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Abstract 
A growing number of studies endeavor to reveal periodicities in sensory and cognitive functions, by comparing 
the distribution of ongoing (pre-stimulus) oscillatory phases between two (or more) trial groups reflecting 
distinct experimental outcomes. A systematic relation between the phase of spontaneous electrophysiological 
signals, before a stimulus is even presented, and the eventual result of sensory or cognitive processing for that 
stimulus, would be indicative of an intrinsic periodicity in the underlying neural process. Prior studies of phase-
dependent perception have used a variety of analytical methods to measure and evaluate phase differences, 
and there is currently no established standard practice in this field. The present report intends to remediate 
this need, by systematically comparing the statistical power of various measures of “phase opposition” 
between two trial groups, in a number of real and simulated experimental situations. Seven measures were 
evaluated: one parametric test (circular Watson-Williams test), and three distinct measures of phase 
opposition (phase bifurcation index, phase opposition sum and phase opposition product) combined with two 
procedures for non-parametric statistical testing (permutation, or a combination of z-score and permutation). 
While these are obviously not the only existing or conceivable measures, they have all been used in recent 
studies. All tested methods performed adequately on a previously published dataset (Busch, Dubois & 
VanRullen, 2009). On a variety of artificially constructed datasets, no single measure was found to surpass all 
others, but instead the suitability of each measure was contingent on several experimental factors: the time, 
frequency and depth of oscillatory phase modulation; the absolute and relative amplitudes of post-stimulus 
event-related potentials for the two trial groups; the absolute and relative trial numbers for the two groups; 
and the number of permutations used for non-parametric testing. The concurrent use of two phase opposition 
measures, the parametric Watson-Williams test and a non-parametric test based on summing inter-trial 
coherence values for the two trial groups, appears to provide the most satisfactory outcome in all situations 
tested. Matlab code is provided to automatically compute these phase opposition measures. 

 

1. Introduction  
Science has long sought to determine whether mental processes unfold continuously –like the flow of a river– 
or discretely over time –like the successive frames of a movie sequence (Stroud, 1956; VanRullen & Koch, 
2003). The existence of oscillatory brain rhythms at different spatial and temporal scales, and their 
demonstrated involvement in numerous sensory and cognitive functions (Buzsaki, 2006), could indeed imply 
that certain mental processes operate rhythmically, rather than strictly continuously. One convincing way to 
demonstrate such a rhythmic operation is by showing that the result of a given neural process varies, 
depending on the exact rhythmic phase at which this process is engaged. Although this procedure has a history 
dating at least half a century (Callaway & Yeager, 1960; Dustman & Beck, 1965), in recent years there has been 
a surge of reports of such phase-dependent perception (VanRullen, Busch, Drewes, & Dubois, 2011). The phase 
of brain oscillations at various frequencies from 2 to 20Hz has been related to trial-by-trial fluctuations in 
threshold-level perception in the visual (Nunn & Osselton, 1974; Busch, Dubois, & VanRullen, 2009; 
Mathewson, Gratton, Fabiani, Beck, & Ro, 2009; Busch & VanRullen, 2010; Dugue, Marque, & VanRullen, 2011; 
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Fiebelkorn et al., 2013; Hanslmayr, Volberg, Wimber, Dalal, & Greenlee, 2013), auditory (Rice & Hagstrom, 
1989; Ng, Schroeder, & Kayser, 2012; Strauss, Henry, Scharinger, & Obleser, 2015) and somatosensory 
domains (Ai & Ro, 2014); in supra-threshold perception as measured by reaction times (Callaway & Yeager, 
1960; Dustman & Beck, 1965; Drewes & VanRullen, 2011), in oculomotor functions such as saccadic execution 
(Drewes & VanRullen, 2011; Hamm, Dyckman, McDowell, & Clementz, 2012) and saccadic remapping 
(McLelland, Lavergne, & VanRullen, 2014), in attention and visual search (Buschman & Miller, 2009; Busch & 
VanRullen, 2010; Dugue, Marque, & VanRullen, 2015; Landau, Schreyer, van Pelt, & Fries, 2015; Voloh, 
Valiante, Everling, & Womelsdorf, 2015), in temporal parsing of visual (Varela, Toro, John, & Schwartz, 1981; 
Chakravarthi & VanRullen, 2012; Cravo, Santos, Reyes, Caetano, & Claessens, 2015; Inyutina, Sun, Wu, & 
VanRullen, 2015) or somatosensory information (Baumgarten, Schnitzler, & Lange, 2015), in decision-making 
(Wyart, de Gardelle, Scholl, & Summerfield, 2012), in the top-down influence of predictions and expectations 
(Arnal, Doelling, & Poeppel, 2015; Han & VanRullen, 2015; Samaha, Bauer, Cimaroli, & Postle, 2015; Ten Oever, 
van Atteveldt, & Sack, 2015; Sherman, Kanai, Seth, & VanRullen, 2016), in cross-modal integration (van Erp, 
Philippi, de Winkel, & Werkhoven, 2014) and in short-term memory (Siegel, Warden, & Miller, 2009; 
Bonnefond & Jensen, 2012; Myers, Stokes, Walther, & Nobre, 2014; Leszczynski, Fell, & Axmacher, 2015). Not 
surprisingly therefore, large-scale physiological markers of perceptual processing such as ERPs (Dustman & 
Beck, 1965; Jansen & Brandt, 1991; Haig & Gordon, 1998; Barry et al., 2004; Gruber et al., 2014), stimulus-
evoked BOLD responses (Scheeringa, Mazaheri, Bojak, Norris, & Kleinschmidt, 2011) and fMRI network 
connectivity between areas (Hanslmayr et al., 2013) have also been shown to depend on oscillatory phase at 
(or just before) the time of stimulus onset. 

To quantify the relation between oscillatory phase and a particular cognitive (or physiological) variable, a 
typical experimental procedure consists in repeating several instances of the same trial, yet leading to 
different behavioral (or physiological) responses. For example, using a threshold-stimulation procedure, 
successive presentations of the exact same luminous flash may give rise to a conscious detection of this 
stimulus in only half of the trials (Busch et al., 2009). If the cognitive function under study (here, visual 
detection) involves a rhythmic process, then the two trial groups (detected vs. undetected) might be found to 
differ in the distribution of oscillatory phases at the critical frequency, around the time of stimulus onset. 
Statistically evaluating this difference in oscillatory phase angle can be (and has been) done in various ways. 
For example, parametric tests of differences in circular distributions are available (e.g. circular Watson-
Williams test), that are equivalent to a t-test for linear data. Such tests are relatively easy to perform 
(Baumgarten et al., 2015; Samaha et al., 2015), but require the data to verify specific constraints (e.g. 
normality). It is also possible to construct ad hoc measures of phase opposition between the two trial groups, 
and evaluate their significance using non-parametric statistics. For this, it is helpful to recognize that, if phase 
influences the trial outcome, then the inter-trial phase coherence (ITC) of each trial group should exceed the 
overall inter-trial phase coherence. Thus, phase opposition measures generally involve a combination (sum or 
product) of ITC for each trial group, appropriately corrected (by subtraction or division) to remove the overall 
ITC. For example, the ‘phase bifurcation index’ (PBI) introduced by Busch et al (2009), and employed several 
times since (Hamm et al., 2012; Ng et al., 2012; Auksztulewicz & Blankenburg, 2013; Hanslmayr et al., 2013; 
Manasseh et al., 2013; Rana, Vaina, & Hamalainen, 2013; Diederich, Schomburg, & van Vugt, 2014; Park, 
Correia, Ducorps, & Tallon-Baudry, 2014; Li et al., 2015; Shou & Ding, 2015; Strauss et al., 2015; van Diepen, 
Cohen, Denys, & Mazaheri, 2015; Batterink, Creery, & Paller, 2016), was based on this principle. Other 
analogous procedures have been described, however (Drewes & VanRullen, 2011; Dugue et al., 2011; 
VanRullen et al., 2011; Dugue et al., 2015; Han & VanRullen, 2015), and there exists no systematic comparison 
between these various measures and, consequently, no accepted practice in this field.  

The present study aims to compare seven variants of phase opposition measures that have been used in 
previous published studies. By applying all measures to the same experimental datasets, and by systematically 
varying key experimental parameters in artificially constructed datasets, we can gain insight about the relative 
merit of each phase opposition measure, and the conditions under which it should (or should not) be applied. 
We hasten to note that a number of other measures might already exist and that many more could also be 
conceived for similar purposes—in other words, this comparison is not intended to be exhaustive, but it should 
at least contribute to organizing a significant portion of the existing literature. 
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2. Methods 
 2.1 Experimental assumptions 
In all following analyses, we shall work on (real or artificial) experimental datasets for which two possible 
outcomes A and B have been recorded in otherwise identical trials, resulting in two trial groups A and B. (It is 
worth noting, however, that both parametric and non-parametric measures of phase opposition can readily be 
extended to situations where the number of possible outcomes is larger than 2.) Each trial is also associated 
with a time-varying electrophysiological signal, which may represent EEG or MEG from a specific sensor, an 
intracranial electrode, etc.  

We further assume that stimulus onset (t=0) for every trial occurs in a temporally unpredictable manner (e.g. 
because of randomized inter-trial intervals). This assumption ensures that we consider truly ongoing brain 
activity: even if certain brain states fluctuate rhythmically, each phase of this fluctuation would be equally 
likely to be sampled at stimulus onset. In other words, for every frequency, the pre-stimulus phases across 
trials can be assumed to be sampled from a uniform distribution1. Note that this is not necessarily the case 
concerning the post-stimulus period, as stimulus-evoked activity (event-related potential or ‘ERP’) may affect 
the observed distribution of phases. Further, the temporal smearing of oscillatory signals caused by window-
based time-frequency analysis methods (e.g. wavelet transform) can potentially result in this influence of 
stimulus-evoked activity being already visible in the pre-stimulus period, a phenomenon that will be explored 
in various upcoming simulations.  

A major assumption for our analyses is that the phase of oscillatory activity at one particular time and 
frequency point has a significant influence on experimental outcome (i.e., trial assignment to group A or B). 
Consequently, the purpose of our phase opposition analyses is to reveal the oscillatory frequency involved. 
That is, we place ourselves in the situation of an experimenter trying to determine whether task outcome is 
rhythmically modulated by any oscillatory signal, and if yes, at what frequency. Phase opposition must 
therefore be evaluated for all time and frequency points (‘time-frequency’ analysis). Although we do not 
explore or simulate ‘control’ datasets in which no phase modulation is present, the likelihood of detecting 
phase opposition at an incorrect time and/or frequency can be taken as a measure of false alarm rate or 
baseline (chance-level) performance for our procedures. (Note finally that, in specific cases, experimenters 
may have strong a priori hypotheses about the exact rhythmic frequency involved; in such cases, which we do 
not address here, other analyses procedures may be warranted.) 

When multiple datasets are recorded for a given experimental situation (e.g. multiple subjects in a given 
experiment), we assume that the rhythmic modulation that we aim to reveal occurs around the same time and 
frequency for all datasets. However, the exact phase value favoring outcome A vs. B may or may not be the 
same across datasets/subjects. (Different reasons may justify this assumption: various conduction delays 
resulting in shifts of optimal phases; differences in cortical folding resulting in signal polarity reversals, etc. For 
all these reasons, while the absolute phase of local cortical oscillations at the level of a given neuronal 
ensemble is obviously important for its operation, we generally consider the absolute phase recorded at the 
scalp to be irrelevant, and focus instead on the relative phase between the two trial outcomes). Consequently, 
our analyses shall evaluate phase opposition between trial groups (‘single-trial’ analysis), independently for 
each dataset (whose results can later be combined), rather than measuring phase opposition across 
datasets/subjects (between the mean phase angles of each trial group, i.e., a ‘group-level’ analysis). 

 2.2 Phase opposition measures 
Having fixed the experimental conditions common to all analyses, we now introduce the different tests of 
phase opposition that will be compared. All of these tests are based on a comparison of inter-trial phase 

1 Although we do not explicitly explore alternative experimental situations with temporally predictable stimulus onset 
(caused e.g. by a fixed inter-trial interval, or by a preparatory cue), the behavior of phase opposition measures in such 
situations can be inferred somewhat from our simulations with outcome-independent ERPs (see Figures 7 and 11). Indeed, 
such a post-stimulus ERP would have a similar influence on ongoing oscillations as would a pre-stimulus locking signal (e.g., 
the end of the previous trial or preparatory cue), except that the latter’s influence would be visible at a much earlier time, 
in the pre-stimulus window. 
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coherence (ITC) measured over all trials (serving as a baseline) vs. ITC measured separately for each trial group 
(A and B). The null hypothesis tested is, therefore, that the ITC of each trial group exceeds the overall ITC. That 
is, if ωi is a complex number representing the oscillatory signal (at a given time and frequency) for trial i (with 
|ωi| and angle(ωi), respectively, representing oscillatory amplitude and phase), then ITC (Lachaux, Rodriguez, 
Martinerie, & Varela, 1999) is defined as: 

  ITCall =  �∑ ωi
|ωi|�[i=1:n] � /n     Eq (1) 

  ITCA =  �∑ ωi
|ωi|�[i∈groupA] � /nA      Eq (2) 

  ITCB =  �∑ ωi
|ωi|�[i∈groupB] � /nB     Eq (3) 

with nA and nB corresponding to the numbers of trials in groups A and B, respectively, and n=nA+nB. 

The various tests simply differ in the ways they combine the above three ITC values, as well as their derivation 
of statistical significance.  

2.2.1 Circular Watson-Williams test 
The circular Watson-Williams test is a two-sample test for equal means, equivalent to a two-sample t-test for 
linear data. It assumes that each set of phases to be compared follows a von Mises circular distribution, and 
that the two distributions share a common concentration parameter κ. For our purposes, we adapted the 
implementation provided in the Matlab “circStat” (circular statistics) toolbox (Berens, 2009), in order to 
process multi-dimensional datasets (time-frequency matrices). This function implements the procedure 
described by Zar (Zar, 1999), where the test statistic F defined as: 

  F = �1 + 3
8κ
� (n − 2) nAITCA+nBITCB−nITCall

n−nAITCA−nBITCB
    Eq (4) 

follows a F distribution with (1,n-2) degrees of freedom. Since this parametric test statistic can be directly 
related to the corresponding p-value (by means of the F cumulative distribution function), no further statistical 
analysis was required for this test. 

2.2.2 Phase bifurcation index (PBI) 
We measured the phase bifurcation index as described in Busch et al (2009): 

  PBI = (ITCA-ITCall)(ITCB-ITCall)     Eq (5) 

The PBI is bounded between -1 and 1. It takes positive values when the ITC of each trial group exceeds the 
overall ITC, our main situation of interest. However, PBI can also become negative if the ITC of one trial group 
happens to fall below the overall ITC (a situation that may occur due to measurement noise, but also due to 
differences in ERPs shape or amplitude across the trial groups). Finally, PBI can also turn positive in rare cases 
where (e.g. due to measurement noise) both trial groups’ ITC values are smaller than the overall ITC. It is easy 
to understand, therefore, that PBI can prove a rather volatile measure. Nonetheless, this volatility should also 
be present in surrogate distributions of PBI calculated under the null hypothesis (see 2.3. Statistical Analysis), 
and thus it need not thwart the statistical power of the PBI measure.  

2.2.3 Phase opposition product (POP) 
A simple modification of the phase bifurcation index can presumably help remove some of its volatility, by 
subtracting the baseline quantity ITCall outside, rather than inside the product operation. Indeed, in this case a 
small change in either ITCA or ITCB is less likely to produce a sign reversal of the phase opposition measure. This 
was the logic employed in a recent study (Han & VanRullen, 2015). That is: 

  POP = ITCA ITCB  –  ITCall
2      Eq (6) 

It is worth noting also that the baseline term –ITCall
2 in Eq (6) will be identical in any permutation of the trial 

assignments (since the overall ITC does not change). Thus, this correction term, which is helpful to display and 
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interpret raw phase opposition measures, can be simply discarded in the statistical analysis when surrogate 
distributions of POP are calculated under the null hypothesis (see 2.3. Statistical Analysis). This would not be 
the case for the PBI measure, because the correction in that case is not a mere subtraction. 

2.2.4 Phase opposition sum (POS) 
Following a number of recent studies (Drewes & VanRullen, 2011; Dugue et al., 2011; McLelland et al., 2014; 
Bompas, Sumner, Muthumumaraswamy, Singh, & Gilchrist, 2015; Dugue et al., 2015; Inyutina et al., 2015; 
Sherman et al., 2016), we also computed the simple sum of ITCA and ITCB (again corrected by subtracting the 
baseline ITCall). That is: 

  POS = ITCA + ITCB  –  2 ITCall      Eq (7) 

Just like the previous 2 measures, POS will be positive when the ITC of each trial group exceeds the overall ITC. 
However, it can be argued that using a sum instead of a product renders this measure more stable than the 
other two. As previously, the subtractive correction term, important for display and interpretation, can be 
omitted during the permutation procedure (see 2.3. Statistical Analysis).  

 2.3 Statistical analysis 
From a given dataset, we computed seven time-frequency maps of p-values, corresponding to seven distinct 
ways of evaluating phase opposition, as illustrated in Figure 1. The electrophysiological signal recorded on 
every trial was subjected to a time-frequency transform (‘timefreq’ function from the Matlab EEGlab toolbox, 
using the ‘wavelet’ option, and frequencies increasing logarithmically from 2 to 50Hz while the number of 
cycles in each wavelet increases linearly from 2 to 15 cycles). At each time and frequency point, the values 
ITCA, ITCB and ITCall were computed, and from these values, four distinct time-frequency maps were obtained. 
One map directly contained the p-values resulting from the circular Watson-Williams test (Eq 4); this 
corresponds to the procedure employed for example by Baumgarten et al (2015). The remaining three maps 
stored the phase opposition measures PBI, POP and POS (Eqs 5-7). In order to assess the statistical significance 
of these measures, two non-parametric permutation procedures were employed.  

2.3.1 Permutation test 
For a given dataset, the trial assignment to group A or B was randomly permuted a number of times (nperm; 
here nperm=1,000, except when stated otherwise). The phase opposition measures PBI, POP and POS were 
recomputed after every permutation. For each of these three measures, at each time-frequency point, the 
final p-value assigned was the proportion of permutations that yielded a higher measure than in the original 
dataset, or 1/2nperm, whichever was highest. Note that low numbers of permutations limit the range of p-
values that can be obtained, which can prove problematic, for example when a correction for multiple 
comparisons across time and frequency points is needed (e.g., with nperm=1000, no result can survive a 
Bonferroni correction when the number of time-frequency points is larger than 100). On the other hand, 
permutations of time-frequency data are computationally intensive, and it is thus not always possible to reach 
adequate values of nperm. 

2.3.2 Permutation + z-score test 
To circumvent this problem, we have suggested a streamlined procedure (Drewes & VanRullen, 2011; Dugue 
et al., 2011; McLelland et al., 2014; Dugue et al., 2015; Inyutina et al., 2015; Sherman et al., 2016), in which a 
relatively low number of permutations is used to characterize the mean and standard deviation of the null-
hypothesis distribution. The true value from the original dataset is then compared against the null-hypothesis 
distribution by means of a z-score. In other words, for each of the three phase opposition measures (PBI, POP, 
POS), for each time-frequency point, the difference between the original dataset and the mean of all 
permutations was expressed in units of standard deviation (across all permutations). The resulting time-
frequency map of p-values was obtained by means of the normal cumulative distribution function.  
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Figure 1. Data analysis methods. From a dataset we derived 7 statistical measures of phase opposition. A time-frequency 
transform was used to extract oscillatory phase for each trial, time point, and frequency. Inter-trial coherence values were 
then computed for each trial group (outcome A vs B) as well as for the entire dataset (both outcomes pooled). Using these 3 
ITC values, the circular Watson-Williams parametric test directly yielded a time-frequency map of p-values (top-right, blue 
time-frequency map). The same 3 ITC values were used to calculate time-frequency maps of the phase opposition measures 
POS, POP and PBI. To determine the statistical significance of these measures, two distinct non-parametric procedures were 
applied. The first consisted in randomly permuting the trial labels (assignment of outcome A vs. B), and for each 
permutation recalculating POS, POP and PBI. The ranking (percentile) of the original dataset values against these null-
hypothesis distributions could be used as a p-value (right hand-side, green time-frequency maps). Alternately, the null-
hypothesis distributions could be summarized by their mean and standard deviation (across permutations), the values of 
the original dataset could then be expressed as a standardized z-score against the null distribution, and a p-value assigned 
using the normal cumulative distribution function (right hand-side, red time-frequency maps).  

 2.4 Test performance on real experimental dataset 
The above statistical analysis procedure describes how the seven p-value maps of phase opposition are 
derived from a given dataset (Figure 1). It remains to be seen how each of these seven measures will perform 
in situations where the “ground truth” is known (or assumed to be known). Is a significant phase opposition 
detected at the proper time and frequency point? Are there other, spuriously significant phase opposition 
values detected at erroneous time-frequency points? We first addressed these questions using a previously 
published experimental dataset (Busch et al., 2009) for which the existence of phase opposition around 7Hz 
and 120ms pre-stimulus could be assumed as “ground truth” (insofar as previous publication can be 
considered a mark of reliability).  

2.4.1 p-value combination 
As the experiment had been performed for multiple observers (N=12), each of whom contributed one dataset 
for the statistical analysis described in section 2.3 and in Figure 1, it was necessary to combine the results 
(time-frequency maps of p-values) across observers. For this purpose, we used the method described by 
Stouffer (Stouffer, Suchman, DeVinney, Star, & Williams, 1949), whereby each p-value is turned into an 
equivalent z-score (using the inverse normal cumulative distribution function Φ-1), the z-scores are combined 
across observers and finally turned back into probabilities (using the normal cumulative distribution function 
Φ), that is: 

  pcombined = 1 −Φ�
∑ Φ−1(1 − pi)[i=1:N]

√N
� �   Eq (8) 
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2.4.2 AUC 
Given the conclusions of the previously published experiment (Busch et al., 2009), we considered that a phase 
opposition method was efficient if it detected significant pre-stimulus phase opposition within the expected 
time-frequency region (here, defined as a rectangular region of extent 140ms and 4Hz, centered on the 
expected phase opposition peak, at 120ms pre-stimulus and 7Hz) but not outside of this expected region. Since 
the answer can strongly depend on the choice of a significance threshold (too conservative and no phase 
opposition can be detected at all; too liberal and phase opposition materializes at all times and frequencies), 
we used an ROC procedure (Receiver-Operator Characteristic) to measure efficiency in an unbiased manner. 
Each possible significance threshold was used alternately, and each time the proportions of ‘hits’ (significant p-
values inside the target time-frequency region) and ‘false alarms’ (significant p-values before stimulus onset 
but outside the target region) were recorded. Plotting hit rate against false alarm rate produces the ROC curve, 
and the area under this curve (AUC for ‘Area Under the ROC Curve’) can serve as a measure of sensitivity, with 
chance level at 0.5 and maximal performance at 1. This AUC was calculated for each of the seven phase 
opposition measures. 

 2.5 Artificial datasets creation 
To determine and compare the sensitivity of each phase opposition measure in a variety of well-controlled 
situations, we also created artificial datasets, for which the parameters of oscillatory modulation could be 
precisely ascertained (Figure 2). Just like with real experimental data, an artificial dataset was made of n trials, 
each of which had a (simulated) electrophysiological signal associated with an experimental outcome A or B. 
The electrophysiological data of each trial was randomly initialized with white noise2. This signal was band-
pass filtered around a specific frequency f (different for each simulation), and a Hilbert transform converted 
the resulting oscillatory waveform into complex values. The phase angle was extracted at a critical time point t 
(different for each simulation), and the trial outcome was decided on the basis of this phase value. The 
probability of outcome A was a cosine function of this phase angle3: 

  pA(angle) =  pA��� + mod. cos(angle)    Eq (9) 

where pA��� is the overall probability of outcome A, and mod is the depth of the phase modulation (both variable 
parameters). The probability of outcome B was, therefore, pB=1-pA. 

Once the trial outcome was decided, a noisy ERP-like signal was added to each trial, with (potentially) different 
amplitudes for trial groups A and B. The shape of the ERP was bimodal, with a first positive peak (a ‘P1’ 
component) and a second negative one (a ‘N1’ component). The standard P1 was a Gaussian waveform, 
slightly different on each trial, with peak latency µ drawn from a normal distribution (mean=65ms, standard 
deviation=10ms) and temporal extent σ drawn from a normal distribution (mean=8.33ms, standard 
deviation=1.66ms; the waveform was zero-padded outside a window duration of 6σ); the maximal amplitude 
of the P1 was drawn from a normal distribution (mean=1, standard deviation=0.5, arbitrary units). Similarly, 
the standard N1 was a negative Gaussian waveform, slightly different on each trial, with peak latency µ drawn 
from a normal distribution (mean=155ms, standard deviation=25ms) and temporal extent σ drawn from a 
normal distribution (mean=21.66ms, standard deviation=4.17ms; the waveform was zero-padded outside a 
window duration of 6σ); the maximal amplitude of the N1 was drawn from a normal distribution (mean=2, 
standard deviation=1, arbitrary units). The randomly drawn P1 and N1 waveforms for each trial were summed, 
and then scaled by a multiplicative factor ERPA or ERPB dependent on the trial outcome A or B. Finally, this ERP 

2 White noise comprises equal power at all frequencies. In contrast, electrophysiological signals generally display higher 
power towards lower frequencies, e.g. pink or brown noise (depending on the logarithmic exponent of the 
frequency/power relation). The choice of white noise here was only a first approximation, to simplify comparisons of phase 
opposition measures across frequencies (since all frequencies have a priori equivalent signal-to-noise ratio) and to avoid 
arbitrarily deciding on a specific logarithmic exponent (whose exact value can depend on several experimental factors). 
3 The choice of a cosine function, with maximal likelihood of outcome A at phase 0, was arbitrary. This choice would not be 
expected to affect the results of any simulation (except as described in Figure 9). Generally, as explained also in Section 2.1, 
the nature of EEG/MEG recordings is such that the polarity of oscillations detected at the scalp is only indirectly related to 
the underlying cortical oscillations. Consequently, absolute EEG/MEG phase cannot be easily interpreted, and we focus 
instead on relative phase differences between the two trial groups. 
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was added to the white noise signal initially generated for that trial, to produce the final simulated 
electrophysiological signal. 

In different simulations, the parameters n, f, t, mod, pA���, ERPA and ERPB were varied (sometimes jointly) to 
assess the robustness of the various phase opposition measures. 

 

Figure 2. Artificial dataset creation. n trials were simulated, each with a (simulated) electrophysiological signal and an 
associated experimental outcome A or B. The signals were initialized with white noise, then band-pass filtered at a critical 
frequency f. The Hilbert transform extracted the oscillatory phase value at a critical time t. This phase was used to determine 
the experimental outcome for that trial: outcome A was randomly assigned with a mean probability 𝑝𝑝𝐴𝐴��� that was modulated 
as a cosine function of the phase angle. An ERP (with slightly randomized latency, duration and amplitudes for both P1 and 
N1 components, as illustrated by the shaded areas representing standard deviation across trials), whose overall amplitude 
depended on the trial outcome A or B, was added to the original white noise signal, to produce the final artificial dataset. 

 2.6 Test performance on artificial datasets: statistical power 
The statistical power of a test is the proportion of experiments that would return a positive test result, given 
that an effect was indeed present. For a given set of parameters, we created 100 distinct artificial datasets, 
and then for each phase opposition measure, we evaluated the proportion of datasets yielding a successful 
statistical result. Based on the time t and frequency f of phase modulation implanted into the artificial datasets 
(see Figure 2), we defined a target time-frequency region (centered on point (t,f), with a tolerance of ±400ms 
and ±2 logarithmic frequency steps). An experiment was classified as a ‘hit’ if a statistically significant pre-
stimulus phase opposition was detected inside the target region; a ‘false alarm’ occurred if significant pre-
stimulus phase opposition was found outside of this region. The hit rate was thus defined as the proportion of 
datasets with a hit (out of 100 datasets), and the false alarm rate as the proportion of datasets with a false 
alarm. As previously (section 2.4.2, AUC), the hit and false alarm rates were contingent on the choice of 
statistical threshold. Thus, we varied the threshold systematically, and constructed the entire ROC curve; the 
statistical power was defined as the area under this ROC curve. Statistical power varies between 0 and 1. A 
statistical power value of 0.8, for example, would indicate that 80% of experiments could detect a significant 
phase opposition around the correct time and frequency (without also detecting it at incorrect times and/or 
frequencies); this value (or a higher one) is typically considered acceptable. Note also that chance level (the 
statistical power of a test with zero sensitivity) is not 0.5, but rather closer to 0.2 for most of our simulations. 
Indeed, since an ineffective test is equally likely to produce a significant result at any time-frequency point 
(inside or outside the target time-frequency region), the chance level can be simply evaluated as the ratio 
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between the numbers of pre-stimulus time-frequency points lying inside vs. outside the target time-frequency 
region. 

3. Results 
 3.1 Real experimental dataset (Busch et al, 2009) 
First, it appears important to verify that all the statistical measures compared here share, at least, the ability to 
identify phase opposition in a real experimental situation, where the perceptual outcome is known to be 
modulated by ongoing oscillatory phase. To this end, we re-analyzed a previously published dataset (Busch et 
al., 2009). In that experiment, a brief peripheral target at detection threshold was presented on every trial, 
after a randomized inter-trial interval, such that observers reported only about half of the targets (hits) but 
missed the other half (misses). The phase bifurcation index (PBI) applied to this dataset (electrode Fz) had 
revealed significant phase opposition between these two trial groups at 7Hz, peaking 120ms before stimulus 
onset. We then explored the performance of other phase opposition measures on this same dataset (Figure 3). 

 

Figure 3. Phase opposition in a real-life 
experimental dataset (Busch et al, 2009). A-
C. Time-frequency maps of p-values on 
electrode Fz (colorbar in panel A, 
logarithmic scale) for the parametric test 
(A), the three permutation tests (B) and the 
hybrid tests combining permutation and z-
score (C). The target time-frequency region 
(defined based on the results from the 
earlier study) is indicated by a dashed box. 
Time-frequency points with p-values below 
the threshold of FDR correction for multiple 
comparisons are outlined in green. D. 
Results of an AUC procedure contrasting the 
proportions of significant time-frequency 
points inside vs. outside the target time-
frequency region. The bar colors correspond 
to those defined in Figure 1. 

 
 

 

 

 

 

 

 

The seven time-frequency maps of p-values shown in Figure 3 (panels A-C) all demonstrated significant 
(p<0.0002) phase opposition around the same time (-120ms) and frequency (7Hz) as in the original study 
(Busch et al., 2009). For 6 of these 7 measures, the resulting p-values were robust to an FDR correction for 
multiple comparisons using alpha = 0.05 (Benjamini & Hochberg, 1995). It is worth noting that the last 
remaining measure was the PBI coupled with a standard permutation test (Figure 3B), precisely the one 
employed in the original paper. This indicates that our comparison did not unwittingly favor the initially 
applied measure. (In the original study, the PBI values were first combined across observers before applying 
the permutation test, resulting in slightly different p-values, which were in fact robust to FDR-correction; here, 
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p-values were first obtained for each observer and subsequently combined across observers, for consistency 
with the procedure applied to the circular Watson-Williams test).    

The different tests should not simply be compared in terms of their best p-values around the initially expected 
time-frequency point; indeed, a test’s efficiency also depends on its propensity to produce false positives, i.e., 
apparently significant phase opposition at a priori unexpected time-frequency points. To provide a 
comprehensive assessment of each test’s efficiency, we thus performed an ROC analysis, as follows. A target 
time-frequency region was defined based on the findings of the original study, centered on 7Hz and 120ms 
pre-stimulus, with a tolerance of ±2Hz and ±70ms. For a given statistical threshold, the ‘hit rate’ was defined as 
the proportion of time-frequency points inside the target time-frequency region with significant p-values (i.e., 
p-values below the statistical threshold), and the ‘false alarm rate’ as the proportion of pre-stimulus time-
frequency points outside this region with significant p-values. After measuring hit rates and false alarm rates 
for all possible statistical thresholds, an ROC curve was obtained, expressing hit rate as a function of false 
alarm rate. The area under this ROC curve (AUC) can be used as a threshold-independent measure of a tests’ 
sensitivity.  

We computed this AUC for all seven tests (Figure 3D). As could be expected from the p-value maps, all tests 
performed reliably, with AUC values above 0.8. The most sensitive test appeared to be POS, followed by POP 
and then PBI. This ranking was the same, whether a standard permutation test or a hybrid permutation+z-
score test was applied, though the latter performed consistently (albeit marginally) better than the former. 
Finally, the circular Watson-Williams test yielded the lowest AUC value (0.82).4 Nonetheless, as will be seen 
later (section 3.2), the circular Watson-Williams test is often among the most sensitive measures of phase 
opposition. 

 3.2 Artificial datasets 
The confirmation of the adequacy of all seven tests on a given ‘reference’ dataset was an essential step, but 
leaves open a number of questions. Would all tests prove equally robust to variations in specific properties of 
the dataset, such as the frequency of the rhythmic modulation, its magnitude, the number of trials collected, 
the presence and amplitude of post-stimulus ERPs, and so on? Answering these questions with real 
experimental datasets could easily require several hundred experiments, and a lifetime of data collection. To 
address these issues, we created instead a large number of artificial datasets, for which various parameters 
could be precisely controlled (Figure 2). 

Each dataset included n trials with simulated electrophysiological signals (initialized as white noise) and an 
associated trial outcome A or B. The trial outcome was decided with a probability that was a sinusoidal 
function of the signal phase angle at a specific time and frequency. Finally, noisy ERP waveforms, of possibly 
different amplitudes for the two trial types A or B, were added to the original electrophysiological signal. The 
number of trials (n), the average likelihood of outcome A (pA���), the depth (mod), frequency (f) and time (t) of 
phase modulation, as well as the average ERP amplitudes (ERPA and ERPB) were parameters that could be 
varied in distinct simulations.  

For each fixed set of parameters, we generated 100 random artificial datasets and applied the seven phase 
opposition measures. The performance of each measure was quantified by their statistical power: the 
proportion of datasets (out of 100) yielding a successful statistical outcome, with significant phase opposition 
detected inside but not outside a target time-frequency region. This statistical power was computed using a 
threshold-independent AUC procedure5. Statistical power values above 0.8 are conventionally considered 

4 This apparently lower performance is likely to stem from the all-or-none nature of this parametric test, coupled with the 
stringent demands of our ROC analysis. 95% of the p-values from this test were higher than 0.999 or lower than 0.001. 
Within the target time-frequency region, 31% of time-frequency points had the highest possible p-value (compared against 
88% outside the target region). Thus, as the statistical threshold grew progressively more liberal, the hit rate gradually 
increased to a value of 0.69 (i.e., 69% of time-frequency points inside the target region gave significant p-values), while the 
false alarm rate remained below 0.12; however, with the next increase of statistical threshold, both hit rate and false alarm 
rate suddenly reached 1, and the ROC curve was thereby truncated. 
5 Different from the previous analyses (Figure 3), in which only one dataset was available, here the hit and false alarm rates 
were not defined as proportions of time-frequency points, but as proportions of datasets (out of 100). This implies that a 

[10] 
 

                                                                 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 29, 2016. ; https://doi.org/10.1101/061283doi: bioRxiv preprint 

https://doi.org/10.1101/061283
http://creativecommons.org/licenses/by-nc-nd/4.0/


appropriate. Therefore, a single value describing statistical power over the 100 simulated datasets can serve as 
a main criterion to assess the reliability of each measure (value>0.8). Nonetheless, for the additional purpose 
of comparing measures against each other, it is useful to keep in mind that differences of statistical power 
equal to or larger than 0.06 (e.g. 0.87 vs. 0.93) would normally be statistically significant at the p<0.05 level 
using a χ2 test. 

3.2.1 Depth of oscillatory phase modulation 
The first set of simulations investigated the effect of the depth of oscillatory phase modulation (Figure 4). 
Indeed, this manipulation is directly linked to the detectability of phase opposition: with a phase modulation of 
1 the outcome likelihood changes from 100% A to 100% B between one oscillatory phase and its opposite, and 
thus phase opposition should reach its maximal value; whereas with 0 phase modulation the likelihood of 
outcome A would be constant, and there would simply be no phase opposition to detect. For this first 
simulation, we arbitrarily fixed the other parameters as follows: number of trials n=500, frequency of phasic 
modulation f=15Hz, time of phasic modulation t=0 (i.e., the 15Hz phase value measured at stimulus onset 
influenced the trial outcome), equal likelihood of outcomes A and B (pA���=0.5), and no ERP produced after 
stimulus onset (while this last assumption is unrealistic, it will allow us to independently explore the influence 
of ERPs in later simulations).  

Figure 4. Effect of varying depth of 
oscillatory phase modulation. The central 
plot illustrates the changes in statistical 
power caused by the parameter variations. 
The line colors correspond to those used in 
Figures 1 and 3. The solid blue line plots the 
statistical power of the circ. W-W test. Solid, 
dashed and dotted lines correspond 
respectively to POS, POP and PBI, in green for 
the standard permutation tests, and red for 
the hybrid permutation+z-score tests. The 
fixed parameters for these simulations are 
listed in the box below the main plot. In this 
and the following figures, four representative 
time-frequency maps of p-values (obtained by 
log-averaging the p-value maps from the 100 
simulated datasets) are displayed for 
illustrative purposes. The arrow pointing to 
each map identifies the measure and the 

parameter value being illustrated. All maps share the same color scale (see colorbar next to the top-left map). The target 
time-frequency region is highlighted using a white box. Significant pre-stimulus time-frequency points inside vs. outside this 
box count as hits and false alarms (respectively) for the calculation of statistical power. 

As expected, upon decreasing the depth of modulation from 1 to 0, the statistical power of all seven measures 
went down (Figure 4), from high values (0.8 and above) to chance level (approximately 0.2, defined by the 
ratio of time-frequency points inside vs. outside the target region6). For all measures, the tipping point was 
around modulation depths of 0.3 to 0.4: above this point, all measures performed consistently well; below this 
point, the decrease in statistical power accelerated. This prompted us, in all subsequent simulations, to use a 
value of 0.4 for the ‘depth of modulation’ (mod) parameter, i.e., just above the “tipping point”: this still 
produced a satisfactory level of performance, yet also made this performance very susceptible to any 
deterioration induced by manipulations of the other parameters. 

All seven measures behaved comparably in this first set of simulations, with minor differences in performance. 
At phase modulation values of 0.4 and above, both circ. W-W and POS (using the hybrid permutation+z-score 
test) virtually reached maximal statistical power (1), while POP and PBI (with the same hybrid test) reached 

single significant p-value inside the target time-frequency region of all 100 datasets could suffice to yield 100% hit rate, and 
thus, that the all-or-none nature of the circular Watson-Williams test was less likely to impair its AUC performance here. 
6 except for the circular Watson-Williams test, which levelled off around 0.5 statistical power because the likelihood of 
significant p-values inside vs. outside the target region was exactly the same for this test, namely zero. 
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respectively 0.97 and 0.94. The last three measures involving standard permutation tests (POS, POP, PBI) were 
systematically below the others, but still reached 0.92 performance. One reason why these tests might 
perform sub-optimally here could be an insufficient number of permutations, leading to insufficient precision 
of p-values. Indeed, only 1000 permutations had been used in these simulations. As can be seen in the time-
frequency map on the bottom right of Figure 4, this implies that p-values from the permutation tests could not 
improve beyond 0.0005, even when the phasic modulation was maximal. Other tests, however, were not 
limited in this way, and could attain much more significant p-values (p<10-7, see top-right time-frequency map 
in Figure 4). Before continuing with other parameter manipulations, therefore, we decided to assess the 
importance of the number of permutations used in the comparison between tests. 

3.2.2 Number of permutations 
While other parameters remained fixed as before, and the modulation depth parameter was set at mod=0.4, 
we varied the number of permutations from 10 to 10,000. Logically, this manipulation should only alter the 
non-parametric tests that rely on such permutations to estimate their null distribution. As expected, therefore, 
the parametric circ. W-W test was wholly unaffected by the variations (Figure 5). Although both types of non-
parametric tests (permutation, or permutation+z-score) were expected to depend on permutation number, 
the hybrid permutation+z-score test appeared remarkably robust at low permutation numbers, with statistical 
power remaining above 0.9 even down to only 10 permutations (Figure 5). This suggests that the mean and 
standard deviation computed across only 10 surrogate (permuted) datasets are sufficiently precise estimates 
of the shape of the null distribution. In contrast, for the conventional permutation tests, statistical power was 
poor (around 0.6) with only 10 or 100 permutations, and kept improving from 1000 to 10,000 permutations 
(Figure 5). With that number, the permutation tests finally attained comparable statistical power to the hybrid 
tests.   

Figure 5. Effect of varying permutation 
number. Artificial dataset creation 
parameters are identical to those used in 
Figure 4, with the depth of oscillatory 
modulation set at mod=0.4. All four time-
frequency maps illustrate the results of the 
PBI measure. Using a hybrid permutation+z-
score test, PBI produces comparable results 
with 100 or 10,000 permutations (top-left 
and top-right). Using a standard permutation 
test, however, with 100 permutations the 
target p-values are hardly distinguishable 
from the background noise (bottom-left), 
whereas statistical power can be restored 
with 10,000 permutations (bottom-right). 

 
 

The conclusions that can be drawn from this set of simulations are, therefore, that conventional permutation 
tests can be equivalent to the hybrid permutation+z-score tests, but large numbers of permutations (on the 
order of 10,000) are required to achieve this equivalence. Conversely, the hybrid tests can provide reliable 
estimates of the statistical power of a phase opposition measure, even when lower numbers of permutations 
are used. Consequently, both to simplify computations and to improve readability, in the following simulations 
we used only 1000 permutations, and shall not display anymore the results of the 3 conventional permutation 
tests7.  

7 The 3 permutation tests were still performed, however; the resulting data (not shown) consistently reflected the 
aforementioned conclusion: statistical power was systematically (albeit marginally) lower than in the corresponding hybrid 
tests, and followed the same overall pattern. 
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3.2.3 Frequency of oscillatory phase modulation 
A natural concern when measuring phase opposition is that the likelihood of detecting phasic modulations 
may depend on the frequency of the underlying oscillation. Intuitively, slower oscillations may be less prone to 
errors in phase measurement, simply because any fixed temporal uncertainty (say 10ms) in 
electrophysiological signals would translate into smaller phase variance at slower frequencies (only 1/10th of a 
cycle at 10Hz, but 1/2 of a cycle at 50Hz). The results in Figure 6, however, demonstrate that oscillatory 
frequency has little influence on the statistical power of phase opposition measures under the conditions of 
these simulations. All measures remained over 0.8 as frequency varied from 7Hz to 40Hz. Across frequencies, 
the highest statistical power was given by POS, followed by POP, PBI and circ. W-W. Higher frequencies did not 
reduce statistical power, except for a marginal decrease at 40Hz concerning the circ. W-W test. This robustness 
is likely to be specific to the conditions of these simulations: ongoing oscillations were given equal power at all 
frequencies (i.e., created from white noise; see Footnote 2), and no ERP was included here that could have 
confounded phase measurements in specific frequency bands. (A later set of simulations, in section 3.2.7, will 
explore the effect of oscillatory frequency in the presence of sizeable ERPs.) Finally, the time-frequency maps 
in Figure 6 also underline that the temporal resolution of phase opposition measures, evident in the temporal 
spread of significant activations, is directly related to oscillatory frequency, with increased temporal precision 
at higher frequencies (reflecting, in part, the temporal extent of the wavelets used in the time-frequency 
transform). 

Figure 6. Effect of varying frequency of 
oscillatory phase modulation (in the absence 
of an ERP). For improved readability, only the 
parametric circ. W-W test and the hybrid 
permutation+z-score tests are presented in 
this and all subsequent figures. Each 
conventional permutation test (not shown) 
consistently mirrors the patterns of the 
corresponding hybrid test, only with 
marginally lower statistical power. All tests 
appear relatively robust to changes in 
oscillatory frequency. 

 
 

 

 

3.2.4 ERP amplitude 
The onset of a sensory stimulus at time zero is normally followed by an event-related potential (ERP in EEG, 
also called event-related field or ERF in MEG), reflecting the activation of the sensory and perceptual 
apparatus of the corresponding modality, and potentially also a number of subsequent attentional and 
cognitive operations (Luck, 2014). ERPs have relatively high amplitude compared to that of ongoing brain 
oscillations. And, most importantly for our purposes, ERPs strongly affect measurements of oscillatory phase. It 
is still fiercely debated whether ERPs denote a phase reset of ongoing oscillations, or are merely superimposed 
on them (Makeig et al., 2002; Fell et al., 2004; Mazaheri & Jensen, 2006; Min et al., 2007; Sauseng et al., 2007); 
but in either case, phase measurements in time-frequency windows that overlap with ERPs cannot provide an 
independent estimate of ongoing oscillatory phase, and in some cases (depending on the existence of phase 
reset, and on the relative amplitude of ongoing and evoked signals) could be entirely dominated by the phase 
of ERP signals. 

It appears necessary, therefore, to evaluate the statistical power of phase opposition measures in the 
presence of ERPs. Importantly, for these simulations, we assumed that the phase of background ongoing 
oscillatory signals, free of any ERP, was the key element in determining perceptual outcome (we had direct 
access to these background oscillatory signals since they had been artificially created; see Figure 2, top right). 

[13] 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 29, 2016. ; https://doi.org/10.1101/061283doi: bioRxiv preprint 

https://doi.org/10.1101/061283
http://creativecommons.org/licenses/by-nc-nd/4.0/


Subsequently, these background signals were summed with ERP waveforms, and the phase opposition 
measures were only given to operate on the summed signals (just as would happen in a genuine experimental 
situation). We could thus evaluate any disruption caused by ERPs masking the relevant phase of the 
background signal. In this set of simulations, we systematically varied the average ERP amplitude, but 
maintained it equal for the two perceptual outcomes, that is, ERPA=ERPB (a later set of simulations in Section 
3.2.9 will explore situations where the two ERPs are unequal).  

Figure 7. Effect of varying ERP amplitude. 
Parameters ERPA and ERPB were varied 
together from 0 to 50 (arbitrary units, the 
relevant point of comparison being the 
standard deviation of the background noise 
whose oscillatory phase was used to 
determine perceptual outcome: this standard 
deviation was fixed at 10 units in all 
simulations). As expected, the statistical 
power of all measures decreased with 
increasing ERP amplitude. Both POS and circ. 
W-W retained satisfactory power (above 0.8) 
at all amplitudes tested, while POP and PBI 
fell down to 0.67 and 0.44, respectively. Time-
frequency maps illustrate distortions in the 
phase opposition landscape caused by ERPs, 
in particular a leftward shift of latency 
(compare, for example, to upper time-

frequency maps in Figure 5). The time-frequency spectral signature of ERPs is visible as a lighter blue ‘hill’ in the bottom-
right map. 

As expected, increasing ERP amplitude had a detrimental effect on all phase opposition measures (Figure 7). 
POS and circ. W-W were the most robust measures, retaining statistical power above 0.8 for all ERP amplitudes 
tested, followed by POP and PBI, which decreased to 0.67 and 0.44 statistical power, respectively. The 
detrimental effect of ERPs on phase opposition is particularly visible in the four time-frequency maps of Figure 
7 (compared, for example, to the upper two time-frequency maps of Figure 5). The region of significant phase 
opposition (when present) is smaller, and its center shifted to the left, i.e. 50-100ms earlier than the actual 
time t=0 at which phase modulation was applied. This shift can be understood as ERPs (whose phase is sensibly 
similar across all trials) “masking” the phase opposition between trial groups. The spectral signature of ERPs, 
and hence the time-frequency region where ERPs can potentially affect phase opposition, is clearly visible as a 
lighter blue ‘hill’ in the bottom-right time-frequency map. 

A logical (albeit indirect) consequence of these simulations is that phase opposition may be less easily detected 
in experiments where stimulus onset is temporally predictable, because of e.g. a fixed inter-trial interval, or a 
preparatory cue (see also Footnote 1). Indeed, any pre-stimulus event bearing a fixed temporal relation to 
stimulus onset (such as the end of the preceding trial, or the onset of the preparatory cue) will evoke its own 
response activity pattern, affecting the phase distribution of “ongoing oscillations” in all trials, independently 
of the eventual trial outcome. This is more or less equivalent to the present simulations, in which a common 
“evoked” signal (an ERP) is affecting the phase of both trial groups in a similar manner, i.e. ERPA=ERPB (with a 
major difference, of course, in the time at which this influence is exerted –early vs. late in the pre-stimulus 
interval) . 

For all subsequent simulations (except the further investigations of ERPs in Section 3.2.9), we shall fix the ERP 
amplitude parameters to ERPA=ERPB=10, an intermediate value equivalent to the amplitude of the background 
noise (whose oscillatory phase serves to determine the trial outcome, see Figure 2, top-right). 

3.2.5 Trial number 
The reliability of inter-trial coherence estimates is notoriously dependent on trial number (Moratti, Clementz, 
Gao, Ortiz, & Keil, 2007; Vinck, van Wingerden, Womelsdorf, Fries, & Pennartz, 2010). Phase opposition 
measures directly inherit this dependence (Eqs (4-7)). As trial number is a key element of any experimental 
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design, which can limit or even forbid addressing certain experimental questions, the exact influence of this 
parameter (n) is important to assess.  

When decreasing trial number n from 1000 down to 10 (Figure 8), the anticipated decrease of statistical power 
occurred for all measures, yet at slightly different rates. Non-parametric measures decreased slowly down to 
200 trials, and faster afterwards (reaching levels close to chance at 50 trials and below). POS, for example, 
which showed the highest statistical power (0.985) at 1000 trials, remained above 0.8 down to nearly 200 
trials. In contrast, the parametric measure (circ. W-W) decreased much faster. Even though it was on par with 
POS down to 500 trials, at 200 trials and below it had much lower statistical power than all other measures. At 
100 trials it showed no significant phase opposition (chance level=0.19; bottom-left time-frequency map), 
while POS could still detect phase opposition in more than half of the simulations (0.56; top-left time-
frequency map).  

Another lesson that can be learned from this set of simulations is that, whatever the measure used (even PBI, 
which so far systematically displayed the worst statistical power), a reliable estimate of phase opposition can 
always be obtained given enough trials (on the order of 1000 trials in these simulations; Figure 8). 

Figure 8. Effect of varying trial number. 
Parameter values used for n were 10, 50, 100, 
200, 500 and 1000. While all measures were 
comparably efficient using 1000 trials, their 
statistical power systematically decreased 
when less trials were simulated. Below 500 
trials, circ. W-W decreased much faster than 
other measures, reaching chance 
performance at 100 trials (bottom-left time-
frequency map), while other measures still 
showed above-chance performance (top-left 
time-frequency map). 

 

 

 

3.2.6 Relative trial number 
Not only the total number of trials n, but also the relative number of trials in each group can influence phase 
opposition measures. In the previous simulations the experimental outcomes A and B were always 
equiprobable (pA���=0.5). But experimental designs can often be biased (voluntarily or involuntarily) such that 
one outcome is more likely than the other. For example, the proportion of correct trials in a two-alternative 
forced-choice discrimination task should always be well above 50% (chance level); any phase opposition 
between correct and incorrect perceptual outcomes in such a task would thus be plagued by different trial 
numbers for the two groups. In turn, this difference may influence measures of phase opposition, either 
because one of the two groups would count an insufficient number of trials (as explored in the previous 
simulations, section 3.2.5), and/or because the reference quantity ITCall would be biased towards ITCA or ITCB 
(which would consequently affect all phase opposition measures as described in Equations (4-7)).  

Indeed, this new set of simulations revealed that all phase opposition measures were only truly efficient when 
outcomes were equiprobable, i.e. pA���=0.5 (Figure 9). Any departure from this equilibrium was sanctioned by a 
loss of statistical power, most measures falling below 0.8 if one of the outcomes was twice as likely as the 
other (i.e.,  pA���<0.33 or pA���>0.66). The most robust measure against this parameter manipulation was circ. W-
W, followed by POS, then by POP and PBI.  

Interestingly, a strong asymmetry was apparent in the statistical power curves of the circ. W-W and POS 
measures (Figure 9), with lower performance when A was more likely than B (i.e. in the second half of the 
curves). Circ. W-W retained 0.78 statistical power with pA���=0.2 (see top-left time-frequency map), but fell down 
to 0.43 with pA���=0.8 (see bottom-right time-frequency map). This puzzling result (considering that A and B were 
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arbitrarily assigned labels) can in fact be explained by Equation (9): due to the cosine function, outcome A was 
always maximal around phase 0, and outcome B at the opposite phase. This arbitrary choice effectively broke 
the symmetry of the dataset when in the presence of ERPs: the phase of the ERP signal around the critical 
time, similar for the two trial groups, could help (top-left map) or impair phase opposition detection (bottom-
right map), depending on which of the two trial groups had a phase closest to that of the ERP8. 

Overall, the strong decrease of statistical power obtained with unbalanced datasets (Figure 9) has important 
implications for experimental design and data analyses practices. Equiprobable outcomes should be sought 
whenever possible. Of course, a dataset resulting from an unbalanced experimental design can always be 
subsampled to restore equal numbers of trials in the two groups (e.g. by randomly rejecting trials from the 
group having higher likelihood), but this will necessarily come at the cost of decreasing the overall trial 
number, which, as demonstrated above (Figure 8), can also have potentially drastic consequences.  

Figure 9. Effect of varying relative trial 
number (likelihood of outcome A). Parameter 
𝑝𝑝𝐴𝐴��� was varied from 0.1 to 0.9 in steps of 0.1. 
Optimal performance was obtained in a 
situation with equiprobable outcomes 
(𝑝𝑝𝐴𝐴���=0.5), while unbalanced situations 
strongly impaired statistical power. Circ. W-
W and POS were the most successful tests, 
followed by POP and PBI. The asymmetry that 
is particularly visible for the circ. W-W test 
(compare top-left to bottom-right time-
frequency maps) is caused by an interaction 
between the phase of ERPs and the ongoing 
oscillatory phase that favors outcome A vs. B. 

 

 

 

3.2.7 Frequency of oscillatory phase modulation (with ERP) 
The presence of an ERP, contaminating time-frequency estimates around stimulus onset and from roughly 0 to 
30Hz (in our simulations), impedes the statistical power of phase opposition measures when the phase 
modulation is applied at t=0 and for 15Hz ongoing oscillations (Figure 7). It is likely, however, that this 
contamination might differ were phase opposition applied for a different frequency or at a different time. This 
set of simulations and the next were designed to address these two questions. 

First, we varied the oscillatory frequency f at which the phase modulation was applied, exactly as in Figure 6, 
but this time in the presence of a sizeable ERP (ERPA=ERPB=10). The results revealed the same pattern as in 
Figure 6, only exacerbated (Figure 10). POS was the most successful measure at nearly all frequencies. Circ. W-
W performed well at low frequencies (below 15Hz, see top-left time-frequency map), but was the least 
successful above 20Hz (down to 0.7 statistical power at 40Hz, see bottom-right time-frequency map). POP and 
especially PBI displayed the opposite behavior, strongly affected by ERPs at low frequencies (PBI reaching 
down to 0.69 statistical power at 7Hz, see bottom-left time-frequency map9), yet equivalent to the best 
measure (POP) at frequencies above 30Hz (see top-right time-frequency map).  

8 To verify this, another set of simulations (not shown here) was performed after changing the + sign into a – sign in 
Equation (9). This effectively changed the optimal phase for outcome A, from zero to pi radians. The results showed again 
an asymmetry, but this time with higher performance when A was more likely than B. 
9 This map also best illustrates a point already made earlier (Figure 7), that the presence of an ERP can strongly distort the 
time-frequency landscape of phase opposition. This is particularly true at lower frequencies. Here, at 7Hz, the peak of 
phase opposition is registered about 200ms earlier than the true time of phase modulation (t=0). In fact, these simulations 
help explain why many previous studies of phase opposition have reported effects peaking well before stimulus onset 
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Figure 10. Effect of varying frequency of 
oscillatory phase modulation in the presence 
of an ERP. The pattern of frequency-
dependence for the different phase 
opposition measures is similar to that 
observed in Figure 6, only exacerbated by the 
presence of an ERP. POS was consistently the 
highest-performing measure. Circ. W-W 
performed best at low frequencies (top-left 
time-frequency map) and worst at high 
frequencies (bottom-right map). PBI (and, to 
a lesser extent, POP) showed the opposite 
pattern, with maximal performance at high 
frequencies (top-right map) and minimal 
performance towards low frequencies 
(bottom-left map). 

 
3.2.8 Time of oscillatory phase modulation 

Second, we varied the time t at which phase modulation was applied, from -200ms to +100ms relative to 
stimulus onset (the frequency f was maintained at 15Hz for this set of simulations). If a sensory or cognitive 
function operates periodically under the effect of an ongoing brain oscillation, the moment at which oscillatory 
phase should maximally influence the outcome of this function (and thus, phase opposition should be 
maximal) is the precise moment at which this function comes into play. In all logic, this should happen after 
stimulus onset, around the activation latency of the corresponding brain region or network. Unfortunately, this 
moment should also coincide with the emergence of ERPs, which have the power to mask phase opposition 
(Figure 7).   

Indeed, the simulations (Figure 11) confirmed that, while all measures performed at ceiling (statistical power > 
0.9) to detect phase opposition that was introduced at early latencies (at or before -50ms pre-stimulus), their 
statistical power dropped to inadequate values (<0.5) by 100ms post-stimulus, i.e. right in the middle of the 
ERPs. PBI plunged first, followed by POP, circ. W-W and finally POS. These last two measures were still 
remarkably efficient (power > 0.95) at the exact time of stimulus onset (t=0).  

It is worth insisting that our calculation of statistical power only took into account pre-stimulus time-frequency 
points, even in simulations where the phase opposition was actually applied at post-stimulus latencies. This 
choice is justified by two reasons. First, the stationarity of oscillatory signals and the window length of the 
filtering operations required to extract phase values should imply that information about the critical oscillatory 
phase is already available in the pre-stimulus time window (even when the critical time t is itself in the post-
stimulus period). Second, post-stimulus “phase opposition” may be spuriously introduced by the ERPs, as 
illustrated for example in the bottom-right time-frequency map of Figure 9 concerning circ. W-W, or in the 
bottom-left map of Figure 12 concerning POS. In these maps, large time-frequency regions of (spurious) 
“significant phase opposition” can be observed in the post-stimulus region and at low frequencies (below 
10Hz), even though no phase modulation actually occurred in this time-frequency range. We took the point of 
view of an experimenter who does not have access to the ground truth, and must therefore beware that any 
post-stimulus effect of phase could be the product of ERP-induced artifacts; and we thus restricted our search 
for phase opposition to the pre-stimulus time window10. 

(from -100ms to -300ms or even earlier), when logic dictates that the critical time of phase opposition should be around or 
just after stimulus onset (see Section 3.2.8). 
10 In fact, restricting analyses to pre-stimulus time points still does not fully guarantee that observed effects are devoid of 
ERP contamination. Especially at low frequencies, when the half-length of the temporal window used for time-frequency 
decomposition exceeds the latency of ERPs, ERP contamination can spread to pre-stimulus time points. For example, the 
window of potential contamination for our simulated ERPs is visible as a lighter-blue region in the time-frequency map at 
the bottom-right of Figure 7. To rule out this possible confound, several studies have explicitly verified that significant pre-
stimulus phase opposition effects were detected outside of this “contamination window” (e.g., Busch et al, 2009). Other 
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In sum, this set of simulations indicated that phase opposition becomes increasingly difficult to detect if it 
occurs in a time window coinciding with strong ERPs, and contrarily, increasingly easy to detect when it occurs 
at early latencies. Of course, this latency is not under the experimenter’s control, but depends on the sensory 
or cognitive function under study. In practice, this implies that phase opposition experiments may be more 
likely to succeed when they investigate the periodicity of a “peripheral” brain function (with short activation 
latency) rather than a more “central” one (with later activation latency). In any case, POS and circ. W-W tests 
provide the best outcome in such situations.  

Figure 11. Effect of varying time of 
oscillatory phase modulation. The phase that 
determined the trial outcome A vs. B was 
extracted from background 
electrophysiological signals (by filtering and 
Hilbert transform, see Figure 2) at different 
moments around stimulus onset. The 
presence of an ERP with strong phase-locking 
across (all) trials may be expected to obscure 
the underlying phase opposition at specific 
time-frequency points. For latencies between 
-200 and -50ms, all phase opposition 
measures performed optimally (statistical 
power>0.9). With increasing latencies, all 
measures deteriorated, in the following 
order: PBI first, followed by POP, circ. W-W 
and finally, POS. 

 

3.2.9 ERP amplitude difference 
So far, the influence of ERPs on phase opposition has only been investigated in situations where both task 
outcomes A and B produced ERPs of similar amplitude (ERPA=ERPB). This influence was found to be already 
fairly detrimental in such situations (see, in particular, Figures 7 and 11). But many experimental tasks can also 
be expected to produce different ERPs for different task outcomes. For example, the amplitude of certain ERP 
components is commonly found to vary, depending on the subject’s behavior. In one extreme situation, with 
brief visual stimuli at detection threshold, Busch et al (2009) found a strong ERP for hits but virtually no ERP 
amplitude for misses. As the potential masking of ongoing oscillatory signals by ERPs is directly related to ERP 
amplitude (whether this amplitude is the reflection of a phase reset process and/or of an additive signal), an 
asymmetry in ERP amplitudes for the two trial groups A and B could translate into an imbalance between the 
quantities ITCA and ITCB (relative to their baseline ITCall), and thus affect the calculation of phase opposition 
(through Equations (4-7)). 

To explore the effects of such an ERP imbalance11, we fixed the ERP amplitude of trial group B to ERPB=10 
(arbitrary units), and systematically varied the amplitude ERPA of the other trial group from 0 to 50. The 
resulting statistical power curves (Figure 12) revealed that ERP imbalance could indeed impair phase 
opposition: all curves peaked around ERPA=10, that is, when the two ERPs were approximately equal. In fact, 
the performance decrease appeared nearly proportional to the ratio between highest and lowest ERP 
amplitude, regardless of whether ERPA was above or below ERPB. This means that the impairment due to ERP 
amplitude imbalance cannot be compensated for by one of the two trial groups having low (or even null) ERP 
amplitude, and thus low contamination of phase calculations. PBI was overall the least successful measure, 
followed by POP. While POS performed above circ. W-W (and all other measures) around the amplitude 
equilibrium point (ERPA between 5 and 20), this relation reversed and circ. W-W became the most successful 

strategies involve using causal filters (Zoefel & Heil, 2013) or ERP removal and interpolation techniques (Lakatos et al., 
2013; Henry, Herrmann, & Obleser, 2014). 
11 We focused here on imbalance in ERP amplitude, keeping the exact ERP shape constant (except for latency/amplitude 
noise that was comparable in both trial groups). However, systematic differences in ERP shape (in particular, in the onset 
or peak latency of specific components) are likely to also strongly affect phase opposition. 
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measure when imbalance increased. In fact, POS performed worse than any other measure with ERPA≤2, and 
worse than circ. W-W and POP (but not PBI) with ERPA≥40. 

Figure 12. Effect of varying ERP amplitude 
difference. ERP amplitude for one group of 
trials (group B) was fixed at ERPB=10 
arbitrary units (indicated by the vertical gray 
arrow). For all phase opposition measures, 
statistical power was best when ERPA was 
approximately equal to ERPB, and declined 
both when ERPA was higher (right time-
frequency maps) and when it was lower (left 
maps; even though the phase of group A 
trials could be more accurately estimated in 
this latter case). When ERPA and ERPB were 
approximately equal, POS was the best 
performing measure. However, the POS 
measure became less reliable than others 
when the amplitude ratio was higher than 2 
or lower than 0.5 (bottom-left map). In that 
case, the circ. W-W test provided the highest 
statistical power (top time-frequency maps). 

To summarize this set of simulations, while it is best not to have any ERP contamination (see Figure 7), 
whenever ERPs are present (i.e., in most situations) it is better to have them as equal as possible for the two 
trial groups. Around the equilibrium point, POS has the highest statistical power, but when the ERP amplitude 
ratio is above 2 (or below 0.5), circ. W-W becomes preferable. 

4. Discussion 
Seven measures of phase opposition were compared in a variety of real and artificial experimental situations. 
All measures proved their value on a previously published dataset (Busch et al, 2009; Figure 3). On a series of 
artificial datasets with systematic manipulations of experimental parameters, we were able to provide a 
detailed assessment of all methods, and understand their common or individual reactions to changes in certain 
key parameters. These results informed us about the conditions in which phase opposition experiments are 
most likely to succeed, and about the right measure(s) to use for every situation.  

 4.1 Limitations 
The present explorations, while hopefully useful, are necessarily incomplete. Other parameters or parameter 
combinations would certainly have been interesting to test. For example, the influence of ERPs (Figure 7) or of 
the timing of phasic modulation (Figure 11) are likely to be frequency-dependent, that is, different patterns of 
results might have been obtained if a slower (say, 7Hz) or a faster (say, 30Hz) phasic modulation frequency had 
been employed. In addition, changes in the shape and/or latency of ERPs between trial groups (which were not 
included here) could be expected to influence the statistical power of our different measures by introducing 
spurious phase opposition. Changes in the noise structure (e.g. from white noise to pink or brown noise; see 
Footnote 2) are also likely to affect the frequency-dependence of phase opposition (Figures 6 and 10). The 
range of possible factors to consider is virtually limitless. Nonetheless, we can hope that the key conclusions 
obtained in the various simulations performed here could generalize to a larger range of investigations.  

Similarly, the choice of seven particular phase opposition measures necessarily leaves aside a number of other 
alternatives. Circular-to-linear correlation can be employed, for example, in experiments with a graded task 
outcome (e.g. reaction time), which would have been grouped here into two outcomes A and B (e.g. faster vs. 
slower reaction times). Studies that are motivated by a strong a priori about the relevant oscillatory rhythm 
(e.g. occipital alpha) could dispense with time-frequency phase opposition analyses altogether (comparing 
phase distributions across task outcomes), and instead plot task outcome as a function of phase (similar to the 
top-right plot in figure 2) in order to evaluate the depth of any sinusoidal modulation. Besides, standard inter-
trial coherence in Equations (4-7) could be replaced by an equivalent but unbiased measure of phase-locking 
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such as the pairwise phase consistency or ‘PPC’ (Vinck et al., 2010). Causal filters (Zoefel & Heil, 2013) or ERP 
removal and interpolation procedures (Lakatos et al., 2013; Henry et al., 2014) could be employed to avoid 
post-stimulus contamination of phase measurements. By no means do we wish to imply that the measures 
tested here are the only alternatives; however, all these measures have been employed recently by our group 
and others worldwide to explore phase opposition in time-frequency electrophysiological data. We thus 
anticipate that the comparison of these procedures should prove helpful to at least these experimenters, and 
hopefully also to others that may follow the same inspiration. 

 4.2 Key messages 
For all three ad-hoc phase opposition measures introduced here (POS, POP, PBI), a streamlined non-
parametric statistical procedure using a relatively small number of surrogates (permutations) to characterize 
the mean and standard deviation of the null hypothesis distribution, and subsequently deriving p-values from 
a z-score, was found to be preferable to the standard non-parametric permutation procedure. With large 
numbers of permutations, the two statistical procedures were equally efficient (Figure 5), but contrary to the 
standard procedure, the hybrid permutation+z-score tests did not suffer noticeably when the permutation 
number was decreased. With 1,000 permutations, as used in most of our simulations, this hybrid 
permutation+z-score test always outperformed the conventional permutation procedure. We thus 
recommend using the hybrid technique, or else using the conventional permutation method with sufficiently 
large numbers of permutations (at least 10,000). 

No single measure was systematically better than all the other ones; rather, the optimal measure was strongly 
tied to the exact parameter values of the artificial dataset generation process. Across all simulations (Figures 4-
12), however, the winning measure was always either POS or circ. W-W, and never POP or PBI. We thus 
recommend abandoning these two measures, especially PBI which we had introduced in 2009 (Busch et al., 
2009) and which has been independently employed in (at least) 13 publications since (Hamm et al., 2012; Ng 
et al., 2012; Auksztulewicz & Blankenburg, 2013; Hanslmayr et al., 2013; Manasseh et al., 2013; Rana et al., 
2013; Diederich et al., 2014; Park et al., 2014; Li et al., 2015; Shou & Ding, 2015; Strauss et al., 2015; van 
Diepen et al., 2015; Batterink et al., 2016). Although there is no indication that PBI would have led authors to 
erroneous conclusions in any of these studies, it is also clear that more accurate results (or higher statistical 
power) would have been achieved using other measures. 

Under what conditions should the non-parametric POS measure be used, and under what conditions the 
parametric circ. W-W test? In many of the situations tested, both of these did provide equivalent results (and it 
might then be preferable to use the parametric method, if only because it does not require computationally 
intensive permutations). In specific cases, however, their performance was found to differ. POS was reliably 
better with low trial numbers (200 or less; Figure 8), for higher frequencies of phase modulation (20Hz and 
above; Figures 6 and 10), and for phasic modulations occurring just after stimulus onset (around 50ms; Figure 
11). In turn, circ. W-W was better in asymmetric situations where either the relative trial number (Figure 9) or 
the ERP amplitude (Figure 12) differed markedly between the two trial groups. As many of the relevant 
parameter values cannot be known in advance and are not under the experimenter’s control (e.g. frequency or 
timing of phasic modulation), we recommend systematically using both methods. In order to make these 
analysis methods more easily accessible to all experimenters, and to make the results more easily comparable 
between studies, we provide associated Matlab code (http://www.cerco.ups-
tlse.fr/~rufin/PhaseOppositionCode/) to automatically compute p-values derived from circ. W-W and POS 
procedures (with both standard permutation and hybrid permutation+z-score tests implemented for the 
latter). 

 4.3 Conclusion 
Independent of the exact analysis procedure employed, our explorations have revealed that the likelihood for 
an experimenter to detect phase opposition in an electrophysiological dataset is affected by several factors. 
This was true, even using a constant magnitude of phasic modulation (for example, in most of our simulations 
a reversal of rhythmic phase produced a 40% modulation of the probability of task outcome A vs. B; Figures 5-
12). Among the most important factors to consider for phase opposition analyses are the absolute and relative 
trial numbers (Figures 8 and 9), the overall ERP amplitude (Figure 7) and any potential ERP amplitude 
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difference between the trial groups (Figure 12), as well as the frequency (Figure 10) and exact time (Figure 11) 
of the phasic modulation. Throughout all these simulations, the phase bifurcation (PBI) measure performed 
systematically worse than others. The optimal statistical power was shared (alternately) by one parametric 
measure, the circular Watson-Williams test (circ. W-W) and a non-parametric one, the phase opposition sum 
(POS). Our conclusion is, therefore, to recommend using these two tests in any future exploration of phase 
opposition. The analysis code that we provide should hopefully facilitate that objective. 
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