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Abstract 

Our attentional focus is constantly shifting: in one moment our vision may be intently 
concentrated on a specific spot, while in another moment we might spread our attention 
more broadly. While much is known about the mechanisms by which we shift our visual 
attention from place to place, relatively little is know about how we shift the aperture of 
attention from more narrowly- to more broadly-focused. Here we introduce a novel 
attentional distribution task to examine the neural mechanisms underlying this process. In 
this task, participants are presented with an informative cue that indicates the location of 
an upcoming target. This cue can be perfectly predictive of the exact target location, or it 
can indicate—with varying degrees of certainty—approximately where the target might 
appear. This cue is followed by a preparatory period in which there is nothing on the 
screen except a central fixation cross. Using scalp EEG, we examined neural activity 
during this preparatory period. We find that with decreasing certainty regarding the 
precise location of the impending target, participant response times increased while target 
identification accuracy decreased. Additionally, N1 amplitude in response to the cue 
parametrically increased with spatial certainty while the multivariate pattern of 
preparatory period visual cortical alpha (8-12 Hz) activity encoded attentional 
distribution. Both of these electrophysiological parameters were predictive of behavioral 
performance nearly one second later. These results offer insight into the neural 
mechanisms underlying how we use information to guide our attentional distribution, and 
how that influences behavior. 
 
Significant Statement 

Animals—including humans—frequently shift their visual attentional focus more 
narrowly or broadly depending on expectations. For example, a predator feline may focus 
their visual attention on a burrow hole, waiting for their prey to emerge. In contrast, a 
grizzly bear hunting salmon doesn’t know precisely where the fish will jump out of the 
water, so it must spread its attention more broadly. In a series of novel experiments, we 
show that this broadening of attention comes at a behavioral cost. We find that 
multivariate changes in preparatory visual cortical oscillatory alpha (8-12 Hz) encode 
attentional distribution. These results shed light on the potential neural mechanisms by 
which preparatory information is used to guide attentional focus. 
 

Introduction 

Humans and animals alike have the ability to prepare for future events and to focus their 

attention on the spatial location where they expect to observe the upcoming event of 

interest. Just as a feline stalking its prey can wait patiently—attention focused on a single 
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spot in a clearing or broadly across an entire glade—so too can humans willfully decide 

to either pay attention to a precise location or spread their attention across their visual 

field. However, it is well established that performance is worse when attention is 

distributed compared to when attention is focused, which has been documented as a 

decrement in performance when we are not given precise details as to the location of the 

ensuing event (Mangun and Hillyard, 1988) or for cued/attended compared to non-

cued/unattended locations (Posner, 1980; Shulman et al., 1985; Handy et al., 1996). 

Attentional cueing is so effective, it can even reduce the effect of hemispatial neglect 

symptoms (Riddoch and Humphreys, 1983). However, studies that examine the 

distribution of spatial attention often do so by splitting attention across multiple distinct 

points in the visual field, such as for multiple object tracking (Cavanagh and Alvarez, 

2005; Shim et al., 2013), or by manipulating the distance between the cued location and 

the upcoming target (Hollingworth et al., 2012). Although a great deal of research has 

examined the control of focused spatial attention, the neural mechanisms involved in 

preparatory attentional distribution are less studied. 

Here we examined the neural basis for top-down, preparatory spatial attentional 

focus and distribution using a novel preparatory distributed attention task. In this task, 

participants are cued as to exactly how narrowly or broadly they need to focus or spread 

their attention in space in order to detect an impending visual target (Fig. 1 and Methods). 

We hypothesized that decreased spatial information would both diminish target detection 

accuracy and increase response time (RT). Moreover, because attention elicits strong 

modulation of early visual P1/N1 event-related potentials (ERP) (Mangun and Hillyard, 

1988; Luck et al., 2000), we expected that the behavioral changes predicted for 

attentional distribution may be associated with decreased cue-evoked P1 and/or N1 

amplitudes related to the reduction in certainty provided by the cue. Furthermore, we 

predicted that the spatial extent of top-down preparatory attentional distribution will be 

encoded by the multivariate pattern of later preparatory visual cortical alpha (8-12 Hz) 

amplitude, allowing us to estimate the attentional focus. This hypothesis is predicated on 

the idea that, for spatially focused attention versus distributed attention, relatively fewer 

neurons have to be modulated in a preparatory fashion. This would mean that as the total 
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spatial area to be attended to increases, so too does the number of visual cortical 

ensembles being modulated. However, this top-down modulation of more visual cortical 

ensembles would result in a decrement in the precision of attentional distribution, 

resulting in behavioral performance costs. It is important to emphasize that the visual 

cortical activity to be analyzed will be during the preparatory period when there is no 

visual stimulus actually present on the screen other than the central fixation cross; that is, 

all of the ERP and alpha activity to be analyzed will be preparatory, rather than target-

related, allowing us to assess the fine scale of human spatial attention in a manner not 

possible through behavioral analysis alone. 

 

 

  

  

 

 
Figure 1 | Distributed spatial attention task. Each trial begins with the 
presentation of a centrally presented spatial cue (left) overlaid on top of a 
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5 
persistent central fixation cross. The cue indicates (with a green wedge) 
where an upcoming target will appear, with varying certainty, after a random 
length preparatory period. In the 100% certain condition (top) the target will 
briefly (50 ms) appear exactly 4.5° to the left or to the right of center 
(right). In the 75% certainty condition, the target will appear anywhere in a 
90° arc, with 4.5° central eccentricity. In the 50% certainty condition, the 
target will appear anywhere in a 180° arc, while in the 0% certainty 
condition the target will appear anywhere in the full 4.5° central eccentricity 
circle. Possible target locations are illustrated with the blue arc (not actually 
shown on screen). For the bilateral task variant, simultaneous to the 
presentation of the target a non-target stimulus with matched visual 
properties is always shown in the non-target hemifield, mirrored across the 
vertical meridian. 
 

Materials and Methods 

All data were analyzed in MATLAB® (R2014b, Natick, MA) using custom scripts. All 

participants gave informed consent in accordance with our protocols approved by the 

UCSF Committee on Human Research in the Human Research Protection Program. 

Participants in all three experiments were between 20 and 30 years old. There were three 

total experiments: two behavioral-only experiments with 12 and 9 participants in each, 

followed by an electroencephalography (EEG) experiment with 17 participants included 

in the final analyses. 

 

Experimental Task. We designed a novel attentional cueing task—a modification of the 

Posner cueing task (Posner, 1980)—to parametrically manipulate the amount of visual 

spatial information provided by a pre-target visual cue (Fig. 1). Each trial begins with a 

centrally presented pre-target cue for 100 ms. This is followed by a variable preparatory 

period (1500-2000 ms, uniformly distributed) wherein the only stimulus on screen is the 

central fixation cross. This preparatory period is followed by the visual target, which 

remains on screen for 50 ms. For the two “bilateral” experiments, simultaneous to the 

visual target there was also a non-target stimulus (see below). Throughout the entire task, 

participants were asked to maintain central fixation; a fixation cross is persistent on-

screen to assist them. This is to reduce anticipatory saccading toward the hemifield of the 

upcoming target, maximizing visual extrastriate stimulus representation laterality and 

minimizing non-neural EEG artifacts (e.g., preparatory saccades). 
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6 
The cue is a green- and red-checkered circle surrounding the fixation cross, with 

matched luminances for both colors. This circle is bisected along the vertical meridian 

with a black line. For the 100% certain condition, the green and red checkerboard is 

broken by a solid red line in one hemifield and a solid green line in the other hemifield, 

along the horizontal meridian. These green and red lines are the same vertical width as 

the arms of the fixation cross, and they extend the entire radius of the cue circle. Whether 

the green segment appears in the left or right visual hemifield (and thus the red line in the 

opposite hemifield) is randomized. The hemifield of the green line is perfectly 

informative of the location of the upcoming target stimulus (100% cue certainty), which 

will appear 4.5° away from center exactly on the horizontal meridian in whichever 

hemifield the green line points to. For the 75% certain condition, instead of green and red 

lines, the cue has green and red 90° wedges, centered along the horizontal meridian. In 

this condition, the hemifield of the green wedge is still perfectly informative of the 

hemifield in which the upcoming target will appear, however it also indicates that there is 

some uncertainty as to where exactly it will appear in that hemifield. Specifically, it 

indicates that the upcoming target will appear somewhere along a 90° arc, also centered 

across the horizontal meridian, at 4.5° central eccentricity. For the 50% certain condition, 

the two hemifields of the cue are either all green or all red, indicating that the upcoming 

target will appear somewhere along the 180° semicircle (a whole hemifield), at 4.5° 

central eccentricity. For the 0% certain condition, the cue is just a green and red 

checkerboard, indicating that the upcoming target will appear somewhere along the 360° 

circle at 4.5° central eccentricity. Condition (100%, 75%, 50%, or 0 % cue certainty) and 

target hemifield are randomized on a trial-by-trial basis. 

The targets are plusses enclosed by a circle. Participants are tasked to indicate, via 

manual button press with their dominant hand, whether the plus is exactly vertical and 

horizontal (index finger) or rotated off-angle (middle finger). For the “bilateral” versions 

of the experiment, a non-target stimulus is simultaneously presented in the opposite 

hemifield, mirrored across the vertical meridian. This non-target stimulus is a box 

enclosed by a circle, meaning its basic visual components (two horizontal and two 

vertical bars enclosed in a circle) are the same as that of targets, but its context is 
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7 
different. These non-target stimuli are included so that the visual input entering the two 

visual cortices are largely equivalent during both the cue and target periods, allowing us 

to isolate cognitive/attention EEG activity from purely visual processes. 

Prior to the main experiment, each participant underwent individual 

psychophysical thresholding to normalize accuracy across participants. The thresholding 

procedure is a two-down, one-up staircase (converging on ~70% accuracy (Leek, 2001)). 

In this thresholding task, participants are only presented with the 50% certainty cues, 

initially being shown either a vertical/horizontal “+”, or a 45°-rotated “X”. With every 

correct trial, the “X” rotates 1.5° closer toward the vertical/horizontal; with every 

incorrect response it rotates 3.0° away from the vertical/horizontal. The average angle 

across the final 10 trials, once behavioral asymptote was reached, was used as the final 

angle for the main experiment. The average angle across participants was 5.85° (range: 

2.20° to 11.25°). Three separate experiments were conducted: in the first—the unilateral 

variant—12 participants saw a version of the task where only a target stimulus was 

shown, with no non-target presented in the opposite hemifield. In the second—the full 

version of the task described above, minus the EEG—was given to 9 participants. In each 

of these two experiments, each participant performed 200 trials (50 trials per cue 

information condition). 

To examine the effect of cue information on the dependent variables (behavioral 

and electrophysiological), a linear model was fit on a per-subject basis to get a parameter 

estimate of the within-subjects effect of cue information on the outcome measure. Under 

the null hypothesis, the distribution of these parameters estimates (which index the linear 

change in the dependent variable per cue condition) is not significantly different from 

zero. This was formally assessed using one-sample, two-tailed t-tests, with effect sizes 

reported as Cohen’s d. 

 

Electroencephalography. The third experiment included EEG recordings collected from 

31 young (20-30 year old) adults (though due to very strict inclusion criteria outlined 

below, only 17 participants are included in the final analysis). EEG data were collected 

using a BioSemi ActiveTwo 64 channel DC amplifier with 24-bit resolution, sampled at 
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8 
1024 Hz. In addition to 64 scalp electrodes both horizontal (HEOG) and vertical (VEOG) 

electrooculograms were recorded at both external canthi and with a left-inferior eye 

electrode, respectively. Data were referenced offline to the average potential of two 

mastoid electrodes and analyzed in MATLAB® (R2014b, Natick, MA) using custom 

scripts and the EEGLAB toolbox (Delorme and Makeig, 2004). 

 ERP analyses were performed on bandpass-filtered (0.1-20 Hz) data time-locked 

to the cue onset using a 100-ms pre-stimulus baseline and 700 ms post-cue time window. 

Only trials where the participant gave a subsequent correct response were included in 

EEG analysis. Event onset times were based on timing information provided by a 

photodiode attached to the stimulus presentation monitor to ensure exact timing relative 

to stimulus presentation. Eyeblink artifacts were removed using independent component 

analysis (ICA) (Bell and Sejnowski, 1995). Trials where electrode potentials exceeded 

±100 µV and trials with saccades (identified using HEOG channels) were excluded from 

analysis. Because task stimuli were lateralized, all analyses were performed by 

hemisphere where contralateral stimuli were defined as left hemisphere channels for right 

hemifield targets and right hemisphere channels for left hemifield targets (and vice 

versa). For scalp topography plots, electrode potentials were swapped right to left across 

the midline to normalize electrode locations as though stimuli were always presented in 

the right visual hemifield, making left hemisphere channels contralateral to the stimulus 

and right hemisphere channels ipsilateral to it. 

 For alpha band (8-12 Hz) analyses, the absolute value of the Hilbert transform of 

alpha bandpass-filtered continuous (eyeblink corrected) EEG were used to extract alpha 

band analytic amplitudes. Frequency-band analytic amplitude time series were subjected 

to normal event-related analyses, removing the same incorrect and artifact-contaminated 

trials as removed from ERP analyses and normalized against a 100 ms baseline. ERP and 

analytic amplitude analyses were performed using a visual extrastriate ROI (PO3/4, 

PO7/8, O1/2). 

 Each EEG participant performed the full task described above for 400 total trials 

(100 per cue condition) after pre-EEG psychophysical thresholding. Because the neural 

questions of interest are predicated on the laterality of top-down preparatory modulation 
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9 
of visual extrastriate regions, we used a very strict EEG artifact rejection procedure 

wherein any trial with any saccade was dropped from subsequent analysis. This resulted 

in 14 participants being dropped from subsequent analyses due to too few trials in each 

condition (25 trial minimum cutoff per condition). 

 

Inverted Encoding Modeling (IEM). Because our hypothesis is multivariate in nature –

i.e., the scalp pattern of alpha-band activity representing the attended location will 

systematically become less selective as cue certainty decreases – we applied a 

multivariate inverted encoding model (IEM) to quantify topographic patterns of alpha 

activity representing attentional bias. IEMs model the relationship between neural 

responses and stimulus or task features using predefined basis functions and have been 

used to reconstruct basic stimulus features during perception and short-term memory 

(Sprague and Serences, 2013; Wang et al., 2014; Ester et al., 2015). Recent evidence has 

shown that IEMs can successfully reconstruct the spatial focus of anticipatory attention 

from alpha-band topographies (Samaha et al., 2016). Here, our approach was to train a 

model to distinguish left from right attention during the 100% certain condition, when 

attention was most spatially focused. We then tested the model on the three other cue 

certainty conditions (75%, 50%, and 0%), reasoning that the patterns of alpha power 

should become increasingly dissimilar from the 100% certainty pattern as certainty 

decreased, reducing the model's ability to discriminate left from right. This approach has 

the further advantage of reducing a distributed pattern of data into a single metric of 

attentional bias. 

   We modeled left versus right spatial attention using a basis set of two binary 

functions (or “channels”), one representing left spatial attention (e.g., [1 0]) and one 

representing right (e.g., [0 1]). This approach is analogous to a linear decoding analysis of 

left versus right attention using differences in classifier evidences to quantify attentional 

bias (Sprague et al., 2015). As input to the model we used the averaged alpha amplitude 

from 500-700 ms post-cue from all occipital and parietal electrodes (CPz, CP1/2, 3/4, 

5/6, TP7/8, Pz, P1/2, P3/4, P5/6, P7/8, P9/10, POz, PO3/4, PO7/8, Oz, O1/2). In the first 
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10 
step, training data from all but one trial (test data) of the 100% cue certainty condition is 

used in a general linear model of the form: 

 

B1 = WC 

 

Where B1 (m electrodes x n trials) is the observed signal at each electrode (alpha 

amplitude) for each training trial, C1 (k channels x n trials) is a matrix of predicted 

responses for each information channel on each trial, and W (m electrodes x k channels) is 

a weight matrix that characterizes the mapping from “channel space” to “electrode 

space.” The weight matrix W (m electrodes x k channels) can be derived using ordinary 

least-squares regression as follows: 

 

W = B1C1
T(C1C1

T)-1  

Next, the model is inverted to transform the observed test data B2 (m electrodes x 1 trial) 

into a set of estimated channel responses, C2 (k channels x 1 trial), using the weights 

derived from the training data, via the equation: 

  

C2 = (WTW)-1WTB2 

 

This procedure was iterated until every trial served as a testing set, (i.e., leave-one-trial-

out cross-validation). The estimated channel responses were then aligned to a common 

center and averaged across trials. After each iteration of the cross-validation procedure, 

the weight matrix W was saved. Once cross-validation of the 100% cue certainty 

condition was completed, these weights were averaged over each iteration and then 

applied to the independent data from the 75%, 50%, and 0% conditions. Attentional bias 

(or selectivity) is computed as the subtraction of the output of the channel representing 

the unattended visual hemifield from that of the attended hemifield. By this metric, zero 

represents no attentional bias and increasing positive values denote higher channel 

outputs for the attended hemifield, that is, greater preparatory attentional bias toward the 

hemifield of the upcoming target. 
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Results 
The initial behavioral version of the task made use of unilateral stimulus presentation. In 

this version (n = 12 participants), decreasing certainty regarding the spatial location of the 

upcoming target stimulus reduced participant accuracy and slowed response times (Fig. 

2a; acc: p = 0.003, d = -2.35; RT: p =0.011, d = 1.84). We then modified the task for EEG 

to include a non-target stimulus presented simultaneously to the target, but in the opposite 

visual hemifield (Fig. 1, see Methods). This ensured that visual inputs to both cortical 

hemispheres were equal across all task conditions as well as during both the cueing and 

response periods. Behavioral pilot testing of the bilateral design (n = 9 participants) 

revealed the same behavioral pattern: decreasing spatial certainty led to more errors and 

slower RT (Fig. 2b; acc: p = 0.027, d = -1.91; RT: p = 0.028, d = 1.90). Finally, with 

concomitant EEG recording in another group of participants (n = 17) we again observed 

the same performance pattern, highlighting the robustness of the behavioral effect (Fig. 

2c; acc: p < 10-6, d = -4.45; RT: p < 10-7, d = 4.69). Note that only during the EEG 

recording session were we able to assess eye movements and saccades, with excessive 

preparatory period saccades resulting in the exclusion of 14 out of 31 total participants 

from subsequent EEG analyses (leaving n = 17). Nevertheless, the 14 excluded 

participants also showed the same behavioral effect (data not shown; acc: p < 10-5, d = -

4.55; RT: p = 0.014, d = 1.58). 
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Figure 2 | Behavioral results. a-c, Across three separate experiments 
using two variants of the behavioral paradigm, we find that decreasing 
spatial certainty regarding the location of upcoming target stimulus resulted 
in less accurate, slower responses. (*significant effect of spatial certainty, p 
< 0.05; error bars: sem). 
 

Electrophysiological analysis of cue-evoked visual extrastriate N1 (140-180 ms) activity 

showed that both contralateral and ipsilateral N1, but not P1, were modulated by cue 

certainty such that average N1 amplitude magnitude decreased with spatial uncertainty 

(Fig. 3, top; contralateral: p = 0.039, d = 1.12; ipsilateral: p = 0.058, d = 1.02). N1 

magnitude also trended toward being greater at contralateral, compared to ipsilateral, 

sites (p = 0.097, d = 1.12) and for the high certainty conditions (post-hoc one sample, 

two-tailed t-test for differences from 0 µV, contra-/ipsi-lateral: p100% = 0.037/0.078, p75% 

= 0.028/0.063, p50% = 0.50/0.52, p0% = 0.55/0.79). Note the N1 effect was largest for the 

75% condition, with no P1 effect. Given how small the cue was, and how luminance was 

held constant for the different cue condition stimuli, these relatively weak effects are not 

surprising. 
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13 
Analysis of focal, event-related visual extrastriate alpha amplitude showed a 

strong, early (250-450 ms) alpha amplitude decrease, followed by a sustained alpha 

negativity (500-700 ms) (Fig. 3, bottom). However, neither early nor late visual 

extrastriate alpha amplitudes were parametrically modulated by the cue, in either 

hemifield (early contra: p = 0.14, d = 0.79; early ipsi: p = 0.40, d = 0.43; late contra: p = 

0.70, d = 0.20; late ipsi: p = 0.71, d = -0.19). Note that post hoc analysis of univariate 

alpha shows that 0% certainty is significantly different from the other three conditions 

(p100 = 0.024, p75 = 0.033, p50 = 0.088), but it is insensitive to the finer-grained allocation 

of attention, which may be better captured via the multivariate topography of alpha. 

 

 
Figure 3 | Univariate cue-evoked N1 and alpha responses. (Top) cue-
evoked visual extrastriate N1 amplitude is largest for conditions where 
attention needs to be deployed more focally. (Bottom) In contrast, neither 
early nor late univariate alpha amplitude is significantly modulated by 
attention distribution requirements. (*significant effect of spatial certainty, p 
< 0.05; n.s.: not significant; error bars: sem). 
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To examine preparatory period visual cortical encoding of attentional distribution, we 

used an inverted encoding model (IEM) (Sprague et al., 2015) (see Methods). Here, the 

IEM takes into account the multivariate spatial pattern of late alpha activity across all 

parietal and occipital sites (see Methods) to get a trial-by-trial estimate of each 

participant’s attentional bias for each cueing condition (toward or away from the cued 

location). We find that with decreasing certainty of the upcoming target location, 

participants showed declining attentional bias (Fig. 4a; p = 0.009, d = -1.48). This was 

driven by a significant bias toward the cued location for the 100% condition, with 

increasingly weaker bias with decreasing certainty (post-hoc one sample t-test: p100 = 

0.038, p75 = 0.10, p50 = 0.10, p0 = 0.35). 

A complementary approach to examine the role of the spatial patterning of late 

visual alpha activity in attentional distribution is to assess trial-by-trial interhemispheric 

correlations. That is, for each participant, for each condition type, for each trial, we can 

look at how similar the alpha amplitudes are in the contralateral and ipsilateral 

hemispheres. Here, the hypothesis is that for more focused conditions there will be 

greater preparatory, unilateral, top-down modulation of contralateral alpha, leading to 

relatively weak interhemispheric correlations caused by stronger unilateral modulation. In 

contrast, for more broadly distributed attention conditions this top-down modulation will 

be more balanced across both visual hemispheres, leading to stronger interhemispheric 

correlations. Confirming our hypothesis, we find that as participants prepare to distribute 

their attention more broadly, trial-by-trial correlation of contralateral and ipsilateral late 

visual alpha increases (Fig. 4b; p = 0.015, d = 1.37). This pattern was not observed for 

N1 amplitude to the cue (p = 0.50, d = 0.35). 
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Figure 4 | Multivariate alpha encoding and interhemispheric alpha 
correlations. a, Inverted encoding model shows that multivariate alpha 
spatial patterning in visual extrastriate encodes the bias of attention. 
Multivariate alpha patterns representing the attended location become less 
hemifield-selective as spatial attention becomes less focused. This pattern is 
manifest as a linear decline in IEM bias as a function of cue information, 
reaching zero bias when the cue is completely uninformative. b, In addition, 
interhemispheric visual alpha amplitudes are relatively less correlated across 
trials for the focused, 100% conditions, and become increasingly more 
correlated as attention needs to be distributed more broadly and, ultimately, 
across hemifields. (*significant effect of spatial certainty, p < 0.05; error 
bars: sem). 

 

Finally, we observe that preparatory period electrophysiological activity predicts 

subsequent behavioral performance. We modeled difference in accuracy or RT between 

the 100% and 0% certainty conditions as a function of the concomitant difference in 

contralateral visual N1 amplitude or alpha bias (from the IEM). We find that differences 

in both N1 amplitude and alpha biasing predicts both accuracy and RT difference (Fig. 5; 

rN1/acc = -0.57, p = 0.017; rN1/RT = 0.53, p = 0.028; ralpha/acc = -0.48, p = 0.049; ralpha/RT = 

0.50, p = 0.021). That is, the participants with the largest N1 amplitude and alpha bias 

differences between 100% predictive information and 0% information, showed the 

biggest behavioral differences, characterized by both a greater decrement in accuracy and 

a slowing of RT.  

While N1 amplitude and alpha selectivity differences each predict behavior, 

independently explaining 28% and 18% of the variance in accuracy difference, 

respectively, multiple linear regression modeling using both electrophysiological 
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variables as predictors improves prediction of behavioral accuracy to 34% (adjusted R2 to 

control for the number of predictors in the model, p = 0.036). Similarly, N1 and alpha 

selectivity differences independently explain 24% and 26% of the variance in RT 

difference, respectively; this improves to 37% when both electrophysiological variables 

are included (p = 0.003; note that N1 difference is not correlated with alpha bias 

difference: r = 0.32, p = 0.21). These results suggest that these two electrophysiological 

variables have relatively independent influences on upcoming behavioral outcomes, and 

are robust to using slope change as opposed to the 100% versus 0% difference (acc 

model: adjusted R2 = 0.46, p = 0.020; RT model: adjusted R2 = 0.42, p = 0.030). 

 

 
Figure 5 | Electrophysiological behavioral prediction. Difference in N1 
and alpha encoding from the 100% to 0% conditions predict difference in 
accuracy and response times. (*significant effect of spatial certainty, p < 
0.05; dashed line: linear fit). 
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Discussion 
Spatial attention is a critical aspect of cognition, allowing animals to navigate through our 

complex world and make rapid decisions efficiently and effectively. While a great deal is 

known regarding how spatial attention is deployed to specific regions of the visual field, 

how it is used to track and follow objects, and how attentional signals gets passed 

between the two cerebral hemispheres (Drew and Vogel, 2008), relatively little is 

understood about how preparatory information is used to focus or spread attention as 

needed. Previous work has shown that attention to lateralized visual targets modulates 

early measures of cortical activity, namely the P1 and N1 ERPs (Mangun and Hillyard, 

1988; Luck et al., 2000), with unilateral prefrontal cortex (PFC) lesions disrupting these 

ERPs only for stimuli presented contralateral to the PFC lesion, suggesting that 

hemispheric control of attention is semi-independent (Barcelo et al., 2000; Battelli et al., 

2009; Voytek and Knight, 2010). 

Although ERPs provide a robust index of top-down attentional modulation of 

neural activity in visual extrastriate cortex, the P1 and N1 are short lasting, time-locked 

signals, and are therefore perhaps less appropriate for assessing preparatory attentional 

distribution. In contrast, event-related alpha amplitude can be used to assess the degree of 

lateralized attention (Worden et al., 2000) and is sustained throughout preparatory and 

delay periods (Palva and Palva, 2007; Capotosto et al., 2009; Jensen and Mazaheri, 2010; 

Rohenkohl and Nobre, 2011). Physiologically, alpha amplitude is inversely correlated 

with cortical potentiation (Jasper and Penfield, 1949), making it an ideal index of top-

down preparatory modulation of visual cortex (Palva and Palva, 2007). 

In order to assess the neural mechanisms underlying the preparatory distribution 

of attention, we used a novel distributed attention task, combined with scalp EEG, to 

examine how preparatory period visual cortical alpha activity influences behavioral 

outcomes more than a second later. The behavioral results suggest that participants are 

challenged by the task of distributing their attention to broader visual areas, and that 

when they have to focus their attention to only one location they can respond more 

quickly and accurately. Participants were only given between 1.5 and 2.0 seconds during 

the preparatory period to make use of the cue in preparation for the upcoming target. 
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However, from behavior alone it is unclear whether the accuracy and RT costs associated 

with more distributed attention are driven purely by a spatial search cost after the target 

appears, or whether participants make use of the cue information during the preparatory 

period to improve their performance. By focusing EEG analyses on the preparatory 

period only, when no task-related visual information was present on screen, we were able 

to isolate a neural mechanism of preparatory attentional distribution. 

 The fact that cue-evoked contralateral N1 amplitude and multivariate alpha 

encoding during the preparatory period are both predictive of later behavioral outcomes 

shows how participants effectively use contextual cues to optimize attentional focus in 

preparation of a future event. The N1 and alpha reflect different physiological processes, 

with the former reflecting early visual processing of the initial information-giving cue, 

and the latter likely indexing top-down visual cortex activity modulation in preparation of 

the ensuing target. We found that both N1 and alpha independently predict later 

performance, and that adding both electrophysiological variables into the behavioral 

prediction models improves the predictions. That is, the behavioral modeling suggests N1 

and alpha provide independent information, and thus are likely reflecting different 

physiological processes needed for successful task performance. 

Interestingly, while univariate, focal alpha is different for 0% compared to the 

more informative cueing conditions, it is insensitive to finer differences between 

conditions. However, we hypothesized that preparatory attention would not affect just 

local alpha amplitude, but rather multivariate alpha topography and amplitude, captured 

via the inverted encoding model. The combined N1 and alpha IEM results strongly 

suggest that the distribution of attention is not solely an attentional search problem where 

one must find a target within a visual field. Rather, informative cues influence both early 

visual processing of the cue that supplies the predictive information itself, reflected in the 

N1, in conjunction with later preparatory spatial attentional deployment, indexed via 

multivariate alpha distribution. It is important to note that such decoding methods, 

especially at the level of scalp EEG, are unlikely to capture topographic maps of feature 

selectivity, for example; rather they are more likely to reflect more coarse-scale maps 

(Freeman et al., 2011; Wang et al., 2014). 
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We found that participants who showed the biggest difference in multivariate 

alpha between the focused (100%) versus distributed (0%) conditions also showed the 

smallest behavioral difference. In interpreting this result, a small performance difference 

could either be considered positive if participants performed consistently well, or 

negative if they were consistently poor performers. Upon further examination, 

participants with the smallest accuracy difference between 100% and 0% exhibited the 

highest performance for the uncertain, 0%, condition (r = 0.69, p = 0.0021). This 

observation suggests that failure to modulate the multivariate pattern of preparatory 

visual alpha is associated with poorer overall performance. That is, the behavioral cost 

associated with distributing attention across broader spatial fields is driven by the 

inability to modulate the pattern of preparatory visual cortical alpha. Thus, the ability to 

more precisely modulate the visual cortical neurons, perhaps through gain control 

mechanisms (Hillyard et al., 1998), that represent visual fields of varying extents 

improves performance overall across all conditions, reducing the magnitude of 

performance declines associated with distributed attentional focus. The results show that 

preparatory attention can be finely tuned and spatially modified rapidly depending on 

context, which in turn biases the cortex for target detection and influences behavioral 

outcomes more than a second later. 
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