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Abstract

The use of MRI as a diagnostic tool for mental disorders has been a consistent goal of
neuroimaging research. Despite this, the vast majority of prior work is descriptive rather
than predictive. The current study examines the utility of applying support vector machine
(SVM) learning to MRI measures of brain white matter in order to classify individuals with
major depressive disorder (MDD). In a precisely matched group of individuals with MDD
(n = 25) and healthy controls (n = 25), SVM learning accurately (70%) classified patients
and controls across an unselected brain map of white matter fractional anisotropy values
(FA). Using a feature selection approach, where maximal discriminative voxels were
selected, classification accuracy increased to over 90%. Moreover, when removing voxels
identified in univariate analyses as significantly different between MDD and healthy
controls, classifier accuracy was not changed; supporting the idea that group differences
revealed through descriptive methods do not necessarily provide highly accurate
classification. The results provide evidence that predictive methods of machine learning
can be applied to neuroimaging data in order to classify the presence versus absence of
MDD and that important predictive information is distributed across brain networks rather

than being highly localized.
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Introduction

A method for objectively identifying the presence or absence of psychiatric
disorders, such as major depressive disorder, is a long standing need in psychiatry (Kapur,
Phillips, & Insel, 2012). One promising approach is to use advances in MRI methods and
analytics to derive an objective diagnosis. Although mood disorders have been extensively
studied with MRI (Drevets, Price, & Furey, 2008; Lorenzetti, Allen, Fornito, & Yuecel, 2009),
including both structural and functional neuroimaging, few studies have used imaging data
to classify MDD. The current study examines whether in vivo diffusion tensor MRI (DTI), a
measure of white matter microstructure of the brain, can be used to accurately diagnose
major depressive disorder (MDD) (Bracht, Linden, & Keedwell, 2015; Versace et al., 2010).
Given the view that depression results from vulnerabilities across interconnected brain
networks rather than specific brain nodes (Mayberg, 1997; Wang, (")ngl'ir, Auerbach, & Yao,
2016) (Mulders, van Eijndhoven, Schene, Beckmann, & Tendolkar, 2015), approaches that
look at the underlying white matter structure that connects these networks could provide
important diagnostic utility.

Diffusion tensor imaging (DTI) is a technique that utilizes the ability of MRI to tag
water molecules and then wait some period of time to determine the extent to which those
molecules are microscopically diffused. By measuring multiple spatial directions, vectors
can be generated for each brain voxel to quantify the fiber orientation and integrity of
white matter pathways within the cerebral cortex. There are a number of different metrics
that can be generated from DTI, but scalar measures are more commonly used in MDD as

they can be correlated with disease severity and/or symptoms.
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Scalar measures are derived from calculations of one or more of the 3 principle
directional vectors of the “diffusion tensor” represented as an ellipsoid. One common
metric is fractional anisotropy (FA), which is the extent to which diffusion is characterized
as anisotropic, or highly directional (high FA) vs unrestricted or isotropic (low FA). For
example, one of the white matter pathways with the highest FA values is the corpus
callosum, due to its highly organized, densely packed fibers that run mainly in a left-right
direction. In addition to directionality, FA is influenced by axon size and density, pathway
geometry, and extent of fiber intersections (Alexander, Lee, Lazar, & Field, 2007; Beaulieu,
2002).

Another scalar measure is calculated as the average of the 3 directional vectors and
is referred to as mean diffusivity (MD). MD reflects the extent to which there is water
movement at all and is a useful clinical measure to indicate edema and restricted liquid
flow. Axial diffusivity (AD) is the strength of the primary directional vector and radial
diffusivity (RD) is the mean of the 2 non-principle vectors. While all these measures can be
calculated from DTI imaging, the most reliably sensitive measure of between group
microstructural white matter differences is FA (see (Feldman, Yeatman, Lee, Barde, &
Gaman-Bean, 2010).

A number of studies have demonstrated differences in FA values between patients
with MDD and healthy controls. For example, young adults with MDD exhibited
significantly lower fractional anisotropy in the white matter of the right middle frontal
gyrus, the left lateral occipitotemporal gyrus, and the subgyral and angular gyri of the right
parietal lobe relative to healthy controls (Ma et al.,, 2007). A meta-analysis of 132 articles

that examined FA in individuals with MDD (Liao et al., 2013) focused on 11 of those studies
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that were eligible for inclusion in the meta analysis and from that examination, identified 4
consistent locations associated with altered FA in MDD compared to healthy controls: right
and left dorsal frontal regions, a region of the right fusiform and a region of the right
occipital lobe.

A review paper that examined individuals at risk for MDD and adolescent and adults
with current MDD, focused on WM alterations in pathways associated with the reward
circuit (Bracht et al.,, 2015). Thirty-five studies fit their criteria and the most consistently
reported findings were reduced FA in the cingulum bundle, increases and decreases of FA
in the uncinate fasciculus in adolescents and reduced FA in the uncinate fasciculus and the
anterior thalamic radiation/supero-lateral medial forebrain bundle during acute
depressive episodes in adults. Other studies have focused on WM microstructure in those
at risk for MDD either by virtue of family history (Keedwell et al., 2012) or genetic
polymorphisms (Pacheco et al., 2009).

Given the heterogeneity of findings, an important theme that emerges from this
work is that white matter microstructure alterations in MDD are distributed across many
defined brain networks. Thus, the use of DTI to understand underlying WM features
associated with MDD has been useful in characterizing the underlying brain circuits
associated with the psychiatric disorder. However, despite these interesting results, it
remains unclear if and when DTI might be implemented as a promising diagnostic tool. One
of the steps needed in order to accomplish this goal would be to quantitatively determine
how well DTI measures can discriminate people with and without MDD.

One approach to examine the diagnostic utility of MRI modalities involves applying

multivariate machine learning classification algorithms in order to identify individuals with
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a specific disorder (Orru, Pettersson-Yeo, Marquand, Sartori, & Mechelli, 2012). There has
been increasing interest in applying multivariate pattern analysis methods in order to
categorize patients suffering from psychiatric disorders from healthy controls (Cohen et al.,
2011). The main advantage of these approaches is that they are predictive. Once a classifier
has been defined, it can then be tested on new individuals to predict which group they
belong to. Some of these approaches have utilized functional brain imaging (Zeng et al.,
2012), while others have applied the approach to structural brain images (Ardekani et al.,
2011). This approach is starting to be applied to MDD (for review see (Patel, Khalaf, &
Aizenstein, 2016)).

To date, this machine learning approach has been applied to a range of MRI
modalities in an effort to automate the diagnosis of a number of disorders. One domain
where the utility of this approach has been demonstrated is in aging and dementia where
structural and functional MRI data have been used to predict whether an individual is not
impaired, has mild cognitive impairment (MCI) or Alzheimer’s disease. For example, Magin
and colleagues (Magnin et al., 2009) used support vector machine (SVM) classifiers on
whole-brain T1 weighted MRI images to classify AD and normal elderly with 94.5%
accuracy.

Another paper examined multiple DTI metrics in order to demonstrate the extent to
which they could classify healthy older adults and those with MCI. Rather than use whole
brain data, these researchers first applied an algorithm to “reduce” the dataset by removing
non-discriminative voxels, which resulted in 7 datasets containing from 100 to 3000 voxels
(a typical Zmm DTI image would contain over 1 million voxels). SVM classification was

performed to predict 3 specific groups: healthy control, non-amnesic MCI and amnesic MCI.
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Of several DTI metrics examined, FA was the most accurate at classification, with the 500-
voxel dataset revealing the greatest level of accuracy, achieving maximum sensitivity of
92.2% and maximum specificity of 93.4%.

To date, the application of SVM classification with MRI data in MDD has been
minimal. One study of 32 women (14 with MDD) used global tractography-based graph
metrics for the classification of depression (Sacchet, 2015). Graph theory has been applied
to DTI images in order to generate a graphic representation of the network of fibers
connecting various brain regions, referred to as “nodes” (van den Heuvel & Sporns, 2013).
Resulting graphs can then be summarized using continuous metrics to describe large-scale
network properties. The investigators characterized connectivity between 34 cortical
regions resulting in 9 global graph metrics that were then used in a SVM classification.
Combined, the 9 metrics classified MDD and controls at a performance level of 71.9%
accuracy. The best single metric performance was for “small-worldness”, which achieved
69% classification accuracy. “Small-worldness” is said to reflect a high degree of close
distance connectivity as opposed to a network composed of mostly distant connections.
Finally, regional graph metrics were examined in order to understand the location of
differences that might contribute to classification. This analysis revealed abnormal
connectivity of the right pars orbitalis of the right ventrolateral prefrontal cortex (VLPFC),
right inferior parietal cortex, and left rostral anterior cingulate associated with MDD.

A second study applying SVM classification to DTI in order to study depression
applied probabilistic tractography to reconstruct specific WM tracts and then extracted
anatomical networks (Fang et al., 2012). SVM was then applied to determine the most

discriminating connections within these networks. The resulting classifications were highly
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accurate (91.7%) and revealed that the most discriminating connections were primarily
within the cortical-limbic network where it was revealed that young adult first episode
MDD patients displayed increased anatomical connectivity relative to healthy controls. In
this study, a two sample t-test approach was taken to select features to be utilized in
classification. An important limitation of the use of feature selection is it can produce
sample-specific results that may not generalize to new data.

The aim of the current study is to continue to explore the utility of DTI in the
classification of individuals diagnosed with MDD. Previous work in aging and dementia
produced promising results with standard scalar metrics derived from DTI - FA, MD, RD.
Moreover, when feature selection techniques were applied (Mwangi, Tian, & Soares, 2013),
classification accuracy was greatly increased. It is important to examine the predictive
power of classification both with and without feature selection to understand the
predictive range of these techniques. This approach was applied to a sample of treatment-
seeking participants with DSM-IV Major Depressive Disorder who were part of a study
testing the efficacy of attention bias modification (Beevers, Clasen, Enock, & Schnyer,
2015).

METHODS

Sample: Fifty-two treatment-seeking participants with DSM-IV Major Depressive
Disorder (MDD) and 45 healthy control (HC) participants were recruited for this study
from advertisements placed online, in newspapers, and on late-night TV. Participants were
screened for medical or physical conditions that would preclude participation in an fMRI
study (e.g., orthodontic braces). They also completed an abbreviated Mini International

Neuropsychiatric Interview (MINI) (Sheehan et al., 1998) to determine provisional MDD
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diagnosis (MDD) or absence of psychiatric symptoms (HC). Diagnoses were subsequently
confirmed in-person with a Structured Clinical Interview for the DSM-IV Disorders (SCID)
administered by a trained research assistant.

Participants in the MDD group met diagnostic criteria for current major depressive
disorder, but did not meet criteria for substance abuse (past year) or dependence, current
or past psychotic disorder, bipolar disorder, and/or schizophrenia. Participants in the HC
group did not meet criteria for any current or past psychiatric disorder. Consistent with
previous research (Amir et al., 2009; Sheehan et al., 1998), participants receiving
pharmacological treatment were allowed into the study if there had been no medication
change in the 12 weeks prior to study entry.

In order to increase the likelihood that groups were matched for structural brain
characteristics, we selected from the larger study sample a subset of healthy control
participants that were matched for age and gender on a 1-to-1 basis with individuals from
the MDD group. To minimize brain changes associated with aging, selected participants
were also between 18 and 35 years of age. This matching algorithm resulted in a sample
size of 50 participants (25 MDD, 25 healthy controls). This sample was used for all analyses
reported below.

Imaging Methods

Acquisition: All scanning was performed on a whole body 3T GE MRI scanner
(Excite) with an 8-channel head coil. The scanning protocol involved collection of a
localizer followed by a high-resolution T1 structural scan, two resting-state scans of 6
minutes each, and then a series of three functional scans while participants engaged in an

exogenous attention cueing task. Following the cueing task, a second high-resolution
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structural scan and the diffusion tensor (DTI) scan were collected.

The T1 structural scans were 3D SPGR volume acquisitions with 1.4 mm thick
sagittal slices for a total of 134 slices (TR = 9.7, TE = 4, flip angle = 10 degrees, slice
thickness = 1.4 mm, 134 slices, FOV = 25cm and matrix size = 256x256 mm). The primary
measure of white matter (WM) was derived from a HARDI diffusion MRI that was collected
using single shot echo planar imaging, and a twice-refocused spin echo pulse sequence,
optimized to minimize eddy current-induced distortions (GE 3T, TR/TE=12000/71.1,
B=1000, 128x128 matrix, 3mm (0-mm gap) slice thickness, 1 T2 + 25 DWI). Forty-one
slices were acquired in the approximate AC-PC plane. The 25 diffusion weighted directions
resulted in a high signal-to-noise diffusion volume that took approximately 7 minutes to
acquire. Participant head motion was minimized by instruction and the use of foam inserts.

Diffusion Tensor Processing: All diffusion image analysis was conducted with the
FMRIB Software Library (FSL, http://www.fmrib.ox.ac.uk/fsl). First, images were corrected
for eddy current distortions and for motion using the b=0 volume as a reference. The
registered images were skull-stripped using BET. Diffusion tensors were then calculated on
a voxel by voxel basis using conventional reconstruction methods (Basser, Mattiello, &
LeBihan, 1994) and from these tensors Fractional Anisotropy (FA), Mean Diffusivity (MD),
Axial Diffusivity (AD) and Radial Diffusivity (RD) maps were calculated on a voxel-by-voxel
basis.

Individual FA maps were then entered into the TBSS (Tract-Based Spatial Statistics)
pipeline (TBSS; Smith et al., 2006; 2009). To summarize the critical steps of the TBSS
pipeline - First, FA data were aligned onto the common FMRIB58 FA template (MNI152

standard space) using a non-linear registration algorithm FNIRT. Next, a mean FA image
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was created for each group - MDD and NC separately from the images for all the subjects in
MNI152 space and thinned to generate a mean FA white matter skeleton that represented
the center of all tracts common to the entire group. This map was thresholded to FA values
greater than 0.2 in order to exclude gray matter and low intensity voxels that may reflect
partial volume effects with gray matter. The aligned FA volume for each subject was then
projected onto the skeleton by filling the skeleton with FA values from the center of the
nearest tract. This is achieved for each skeleton voxel by searching perpendicular to the
local skeleton structure for the maximum value in the FA image of the subject. For the
purposes of this analysis, FA values were used from each subject for both the total FA map
as well as the FA skeleton map. The remaining scalar measures (MD, AD, and RD) were
processed using the alignment parameters from the FA processing stream in order to
generate common space maps that are true to the white matter architecture.
TBSS Voxel-wise Analysis

In order to compare results from univariate contrasts of WM maps to those obtained
through SVM classification voxel-wise comparisons were conducted between the final
group of 25 MDD patients and 25 healthy controls. Nonparametric statistical comparisons
were performed on the skeletonized FA images using the FMRIB Software Library (FSL)
randomize algorithm based on permutation generated statistical thresholds, with
corrections for multiple voxel-wise comparisons using threshold-free cluster enhancement
(TFCE). Anatomic locations of voxel clusters with statistically significant differences in FA
between MDD and HC at p < 0.05 were determined using 1000 permutations. The same
approach was taken to examine the MD, AD and RD maps.

Support Vector Machine Classification Analysis
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Classification of individual subjects was undertaken using the freely available
Pattern Recognition for Neuroimaging Toolbox (PRoNTo-
http://www.mlnl.cs.ucl.ac.uk/pronto/ (Schrouff, Rosa, Rondina, & Marquand, 2013)). The
Linear Support Vector Machine (SVM) used is conceptually illustrated in Figure 1. Each
dimension corresponds to a feature set (scalar voxel values reduced through the kernel
process in this case) and thus each subject is located in the space depending upon its
constituent features. The pluses and minuses constitute the two putative categories,
namely MDD and HCs. The SVM finds what is known as the maximum margin decision
boundary, which is the hyperplane that is furthest from the least discriminating features of
the to be discriminated categories. The hyperplane is also associated with a maximum
margin that best separates the two groups, where larger margins are associated with better
classifier generalizability. The margin is fully specified by the subset of training samples
that lie on it and reflect the support vectors, since they represent the specific cases that
support the solution (See Figure 1).

The SVM approach in PRoNTo utilizes LIBSVM for matlab, which is an
implementation of a linear-kernel SVM for binary classification (Chang & Lin, 2011).
Following DTI analysis, the resulting scalar maps were prepared for classification using 3
different approaches. First, whole brain scalar maps were used, although masked to include
only white matter by thresholding the group mean FA map at a value of FA > 0.2. The
resulting image was then used as a mask to select voxels for each participant as input to the
classification analysis. Using this approach, classification was conducted on the resulting
whole brain maps, a right hemisphere map and a left hemisphere map. This same approach

was taken to examine the FA skeleton map, namely classification was conducted on the
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whole brain skeleton and a left and right hemisphere only skeleton. Finally, a “feature
selection” approach was taken only for the FA map! in order to reduce the number of
voxels to a subset most relevant for classification (Mwangi et al., 2013). The approach
taken here is a feature-wise t-test filter to determine features that have different group
means (Mitchell et al., 2004). This step eliminates non-discriminative voxels that reduce
classification accuracy. This was accomplished by splitting the 2 groups in half randomly
and contrasting MDDs vs HCs in each split half data separately. Resulting t-maps were
thresholded at t = 2.10 (95% confidence interval) and then the 2 split half t-maps were
combined to retain all thresholded voxels in common between them (p <.0025). This
overlap map resulted in a selected set of 1,152 mm3 voxels. This set was further reduced by
masking with ICBM-DTI-81 white-matter atlas (Mori et al., 2008), an atlas where 48 white
matter tract labels were created by hand segmentation of a standard-space average of
diffusion MRI tensor maps from 81 subjects. This approach to data reduction resulted in a
masking map with a total of 620 mm3 voxels.

In summary, 8 datasets were created; the FA > .2 thresholded FA, MD, AD and RD
maps for the whole brain, and the right and left hemispheres, the whole brain FA skeleton
map and skeleton right and left hemispheres, and finally the FA split-half discriminative
voxel map and the discriminative map masked for ICBM-DTI-81 white-matter labels only.

Following data-selection, classification was then carried out using the Support
Vector Machine (SVM) approach. The first step to this approach is generation of a

“similarity matrix” in the form of a linear kernel (Hofmann, Schélkopf, & Smola, 2008) that

1 A feature selection approach was only taken with the FA measure since none of the other
measures resulted in any significant univariate contrast results, nor SVM significant
classifications.
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reduces the input data set to a matrix the size of Nsamples X Nsamples to be input into the
classification algorithm as the critical feature set. For classification, 2 classes were defined
- MDD and HC and processed using a soft-margin hyper-parameter approach. In order to
examine the model’s estimation power, a leave-one-subject-per-group-out cross-validation
approach was used. In each step of the cross-validation, the individuals are grouped into
disjoint training and testing sets such that there are no subjects used for both training and
testing in a single step. This process is repeated across all pairs of left out individuals and
the results from each step are averaged to obtain a final estimate of classification accuracy.
The model performance was tested for significance using permutation testing where the
model was estimated 1000 times with randomly permuted class labels that produces a p-
value for each of the performance values.

Finally, in order to assign classification power to specific locations in the brain WM,
PRoNTo takes the linear SVM models and recovers model weights and transforms the
weights vector into a map in the original image (voxel) space. These maps contain at each
voxel the corresponding weight of the linear model that reflects how much this particular
voxel contributed to the classification. In addition, the contribution of specific regions
within the ICBM-DTI-81 atlas were calculated by first summing the absolute values of the
weights within each region divided by the number of voxels in that region. Then the
contribution of each region is divided by the total contribution of all regions resulting in
values that reflect the percent contribution of each region to the decision function. These
regions can then be ranked by descending order based on their contribution to the model

and examined in order to understand how regions contribute to the classification accuracy.
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RESULTS

Demographic Characteristics
Table 1 shows the important demographic and depression symptom profile of the MDD
and HC groups. The groups were well matched on age, gender and income but were
marginally different on ethnic distribution. Given the MDD diagnosis, the groups were
significantly different on BDI-II and IDAS (Inventory of Depression and Anxiety Symptoms,
(Watson et al., 2008)).
TBSS Voxel-wise Results

Contrasting the FA skeleton between MDD and HC groups revealed only a single
significant cluster where there were greater FA values for MDD vs HC in the right body of
corpus callosum (see Figure 2). Contrasting the AD skeleton between MDD and HC groups
revealed a single significant cluster where there were lower AD values for MDD vs HC in
the right anterior thalamic radiation (see Figure 3). In addition, the skeletonized MD map
revealed a very similar effect of lower MD in the anterior thalamic radiation in MDD
relative to HC. In this case, the effect was bilateral. Finally, RD skeleton map did not reveal
any significant between group differences using the univariate voxel-wise contrast
approach with cluster wise corrections.
Support Vector Machine Classification Results

Accuracy is the total number of correctly classified test samples from each leave-
one-pair-out set divided by the total number of test samples, irrespective of class.
Classification assessment across the 8 datasets indicated that all sets classified MDDs

significantly (see Table 2). For the whole brain FA map total classification accuracy was
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70% (permutation p =.015) with a specificity of 75.0% and a sensitivity of 66.7%. This
performance was improved when just the right hemisphere FA map was used, resulting in
total accuracy of 74% (permutation p =.005). The whole brain skeleton map does
comparable to the whole brain FA, resulting in total classification accuracy was 70%
(permutation p =.011) with a specificity of 77.8% and a sensitivity of 65.6%. Testing the
hemispheres separately did not improve performance of the FA skeleton maps.

Results for the MD, AD and RD maps were less promising than for FA. For MD, the
whole brain significantly classified MDD but not healthy controls. The left and right MD
maps were unsuccessful at significantly classifying either group. The AD maps showed a
similar pattern to the MD map, namely only the whole brain map significantly classified
MDD but not HC. Finally, the RD maps were not able to significantly classify any group. The
results for MD, AD and RD are presented in Table 3. Because of the failure of these 3 scalar
measures to significantly distinguish between groups, a feature selection approach was not
taken.

Finally, the feature selected FA maps performed very well, with total classification
accuracy for the map not masked by the WM atlas falling at 96% (permutation p =.001)
with a specificity of 100.0% and a sensitivity of 92.6% and for the map masked with the
WM atlas resulting in total classification accuracy of 92% (permutation p =.001) with a
specificity of 95.7% and a sensitivity of 88.9%. Given that this set includes the smallest
number of total voxels (620), it appears to be the most parsimonious while still producing a
high degree of classification accuracy. A prediction plot for this final model can be seen in
Figure 4. The plot displays the output “decision function values” where positive numbers

represent the MDD class and negative numbers the HCs. The zero line is the decision bound
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for this classifier. A well-performing classifier will show clear separation of the 2 classes. In
addition, there appears to be a wider range of variability in the decision function values for
HC when compared to MDD.

Given that neuroimaging data contains spatial information that may be critical in
understanding the underlying WM pathways that contribute to classification accuracy,
PRoNTo allows one to generate a “weight map”. The weight map is a spatial representation
of the decision function where each voxel contributes with a certain weight to the classifier
decision function. A weight map was generated for the feature-selected map masked by the
ICBM-DTI-81 atlas. The results of this map, defined in terms of ICBM-DTI-81 ROIs, can be
seen in Table 3 and the projections of these ROIs on a standard brain and the human
connectome project tractography map can be seen in Figure 5. The table includes regions
ranked by their total contribution to the model in descending order, the cumulative percent
contribution, the number of voxels within that region and finally the ROl WM label. A total
of 79% of the voxels in this map are in the right hemisphere. Additionally, it is interesting
to note that while the largest contributor to the model in terms of voxels lay in the right
body of the corpus callosum and overlaps with the region revealed in the TBSS univariate
analysis to best discriminate MDD from HC, this region contributes very little to the
classification - an estimated 1.9%. In order to confirm that the contribution of this region
to classification accuracy was minimal, voxels contained within this region were masked
out and then the classification was rerun. Removal of these 171 voxels resulted in
numerically higher classification accuracy - total classification accuracy of 94%
(permutation p =.001) with a specificity of 95.8% and a sensitivity of 92.3%, although

likely this change was not significant.
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DISCUSSION

The current report supports using machine learning algorithms to capture the
diagnostic information contained in structural MRI data in order to differentiate between
patients diagnosed with MDD and healthy controls. Despite the relatively small sample size,
using both an unselected and a feature selected DTI dataset, support vector machine binary
classification was able to significantly distinguish between MDD and HC using the DTI
metric of fractional anisotropy (FA). While this approach awaits demonstrated predictive
power when applied to an independent dataset, there is important information that can be
derived from this project.

Across multiple DTI metrics - FA, MD and AD there were several findings from the
univariate between group contrasts that are informative and consistent with previous
reports in patients with MDD. First, examining the FA skeleton revealed that a region of the
right body of the corpus colosum (CC) had higher FA values in MDD relative to HC. Some
previous reports have demonstrated that depression is associated with decreased FA
values in the body of the CC (Cole et al., 2012). In contrast to the current study, this finding
was in middle-aged adults (approximate mean age of 50) with a history of recurrent MDD.
Moreover, in this population FA values in the CC were found to negatively correlate with
symptom severity.

Alternatively, a study by (Frodl et al.,, 2012) found that unaffected first-degree
healthy relatives (UHRs) of patients with MDD revealed increased FA values in the CC,
which they speculated might represent vulnerable characteristics for the formation of
depression. These patients were younger than those in the Cole et al (2012) study and also

had never experienced a MD episode. One possible reason for the discrepancy in the
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directionality of FA differences may be the precise location of those differences. Finally,
another meta-analysis of WM abnormalities in MDD examined 17 studies that included 641
MDD patients and 581 HC (Chen et al,, 2016). The analysis revealed that the CC
consistently reveals differences between MDD and HC, particularly in the genu and body
regions.

The region of CC revealed in the current study is right lateralized and clearly
involves the region of interface with the superior longitudinal fasciculus (SLF). Greater FA
in this region may indicate a reduction in fiber complexity (Beaulieu, 2002) in a location
where one would expect increased crossing fibers between the CC and SLF. Interestingly, a
recent meta-analysis argued that decreased FA values across 4 consistent regions could
reflect the pathophysiology of MDD (Liao et al. 2013). However, one of the articles
examined by Liao et al. (2013) actually showed increased FA across multiple regions of the
superior longitudinal fasciculus (SLF) in unipolar depression vs controls (Versace et al.,
2010). It was only the bipolar patients that showed reduced FA across the SLF.

It is important to be careful when interpreting the directionality of FA differences
between groups since FA is sensitive to different elements of microstructure depending on
location (Beaulieu, 2002). Moreover, it is not always clear whether investigators tested the
reverse contrast of MDD > HC as it was not always stated explicitly that “no regions showed
greater FA in MDD relative to HC”. Finally, the right body of the CC lies along the midline of
the brain corresponding to a functional network referred to as the default mode network
(DMN). Greater functional connectivity within the DMN has been consistently associated
with MDD (Hamilton, Farmer, Fogelman, & Gotlib, 2015) and the increased FA values in the

body of the CC may reflect a structural correlate of this.
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In addition to the finding of higher FA values in the right CC, findings in the anterior
thalamic radiation indicated lower axial diffusivity and lower mean diffusivity in MDD
relative to HC. This is consistent with a number of previous studies (Lai & Wu, 2014)
(Korgaonkar, Fornito, Williams, & Grieve, 2014) that have shown alterations in the anterior
thalamic radiation associated with MDD. In a whole-brain examination of WM structural
networks in MDD relative to controls, differences were revealed in two brain networks
(Korgaonkar et al., 2014), one being a frontal-subcortical network that included regions of
frontal cortex, the caudate and the thalamus. In the current work, the anterior thalamic
radiation revealed decreases in the longitudinal component, possibly reflecting reduced
myelination in MDD patients and therefore lower connectivity between the thalamus and
the cortex.

While the univariate results add information to the corpus of work examining the
brain structural features that are associated with depression, it is inherently an
explanatory approach to the data (Yarkoni & Westfall, 2016). By contrast, the results of our
machine learning classification hold the promise of providing predictions about who is
depressed or even potentially who might be vulnerable to depression. Across the 4 scalar
measures derived from the DTI imaging, only the results from the FA maps were reliable
overall. Using a whole brain approach, the right hemisphere selected FA map significantly
predicted both MDD patients with 80% accuracy and healthy controls with 68% accuracy
for a total accuracy of 75%. Interestingly, the use of just the skeletal FA values result in
lower prediction accuracy overall, indicating that restricting the map to the highest FA path
through the brain does not increase predictive ability. Finally, not surprisingly, the feature

selected FA data where input values were derived by determining the voxels which most
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clearly separated the groups resulted in the highest prediction accuracy reaching 96%
accuracy for the non-atlas restricted dataset and 92% accuracy for the data set that was
restricted only to atlas defined white matter pathways. It is interesting to note that of the 4
metrics examined, it was FA that was uniquely successful at classification. One possible
explanation for this finding is that FA reflects a composite of the other scalar measures and
thus maximizes differences that might be distributed across the other measures. This is
consistent with considerable research showing FA to be a highly sensitive but fairly
nonspecific measure of white matter microstructure and white matter neuropathology
(Alexander et al., 2007).

A number of aspects of the SVM results are worth exploring. First, there was a clear
difference in the predictive power of right hemisphere FA values relative to left. In the
unselected data set it was the right hemisphere FA maps that clearly classified both MDD
and HCs. Moreover, on the selected FA map that was masked by the white matter atlas,
fully 79% of the voxels are in the right hemisphere. These two findings are consistent with
work showing that individual differences in the right hemisphere may be critically tied to
depression (Bruder et al., 2012; Costafreda, Chu, Ashburner, & Fu, 2009; Talarowska,
Orzechowska, Zboralski, & Gatecki, 2011) and depression vulnerability (Beevers, Clasen,
Stice, & Schnyer, 2010; Clasen, Beevers, Mumford, & Schnyer, 2013). An examination of
cortical thickness in persons with familial risk for depression found thinning across the
lateral surface of the right hemisphere in a high-risk group relative to a low risk group
(Peterson et al., 2009). The opposite measurement direction was found in a more recent
paper examining familial risk for depression where cortical thickness differences in

untreated first-episode MDD revealed increased cortical thickness in multiple regions of
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the right hemisphere, including regions of lateral prefrontal and parietal cortex such as the
pars opercularis, rostral middle frontal gyrus and supramarginal gyrus (Qiu et al., 2014).
These regions correspond to the frontal-parietal attention network that has been a target
for attention bias modification in MDD (Beevers et al., 2015).

A mediation analysis in the Peterson et al (2009) paper suggested that right
hemisphere cortical thinning mediates the association of familial risk with inattention
supporting the role of the right hemisphere in attention control and its potential as a risk
factor for MDD. A study of steady state visual evoked potentials found that responses to
“high arousing” stimuli resulted in weaker responses over right hemisphere regions in
MDD patients relative to HCs (Moratti, Rubio, Campo, Keil, & Ortiz, 2008). Finally, a meta-
analysis of 10 whole-brain-based FDG-PET studies in MDD revealed decreased cerebral
metabolism in the right caudate, right insula and right cingulate gyrus (Su et al., 2014) and
an older study found in a small group of moderate to severely depressed patients, reduced
right hemisphere metabolism in the superior temporal lobe (Post et al., 1987).

Despite consistent findings of changes in the right hemisphere associated with
depression, there are some studies finding left hemisphere differences as well (Marchand
et al.,, 2012). Regardless, most of these studies reveal between group differences and it is
unclear whether those are also predictive of MDD or not. The current study examines the
predictive ability of WM measures across the whole brain and the results point to the
importance of the right hemisphere in that endeavor.

Another interesting aspect of the current work is the finding that a region revealed
in the univariate examination of between group differences, the right CC, does not appear

to play an important role in SVM classification accuracy. Taking a univariate approach to
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examining the WM differences between groups assumes that the spatial units of the WM
are independent entities. As such, each individual image element is tested separately and
does not take into account distributed relationships between elements (McIntosh & Misi¢,
2013). The right CC finding could easily reflect a collection of subjects for whom there are
large differences in FA values between MDD and controls. However, the resulting statistical
difference may not be helpful in determining which group any given individual belongs to.

An early demonstration of the utility of multivariate approaches to neuroimaging
revealed that removing peak fMRI activation differences between conditions did not
significantly change the performance of a classifier trained across a distributed network
(Haxby et al., 2001). This work was one of the first to reveal the utility of examining
distributed elements in order to best discriminate between conditions (Norman, Polyn,
Detre, & Haxby, 2006). Therefore, the SVM analysis, which is fundamentally a multivariate
approach, can capture a distributed network of elements that contribute to the summed
ability to separate MDD patients from HCs. The greater the distribution of spatial elements
the more unique the solution can become. This perspective is supported by a recent paper
where it was shown that “high value” hubs of human brain networks are more likely to be
anatomically abnormal across multiple brain disorders including depression (Crossley et
al., 2014). This approach does have its drawbacks in that the best solution to separate the
groups may not generalize well outside of a specific dataset. For this reason, accuracy was
tested in the current studying using a leave-one-pair-out approach but it will fall on future
work to examine the performance of trained classifiers on an independent dataset. For the
time being, these results help set an upper bound for what might be expected for the

predictive power of DTI with respect to MDD.
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While the distributed nature of the brain regions associated with accurate
classification of MDD patients is a strength when applied to diagnostics, it is also a
challenge when it comes to understanding the contribution of specific brain nodes to the
disorder. White matter FA values in elements across all three brain networks previously
associated with MDD (Mulders et al., 2015) - the DMN, the salience network (SN) and the
central executive network (CEN) - also known as the frontal-parietal network (FPN)
contributed to the accuracy of classification (see Figure 4). However, nearly twice the
spatial contribution of the top 50% of the cumulative contribution to classification came
from the SN network, including pathways connecting frontal cortex to the limbic system.
Differences in the functional connectivity of the SN have been associated with MDD and
vulnerability to MDD (Wang et al.,, 2016). In addition, the SN has also been associated with
response to treatment (Qin et al., 2015).

Nevertheless, it is clear from the current study that the most accurate prediction of
MDD from white matter microstructure is obtained when including distributed networks
across the brain. It simply is not possible to derive a highly accurate MDD classification
using one white matter tract or network. Fortunately, advances in machine learning and
related statistical techniques allow for the integration of highly dimensional data into
prediction algorithms. These methods therefore appear to have substantial promise for the
development of diagnostic tools that can objectively classify the presence or absence of

major depressive disorder and other psychiatric disorders.
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Table 1 -

Test
MDD HC Statistic  p-value

Age 23.4 (3.6) 23.5 (4.0) t=0.12 0.91
Gender 12 female 12 female X=0 1

Ethnicity 17 Caucasian 11 Caucasian X =2.92 0.09
Income 46614 (36K) 54640 (25K) t=0.88 0.38
BDI 35.1(8.1) 2.4 (3.0) t=18.86 <.001
IDAS 74.0 (8.8) 28.8 (5.0) t=22.50 <.001

BDI-II - Beck Depression Inventory-I|
IDAS - Inventory of Depression and Anxiety Symptoms (Watson et al., 2008).

Table of participant demographics. MDD and HC significantly differed only on depressive symptoms.
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Table 2 -

Voxels Classification Accuracy
2mm (permutation p values) Classification Probability
MAP cubic Total MDD HC MDD HC

Whole Brain FA

All FA 1,083,793] 70(.015) 80 (.003) 60 (.23) 66.7 75

Right Hemisphere FA 168,929 | 74 (.005) 80 (.004) 68 (.06) 71.4 77.3

Left Hemispher FA 164,399 68 (.03) 72 (.022) 64 (.122) 66.7 69.6
Whole Brain FA Skeleton

All FA Skeleton 111,052 | 70(.011) 84 (.001) 56 (.363) 65.6 77.8

Right Hemisphere FA Skeleton | 75,939 68 (.020) 72 (.017) 64 (.108) 66.7 69.6

Left Hemisphere FA Skeleton 75,804 68 (.021) 76 (.005) 60 (.219) 65.5 71.4
Feature Selected

Split Half Selected FA w/o atlas | 1,152 96 (.001) 100 (.001) 92 (.001) 92.6 100

Split Half Selected FA with atlas | 620 92 (.001) 96 (.001) 88 (.001) 88.9 95.7

Table of SVM classification performance across the 8 different mapping profiles. Values in parenthesis indicate resulting p
value from permutation testing.
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Table 3 -

Classification Accuracy
(permutation p values)
MAP Total MDD HC
Whole Brain MD
All MD 70 (.002) 96 (.057) 44 (.517)
Right Hemisphere MD 68 (.006) 88 (.155) 48 (.499)
Left Hemispher MD 58 (.095) 92 (.132) 24 (.693)
Whole Brain AD
All AD 74 (.001) 96 (.048) 52 (.472)
Right Hemisphere AD 72 (.001) 88 (.089) 56 (.447)
Left Hemispher AD 62 (.056) 88 (.141) 36 (.620)
Whole Brain RD
All RD 58 (.164) 80 (.350) 36 (.499)
Right Hemisphere RD 52 (.609) 84 (.341) 20 (.827)
Left Hemispher RD 52 (.612) 84 (.324) 20 (.831)

Table of SVM classification performance across the 3 different mapping profiles for the scalar values of MD, AD and RD. Values
in parenthesis indicate resulting p value from permutation testing.
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Location FPN SN DMN

Table 4 -
Percent Cumulative Percent
Contribution Contribution Voxels
7.1 7.1 2 Cingulum (cingulate gyrus) L -_-
6.5 13.6 8 Fornix (cres) / Stria terminalis L
5.9 19.4 1 Uncinate fasciculus L
41 235 15 Cingulum (hippocampus) R
4.0 27.5 6 Posterior thalamic radiation R
4.0 31.6 9 Anterior corona radiata L -
4.0 355 9 Posterior corona radiata L
3.8 39.3 9 Superior corona radiata L
3.7 43.0 17 Anterior corona radiata R -
3.5 46.6 10 Cerebral peduncle L
3.4 50.0 1 Cingulum (cingulate gyrus) R -_-
3.3 53.2 7 Retrolenticular part of internal capsule R
3.2 56.4 30 Fornix (column and body of fornix)
3.0 59.4 5 External capsule L
2.9 62.3 35 Posterior limb of internal capsule R
2.8 65.2 30 Anterior limb of internal capsule R
2.8 67.9 6 Retrolenticular part of internal capsule L
2.6 70.5 8 External capsule R
2.6 73.1 2 Tapetum R
2.5 75.6 2 Posterior thalamic radiation L
2.5 78.0 33 Genu of corpus callosum -
2.5 80.5 5 Fornix (cres) / Stria terminalis R
2.4 82.9 14 Posterior limb of internal capsule L
2.4 85.3 5 Sagittal stratum L
2.3 87.6 8 Superior longitudinal fasciculus R -
2.1 89.6 1 Cingulum (hippocampus) L
1.9 91.5 171 Body of corpus callosum R
1.8 93.4 15 Superior corona radiata R
1.6 95.0 8 Superior longitudinal fasciculus L
1.6 96.6 5 Posterior corona radiata R
1.2 97.8 2 Superior fronto-occipital fasciculus R
1.1 98.9 133 Splenium of corpus callosum

Table of weight map values generated for the feature-selected map defined in terms of
ICBM-DTI-81 atlas. Includes the percent contribution of each region. The 3 columns to the
left indicate the regions correspondence to 3 commonly identified brain networks - the
frontal-parietal attention control network (FPN), the salience network (SN) and the default
mode network (DMN).
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FIGURE CAPTIONS

Figure 1 - A hypothetical graphic of application of support vector machine algorithms in
order to classify 2 categories. Two feature sets can be plotted against one another and a
hyperplane generated that best separates the groups based on the selected features. The
maximum margin represents the margin that maximizes the divide between groups. Cases

that lie on this maximum margin define the support vectors.

Figure 2 - Region of right body of the corpus callosum that revealed significantly higher FA
values in MDD relative to HCs. From the top left clockwise - coronal, sagittal, 3D render and

axial projections.

Figure 3 - Region of anterior thalamic radiation that revealed significantly lower AD and
MD values in MDD relative to HCs. From the top left clockwise - coronal, sagittal, 3D render

and axial projections.

Figure 4 - Results of the leave-one-pair-out test of SVM accuracy for the feature and atlas
selected maps. Normalized decision function values are plotted for MDD (blue triangles)
and HC (red squares) participants. The zero line represents the decision boundary. Note

that 3 HCs and 1 MDD participant were misclassified.
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Figure 5 - Regions supporting the SVM solution for the FA feature selected and masked
with ICBM-DTI-81 white-matter atlas map. Regions are dilated to 3mm spheres centered
on the coordinates listed in Table 3 and projected in a standard MNI brain and the group
tractography map from the human connectome project. View is looking at the right frontal

location of the 3D brain.
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