE visualizations, 3D spherical
glyphs represent nodes. Node color, size and texture optionally encode further statistics (e.g. color
for gene induction or repression, size for the magnitude of change in expression, texture to
differentiate classes). Edges can be colored, patterned or directed.

Input/output. Input to the iCAVE software is provided as a tab-delimited text file of identifiers and
optional information on magnitude of change, edge directionality, edge weights, node/edge colors
and patterns. Supplementary Table 2 includes the complete options list. Interaction data are read
from an SQLite database. The user can modify the network in real time and store it in DB Browser
(which is a light GUI editor for SQLite databases) as a .db file, so that it can be saved for later access.
Output is the layout of the network drawn in VRUI environment, which can be saved as high-
resolution 2D image snapshots (.png format) or movies (.gif format).

Discussion

iCAVE is a freely available open-source biomolecular network visualization tool that leverages
advanced (immersive) 3D display technologies and offers several display options integrated with
an effective user-interface. It incorporates a number of built-in network layout and graph clustering
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algorithms to enable automatic generation of 3D visualizations. Based on prior knowledge, input
can additionally include (i) 3D node positions; (ii) cluster memberships; or (iii) multi-level
hierarchies; or (iv) edge directionality. Utilizing iCAVE, investigators from diverse fields can gain
insights from large, heterogeneous datasets, and optimize the quality of their visualizations using
different node color, size, transparency options as well as various weight, thickness, transparency
and directionality options for the edges. Network topological properties and centrality are also
reported. While not extensive, the COMBO database enables disease researchers for quick query of
their interactions among genes, drugs and disease phenotypes.

We have designed iCAVE with a modular software structure to create a general and flexible
community resource. Users (with some programming experience) can add algorithms for network
layout, cluster layout or graph clustering without affecting the core functionality of the code. Users
can also add their specific datasets of interest to COMBO. Note that in future iterations of iCAVE, we
will implement a Cytoscape2© API.

Software, user manual and tutorial are freely available for download to academic users at
http://research.mssm.edu/gumuslab/software.html released under the GNU Lesser General Public
License.

Materials and Methods

Input/Output Formats. iCAVE supports tabular input formats (.txt, .csv, or .tsv). Interactions are
either user-defined, or are queries of iCAVE COMBO database. Optional weights are represented
with edge color frequency, directed edges with arrows, and node types with node glyph patterns.
Input file options are listed in User’s Manual. Networks are saved as static high-resolution (.png)
images, or movies of the rotating 3D image (.gif).

Implementation. iCAVE uses Virtual Reality User Interface (VRUI), a development toolkit for
interactive high performance VR applications44, which enables quick and scalable production of
completely platform-independent software. iCAVE is thus portable between Linux and Mac system
computers (optionally equipped with stereo capabilities) and CAVE facilities.

Programming Libraries. Several programming libraries provide intuitive and user-friendly
rendering solutions. Vrui library uses a C++ based OpenGL API platform that simplifies handling
navigation transformations, light sources, menu creation, and rendering different objects. The
SQLite3 software library handles large-scale database parsing. igraph library functions solve some
of the programming challenges in generating regular and random graphs, manipulating graphs as
well as assigning attributes to nodes and edges. The ANSI C programming language library Argtable
enables parsing user-defined 3D graphics options.

Adding New Algorithms. Node and edge data are stored in two separate structure arrays. Node
structure stores its id, name, number of neighbors, color, texture, cluster, size and coordinates. Edge
structure includes start node id, end node id, weight and color. Storage with structure arrays
simplifies the addition of new layout algorithms, because the arrays can be used as inputs. After
layout coordinates are calculated, iCAVE utilizes OpenGL API for visualization. New algorithms are
added as separate .cpp files and the corresponding header files are imported to the main program
(vrnetview.cpp).

Label Creation. Since VRUI offers limited label creation options that render low quality and
unreadable text, we developed texture mapping for high quality rendering. Supplementary Figure 1
illustrates VRUI vs. iCAVE labels.
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User interface

Multiple functionalities demonstrate natural modes of interaction for effective analysis. These
include activities such as selecting objects and interacting with the image in 3D space. While
learning a new user-interface motif has been a traditional weakness of VR environments, more
mature and practical technologies are becoming pervasive in consumer markets (e.g. motion
sensors in Wii game consoles). These developments inform our user-interface design and provide
new users with familiar gestures and interaction motifs.

Network exploration interface. Several features enable exploring, interacting and modulating the
networks in real-time and saving the result. Interactive menu options are listed in Supplementary
Table 2.

User interface in CAVE environments. Investigators enter a CAVE environment wearing
stereoscopic LCD shutter glasses that convey 3D image. When the user walks around, sensors track
movements and the video adjusts accordingly. Multiple users can exist simultaneously in the
network and view the visualizations from multiple perspectives by moving in the space, or directly
interact with specific biomolecules by clicking on the handheld device to display all its interactions
in that network or stored in the database. User can alternatively investigate the network on his own
computer.

Output image generation. iCAVE assembles image snapshots from several viewpoints into one
high-resolution (.png) image (see Supplementary Fig. 2). The desired resolution is user-adjustable
via a zoom factor.

Network Topological Properties
iCAVE automatically calculates the following network properties, rank-orders nodes based on these
and represents their distribution both graphically and in tabular form:

Node degree property yields hubs. Generally, only a few biomolecules (hubs) have many network
interactions5859. Hubs are often central in mediating interactions among the less connected
biomolecules 6061,

Neighborhood connectivity metric assists in identifying modularity, where small interconnected
subgraphs may potentially represent specific enzymes, structures or processesé263 and provide
significant insights to perturbed disease mechanisms. For example, the degree of gene co-
expression correlates strongly with the complexity of an embedded motif64.

Network average and local clustering coefficients quantify connectivity of the whole network or
a single node. Local clustering coefficient is the ratio between the number of edges that connect the
neighbors of a node versus the maximum possible number of edges. The network average
clustering coefficient is the average of the local clustering coefficients of all nodess5. Only nodes that
belong to networks with >3 nodes are considered. The range of coefficient values varies from 0 (no
interconnection), to 1 (perfect interconnection).

Network closeness centrality and node closeness centrality quantifies the velocity of
information flow within a network (the reciprocal sum of the shortest paths from a selected node to
all other nodess6). Only nodes in subnetworks with >3 nodes are evaluated. When shortest paths
are calculated, each edge is scaled with corresponding weight, which can be a floating value. The
average of all node closeness centrality values is the network closeness centrality value.
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Network diameter is the length of shortest path between two farthest nodes. Unconnected nodes
are not considered. Irregular networks usually have small diameters, while regular networks have
large diameters.

Betweenness centrality is a global metric on the importance of a node, which is equal to the
number of shortest paths from all vertices to all others that pass through that node, calculating the
load on a node¢’. Real world scale-free networks usually involve short path lengths across the
network, and a few nodes have high betweenness-centrality. Connector or high-traffic biomolecules
that are vulnerable to targeted attacks, usually suggest potential non-hub drug targets68.69.70,

Shared nearest neighbors: A similarity metric based on the sharing of nearest neighbors between
any two nodes. Particularly useful in network topology-based motif, sub-graph or cluster
identification.

Shortest paths: Quantifies the importance of a node within the network, calculated by the number
of shortest paths going through the node. Purely random graphs exhibit a small average shortest
path length (~ the logarithm of the number of nodes) along with a small clustering coefficient.

Layout Algorithms.

A graph G(V ={1, . .., n}E) represents a binary relation E over node set V. iCAVE both extends
classical layouts to 3D and offers novel algorithms. Based on the underlying topology, a user can
choose the best layout that helps with data interpretation.

1.Force-based layout. The forces acting on each node in classical Fruchterman-Rheingold (FR)
algorithm30 are:

f.G)=—"f.@)= - k=

d ,,2 k* . volume
k

y number of nodes

where fy(ij)and f.(ij) are attractive and repulsive forces, dj; is the distance between nodes i and j,
and k is a constant corresponding to the equilibrium edge length.

2. Lin-log layouts. We used r-PloyLog#! energy model to implement the node-repulsion and edge-
repulsion LinLog models. For all r €R with r > 0, the node-repulsion energy of a layout p is:

1
U, Nodepoiyiog (P) = ~llp@)-pMI - > In| pl)-pO)|
P {”;EE]/ pu p\v 21’1 pu p\v

{u,v}EVz
where p(u) is the position of node u. Edge-repulsion energy is:
1 ,
U, _pageponiog (P) = 2 =1l pa) = p) |~ Y degu)deg(v)In | p(u) - p(v) ||
{u,viE€E {u,v}EV?
where deg(u) is the number of edges incident to node u. At r=3, the 3-PolyLog reduces to FR and at

r=1 to LinLog model. LinLog models group nodes according to cut density and the normalized cut,
therefore the layout leads to graph clustering.
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3. Hemispherical layout. We place n nodes of a graph G(V={1,.,n}, E) equally spaced on a single 3D
hemisphere surface, reducing the problem to finding a hemispherical node ordering. Coordinates for
anodeieVare (x;y; z;) € R, at fixed hemisphere radius R:

x; = R * cos(latitude;) * cos(longitude;) 0° < longitude < 360°
y; = R = sin(longitude;) * cos(latitude;) 0° < latitude < 90°
z; = R = sin(latitude;) 0°<i < #of nodes

Nodes are sorted and placed based on their degree, with the highest degree node at the hemisphere
surface center. Algorithm inputs are the number of nodes, the graph center position and
hemisphere radius. Hemisphere radius, node sizes, colors and textures are adjustable.

4.Semantic levels layout is ideal for integrative analysis of multiple data resources (e.g. genotype,
phenotype, drugs, proteins, metabolites). Initially, FR algorithm is performed in 2D. Then, multiple
equidistant levels (default =7) are created in the z-dimension. Based on network topology, we
consecutively assign the nodes to one of the layers. iCAVE user-interface allows the manual
manipulation of the number of layers and the distance between them. If layers are not predefined,
we suggest experimenting with different options.

5.Hybrid force directed layout*2 Original version of this algorithm is extremely computationally
intensive, so we implemented a simplified version, reducing the run time at the expense of
visualization quality. Our version has three steps: (i) position nodes randomly; (ii) partition the
resulting graph; (iii) apply FR30 algorithm separately on each subgraph. The partitioning step splits
the graph into two sub-graphs (A and B) of equal sizes. This requires minimizing the cut size, by
calculating the second Eigenvector (Fiedler vector) A of the following:

L(G)q = Aq where

~_[@), (1 VieA _
q= qu ;g —{_1 VieB and n = # of nodes

dn
and L(G) is the Laplacian of graph G. The power-iteration algorithm solves for A.

Edge-Betweenness (EB) Clustering Algorithm: An edge with a high EB value potentially connects
two or more communities. The edge with the highest EB value is removed at each step. The number
of edges to be removed is user-defined ( with a default of 0.2 times the number of edges). Any edge
that leads to a single-node cluster is not removed.

Edge bundling algorithm is based on application of forces (electrostatic and spring) on an edge
subdivided into multiple points. Edge compatibility metrics edge angle, scale (length), position and
visual compatibility are multiplied for total compatibility. If two edges are compatible above a
threshold, forces are calculated and added to each subdivision, and those subdivisions are bundled
together.
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Figure Legends

Figure 1. Comparison of various displays. a. User interacting with a flat 2D display of manually
curated pathways most affected by genomic alterations in glioblastoma 71. b. User experiencing a
full 3D depth perception of the same network with iCAVE while using stereoscopic glasses on his
desktop. iCAVE display is generated with force-directed layout algorithm. Notions of edge crossings
that create a hairball effect in 2D have little meaning in 3D, as the user can navigate to a view
without occlusions, solving the visual clutter problem. c. A screenshot from the 3D display
generated with the force-directed layout. This network is generated without a priori knowledge of
the network topology; however, it readily identifies hubs, connectors and modules, such as the
connectors between two dense regions of the network (highlighted with a (*) in both panels a and
c). d. Immersive visualization in a CAVE environment, with one user inside the data space. While
the photos only capture images reflected on the interaction walls of the CAVE, the user is
interacting with a virtual 3D image. In both b and d, the options to zoom and rotate the network
with a mouse (or wand) click helps the user focus on a particular hub or module of interest within
the network. While the addition of the third dimension gives a richer, more intuitive and ultimately
more meaningful understanding of the network-represented data, the 3D layout brings a
completely new modality into network visualizations, with clean, easy to use and understandable
layouts.

Figure 2. a. iCAVE visualization of bacterial leucine transporter, LeuT residue correlation
network, side-view. Nodes represent 3D coordinates of alpha-carbon of a residue; edges represent
top 3,000 (Pearson) correlations between residue pairs, where the input is 3D coordinates &
correlation scores. Surprisingly, 3D visualization with edge bundling enables representation of
highest density correlations (correlation highways) that travel through the substrate permeation
pore in protein center, connecting extracellular and intracellular domains. Correlation highways at
the pore are visually fascinating and biophysically intuitive. Information highways of some residues
outside the pore reveal unexpected structural importance (data courtesy of Weinstein Lab, Weill-
Cornell). b. Living Human Brain Connectivity. iCAVE visualization of brain regions as nodes, labeled
by anatomical region name. Edges show connectivity, and bundling shows connectivity highways.
Datasets from Diffusion Tensor Imaging of left hemisphere scanned ith Siemens 1.5Tesla and
generated by Fiber Assignment by Continuous Tracking tractography using U. of California, Los
Angeles (UCLA) Multimodal Connectivity Package connectivity matrix module. Database is powered
by the Human Connectome Project, which aims to provide an unparalleled compilation of neural
data to achieve never before realized conclusions on the living human brain.

Figure 3: a. A directed and weighted signaling network using semantic layout. Edge color
represents activation (red) or repression (green). Color alteration frequency represents weight


https://doi.org/10.1101/061374
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/061374; this version posted June 29, 2016. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

(Data courtesy of Chris Sander, Memorial Sloan Kettering). b. 3D iCAVE force-directed layout
representation of a bacterial network. Nodes are bacterial species, edges are top nonlinear
between-species relationships. Node size is proportional to the number of relationships per node.
Orange edge color: relationship explained by diet, node glow: fraction of orange edges (100% is red;
0% is blue. Data: 72).

Figure 4. iCAVE print-ready images of massive networks in 2D with white background. a .
Large probabilistic causal network constructed from human omental adipose tissue in a morbidly
obese patient cohort (7,601 nodes, 13,979 edges)>%. Nodes are gene expression traits in tissue; edges
are derived from a Bayesian network reconstruction algorithm that leverages DNA variation for
causality. Highlighted nodes represent a gene signature causally associated with disease SNPs or
pathways. Signature genes clearly cluster together, suggesting functional relatedness. b. A network
of 119 transcription factors (TFs), their 26,037 target interactions (edges) with 9,057 genes
(nodes)5! from ENCODE study. c. A massive unified 'Multinet' of PPI, phosphorylation, metabolic,
signaling, genetic and regulatory networks (14,558 nodes, 109,597 edges). Multinet correlates
tolerance to loss-of-function (LoF) mutations and evolutionary conservation, with nodes for (LoF)
tolerant (blue) and essential genes (red) easily distinguishable. Node size is based on the degree
centrality of a gene. While essential genes tend to be bigger and central, LoF-tolerant genes are
smaller in the periphery. d. A hierarchical network integrates TF, ncRNA, miRNA and protein-
protein interaction (PPI) information. Hierarchy levels are based on the mutual relationships
between TFs. Connectivity and hierarchy reflects genomic properties (top level TF-binding
correlates with target expression; mid-level contains information flow bottlenecks and connections
with miRNA and distal regions, revealing ideal drug targets) (data from: Marc Gerstein, personal
communication). While the original 2D figure cannot display the interconnections between elements
within the same hierarchical level, it is straightforward with the iCAVE semantic levels layout.

Figure 5. Visualizing Multiple Layers of Information. a. Using the iCAVE interface, we can pick a
gene of interest (e.g. AHR, dark blue), and query the COMBO database for diseases that have been
associated with AHR variants from GWAS studies (purple); drugs that are known to directly target
AHR (green); and drug candidates that may directly interact with AHR (light blue). These drugs
serve as an initial screening list of candidates for subsequent AHR binding site characterization.
Semantics Levels layout segregates the layers. b. We can further query the COMBO database to
generate a protein-protein interaction map of AHR (dark blue nodes; middle layer) and visualize the
diseases associated with known SNPs (Single Nucleotide Polymorphisms) in the genes that code for
AHR-interacting proteins (purple) and the drugs that directly target them (green). We provide a
more detailed movie of this three-level semantics network with legible disease, gene and drug
names in the Supplementary Video 3. In both Panels a and b, the user can click on any edge or node
for further information (e.g. exact variant location for a specific disease from GWAS studies).

Figure 6. Pathway reconstructed high-throughput metabolomics data with Gaussian Graphical
Modeling (GGM)73; each sphere color represents a single metabolite class. a. The force-directed
layout of the weighted network captures the local cluster structures (snapshot). b. Snapshot of user-
defined metabolite clusters: cluster layout is force-directed while inside each cluster, nodes are
ordered in hemispherical layout. Edge bundling represents inter-cluster connectivity strength. c.
User-defined clusters of the same network in a Circos layout. We provide a movie to better
investigate the network in the Supplementary Video 4. d. Markov Chain Clustering of the same
network based on its connectivity, available as one of the clustering options in iCAVE. Each cluster is
represented inside spherical bubble. While topology suggests that most similar metabolites cluster
together, this is not always the case, as shown. In all panels, addition of metabolite labels is user-
optional.
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