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Abstract 

 High concentrations of estrogenic compounds can overstimulate estrogen receptors and 

potentially lead to breast, ovarian, and cervical cancers. Recently, a G-protein coupled estrogen 

receptor (GPER/GPR30) was discovered that has no structural similarity to the well-

characterized, classical estrogen receptor ERα. The crystal structure of GPER has not yet been 

determined, and the ligand binding sites have not yet been experimentally identified. The recent 

explosion of GPCR crystal structures now allow homology modeling with unprecedented 

reliability. We create, validate, and describe a homology model for GPER. We describe and 

apply ConDock, the first hybrid scoring function to use information from protein surface 

conservation and ligand docking, to predict binding sites on GPER for four ligands, estradiol, 

G1, G15, and tamoxifen. ConDock is a simple product function of sequence conservation and 

binding energy scores. ConDock predicts that all four ligands bind to the same location on 

GPER, centered on L119, H307, and N310; this site is deeper in the receptor cleft than are ligand 

binding sites predicted by previous studies. We compare the sites predicted by ConDock and 

traditional methods analyzing surface geometry, surface conservation, and ligand chemical 

interactions. Incorporating sequence conservation information in ConDock avoids errors 

resulting from physics-based scoring functions and modeling. 
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Introduction 

 Estrogens are hormones with multiple physiological and pathological functions in both 

men and women. The primary reproductive hormone in females, estrogen is responsible for 

ovarian development, oocyte and endometrial maturation, and uterine contraction1. 

Overexpression of estrogens is associated with estrogen-sensitive ovarian, endometrial, and 

breast cancers2. In addition to its role in the female reproductive system, estrogen is also an 

important regulator in the skeletal, nervous, cardiovascular, endocrine, and immune systems3. 

Estrogen functions in production of bone, insulin secretion, T cell differentiation, 

neuroprotection, and modulation of pain sensation, and cardiomyocyte contractility3–5. Imbalance 

of estrogen levels can lead to various pathological disorders such as osteoporosis, diabetes 

mellitus, autoimmune diseases, and dilated myopathy3–6. 

 The most important estrogen is 17β-estradiol (E2). The primary estrogen receptors, 

estrogen receptor-α (ERα) and estrogen receptor-β (ERβ) are dimeric nuclear receptor 

transcription factors that activate gene expression when bound to E27,8. These two receptors are 

structurally very similar.  Depending on tissue and ligand, ERα and ERβ can act redundantly, 

synergistically, and/or antagonistically. Studies suggest that ERα and ERβ have minimal 

participation in rapid and membrane-associated estrogen signaling activities as shown by the 

continued activation by estrogen in the presence of ER antagonists9. This suggested the existence 

of unidentified membrane-associated estrogen receptors. G-protein coupled estrogen receptor 

(GPER, formerly known as GPR30) is a membrane-bound ER that was discovered recently; 

GPER is proposed to be a primary mediator of rapid estrogen-associated effects10–12. It has also 

been shown to mediate other estrogen-activated responses such as cAMP regeneration and nerve 

growth factor expression13,14. Because of the technical challenges involved in experiments with 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2016. ; https://doi.org/10.1101/061051doi: bioRxiv preprint 

https://doi.org/10.1101/061051
http://creativecommons.org/licenses/by-nd/4.0/


4 
 

G-protein coupled receptors, biochemical experiments are difficult and no crystal structure of 

GPER is available, and thus details of ligand binding are unknown. 

Estrogen receptors can recognize a range of structurally diverse ligands (Fig. 1). E2 is the 

primary ligand of well-characterized estrogen receptors. E2 binds to all known estrogen 

receptors and is thus non-specific for GPER. Estrogen receptor binding ligands, such as 

tamoxifen, are also used as drugs to treat estrogen-responsive breast cancer15,16. Tamoxifen acts 

as an ER antagonist in some tissues and as an ER agonist in others, which is why it is considered 

a selective estrogen receptor modulator (SERM)17. Other drugs such as fulvestrant act as ER 

antagonists in all tissues; these drugs are considered to be selective estrogen receptor 

downregulators (SERD)18. Some SERMs and SERDs are agonists of GPER9, and recently 

GPER-specific ligands G1 and G15 were discovered19,20. G1 and G15 are structurally similar; 

they differ by an acetyl group (Fig. 1). G1 is an agonist, whereas G15 is an antagonist. 

 

 

 

 

 

 

 

 

 

Figure 1. Four experimentally verified GPER ligands 

 

17-estradiol 

tamoxifen 

G1 G15 
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The ligand binding sites in GPER have not yet been experimentally identified. Various 

computational approaches have been used to predict ligand binding sites in other G-protein 

coupled receptors. Traditional docking methods compute the lowest energy orientation of a 

ligand fit to a receptor surface. Such methods are highly dependent on the form of the energy 

scoring function and accuracy of the receptor model structure21–23. These methods have been 

used to identify ligand binding sites and build pharmacophores for G-protein coupled receptors 

(GPCRs)24–26, but the lack of diverse GPCR crystal structures presents serious challenges to 

using docking methods for identification of ligand binding sites. 

Another feature that can be used to predict ligand binding sites is surface or sequence 

conservation. Binding sites for particular ligands are often conserved, although systematic 

sequence variation can encode ligand specificity27–29. The massive abundance of genomic data 

for GPCRs strongly constrains possibilities for ligand binding sites even without chemical or 

structural information30–32. 

There has been less research on methods that combine information from chemical 

interactions, geometric surface analysis, and bioinformatics. Hybrid strategies, such as 

Concavity33, have demonstrated superior performance in predicting ligand binding sites 

compared to single-mode approaches. Concavity scores binding sites by evolutionary sequence 

conservation as quantified by the Jensen-Shannon divergence29 and employs geometric criteria 

of size and shape. Here, we describe and apply a new hybrid scoring function, ConDock, which 

combines information from surface conservation with intermolecular interactions from docking 

calculations, to predict ligand binding sites for GPER. We compare our results from those 

previously published using purely docking based methods34,35. 
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Results 

 Because there are no crystal structures yet available for GPER, we created a homology 

model using GPCR-I-TASSER36, among the most reliable GPCR homology modeling software 

packages. GPCR-I-TASSER identified the closest matching crystal structure to GPER as that of 

the CCR5 chemokine receptor (PDB 4mbs) with 23% sequence identity. GPCR-I-TASSER used 

this crystal structure along with 9 other GPCR crystal structures as templates for homology 

modeling. The GPER homology model differs from chain A of the crystal structure of CCR5 

chemokine receptor with RMSD of 0.96 Å across C atoms (Fig. S1). The primary differences 

are in the extracellular loop between helices 4 and 5 and the intracellular loops between helices 5 

and 6, and after helix 7. These two intracellular loops are those predicted by ERRAT37 to be 

most likely in error based on the likelihood of atom pair type interactions from high resolution 

crystal structures. It should be noted that ERRAT was not developed for analyzing membrane 

proteins so the reliability of its error analysis for the GPER homology model is uncertain. 

Furthermore, as the sites with the greatest predicted errors are on the intracellular face of GPER, 

far from the ligand binding site, they are less likely to affect our ligand prediction study. 

 Using the SwissDock server38, we docked structures of the four ligands E2, G1, G15, and 

tamoxifen (Fig. 1) to a homology model of GPER, as no crystal structure is available. Most of 

the docked sites from SwissDock were not located on the extracellular face of GPER and thus 

were considered nonviable (Fig. S3). The shortcomings of a purely physics based scoring 

function such as that used by SwissDock in predicting ligand binding is not surprising given the 

lack of an experimental crystal structure and well known limitations of current computational 

methodology39–42.  
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We next ranked all ligand binding sites generated by SwissDock that were located on the 

extracellular face of GPER using the combined ConDock score. The ConDock score is the 

simple product of the ConSurf43,44 binding surface sequence conservation score and the 

SwissDock FullFitness energy score45. A highly negative ConDock score is associated with a 

more probable ligand binding site. For all four ligands, the ConDock score identified one or two 

ligand binding sites and poses that clearly outscored other candidates (Table 1). ConDock 

identified the same approximate binding site for all four ligands, although this was not an explicit 

criterion in the calculations (Fig. 2). The average ConSurf conservation score across the four 

ligand binding sites is 0.82, indicating that the site is highly but not completely conserved. The 

binding site is located deep in the receptor cleft, although this too was not a criterion in the 

prediction calculation. Given the lack of additional experimental evidence for the location of the 

ligand binding site, the proposed ConDock sites are physically reasonable. 

  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2016. ; https://doi.org/10.1101/061051doi: bioRxiv preprint 

https://doi.org/10.1101/061051
http://creativecommons.org/licenses/by-nd/4.0/


8 
 

Ligand ConSurf conservation 

score  

SwissDock energy score  Combined ConDock 

score 

E2, pose 1 0.84 -964.9 -813.2 

E2, pose 2 0.80 -967.9 -774.3 

G1 0.85 -970.7 -825.1 

G15 0.8 -974.6 -779.7 

Tamoxifen, 

pose 1 

0.81 -947.9 -763.6 

Tamoxifen, 

pose 2 

0.81 -947.5 -763.6 

    

Table 1. Scores for predicted binding sites and poses for GPER ligands.  

 

 

 

 

 

 

 

 

Figure 2. Predicted ligand binding pockets in GPER. A) Extracellular perspective of 

GPER showing amino acids predicted to contact ligands E2 (maroon), G1 (cyan), G15 

(green), and tamoxifen (violet). Residues colored orange are predicted to contact one or 

more ligands with darker hue indicating interaction with multiple ligands. B) Predicted 

binding pocket viewed from a 90° rotation.  

A) B) 
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 We found two promising binding sites for E2 in GPER. The two sites are 4.4 Å apart, 

located deep in the receptor cleft (Fig. 3). E2 is oriented perpendicular to the lipid membrane and 

rotated about 180° between the two poses. The conservation scores for these two poses are 0.84 

and 0.80. The energy scores of the two poses are similar. The amino acids contacting E2 in pose 

1 are conserved in GPERs from six species, and only one residue contacting pose 2, H282, varies 

across species. In the top ranked pose, there is a hydrogen bond between the inward pointing D-

ring hydroxyl group of E2 and the carboxyl terminal on E115. Hydrophobic interactions are 

present between E2 and non-polar residues L119, Y123, P303, and F314. In the second ranked 

pose, the inward pointing A-ring hydroxyl group of E2 makes a hydrogen bond with N310. This 

pose is in a less hydrophobic environment, contacting primarily H282 and P303.  

 

ConDock predicts that G1 and G15 bind in adjacent but distinct binding sites separated 

by 2.3 Å despite the chemical similarity of the two ligands. The top predicted binding site for G1 

is found within the pocket bound by Y55, L119, F206, Q215, I279, P303, H307, and N310 (Fig. 

4). This orientation had the highest conservation score of all predicted binding sites at 0.85. In 

this pose, N310 makes a long hydrogen bond with the acetyl oxygen of G1. The predicted 

Figure 3. Predicted E2 binding sites in GPER. A) The two highest scoring docking 

poses for E2. B) Receptor-ligand interactions for E2 pose 1. C) Receptor-ligand 

interactions for E2 pose 2. 
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binding site for G15 is found within the pocket bound by L119, Y123, M133, S134, L137, Q138, 

P192, V196, F206, C207, F208, A209, V214, E218, H307, and N310. This pose had a 

conservation score of 0.8. Hydrogen bonding is not observed between GPER and G15. 

Hydrophobic interactions are observed with L119, Y123, F206, and V214. An interesting aspect 

of this binding site is that the amino acid at position 214 is valine in humans but is isoleucine in 

Atlantic croaker and zebrafish. These two hydrophobic amino acids differ by only a methyl 

group.  

 

ConDock predicted two equally high scoring, overlapping poses for tamoxifen, near 

E115, L119, Y123, L137, Q138, M141, Y142, Q215, E218, W272, E275, I279, P303, G306, 

H307, and N310 (Fig. 5). The conservation score of this orientation is 0.81. Hydrophobic 

interactions are observed between tamoxifen and non-polar residues L119, Y123, Y142, P303, 

and F314. Notably, the amine group of tamoxifen is neutralized by E218 and E275. 

 

Figure 4. Predicted G1 and G15 binding sites in GPER. A) The highest scoring 

docking poses for G1 (maroon) and G15 (cyan). B) Receptor-ligand interactions for G1. 

C) Receptor-ligand interactions for G15. 
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 In comparison with the ligand binding sites predicted by traditional methods based on 

surface geometry and conservation, the site predicted by ConDock is more detailed and of higher 

resolution due to the information from chemical interactions from ligand docking. Moreover, 

prediction methods based on surface geometry and conservation cannot differentiate between 

binding sites for different ligands. We compared the ligand binding site predicted by ConDock to 

those predicted by three other software packages representing different approaches: CASTp46, 

which analyzes surface geometry, SiteHound47, which maps surfaces with a chemical probe, and 

Concavity33, which analyzes surface geometry and conservation (Fig. 6). All three methods were 

able to identify a ligand binding site roughly matching that from ConDock. The pocket predicted 

by ConDock is deeper than the other pockets, which while intuitively attractive is not necessarily 

correct. SiteHound performed particularly poorly, with the top scoring site located on the GPER 

intracellular face. The site identified by SiteHound closest to the ConDock site was scored third 

and is a shallow binding pocket near H52-G58, E275-H282, and R299-H307 (Fig. 6C). In 

Figure 5. Predicted tamoxifen binding sites in GPER. A) The highest scoring 

docking poses for tamoxifen, pose 1 (maroon) and pose 2 (cyan). 
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contrast, the Concavity site was smaller and more shallow than the ConDock site (Fig. 6D). 

Surprisingly, the site predicted by the simpler CASTp method best matched the ConDock site 

but is also smaller and more shallow (Fig. 6B). For proteins such as GPCRs with large, concave 

binding pockets, geometry based prediction methods such as Concavity and CASTp can easily 

identify the general location of the binding site. However, such methods may have more 

difficulty recovering the specific, ligand-specific binding site. It is also surprising that ConDock 

more closely matched the results of the geometry based methods given that ConDock does not 

take surface geometry into account. Without experimental data, it is not possible to conclude 

which of the predicted binding sites is correct at this time. 

 

 

 

 

 

 

 

Discussion 

  The ConDock scoring method, incorporating information from both surface conservation 

and docking binding energy, was used to predict viable ligand binding sites for four different 

GPER ligands. In contrast to more typical geometry-based ligand binding site prediction 

methods, ConDock scoring takes advantage of chemistry-specific information about the ligand-

Figure 6. Predicted ligand binding sites by ConDock, CASTp, SiteHound, 

Concavity. Ligand binding sites are colored, predicted by A) ConDock, B) CASTp, C) 

SiteHound, D) Concavity. 
 

C) D) B) A) 
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receptor interface. The poor performance of SiteHound in predicting ligand binding sites on 

GPER suggests that a method based only on chemical interactions or docking is highly 

susceptible to error. Surface conservation data not only provides orthogonal knowledge but also 

dampens the influence from the shortcomings of current computational methods in homology 

modeling, docking, and predicting binding affinity. How best to mathematically combine these 

multiple data sources has been debated29,33, but we demonstrate here that a simple product 

function is effective. Although the ligands analyzed differ greatly in chemical structure, the 

ConDock scoring method predicted that all four bind to the same approximate region, deep in the 

extracellular cleft of the receptor. Undoubtedly, further refinement of a hybrid scoring function 

will lead to improved predictions. 

 Recent GPER modeling studies using molecular dynamics simulations and docking 

identified different potential binding sites for E2, G1, and G15 near F206 and F208; the 

interaction with this region was described as driven primarily by - stacking interactions34,35. 

Figure 7 compares the ConDock binding site against that predicted in the molecular dynamics 

simulation and docking study. The ConDock binding site is located deeper in the extracellular 

cleft; the other proposed site mostly involved surface exposed loops. Mendez-Luna et al. 

proposed that Q53, Q54, G58, C205, and H282 all interact with G1 and G15; however, none of 

these residues are conserved across the six species we analyzed. Experimental data is not 

currently available to support one model over the other. 
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 In summary, the simple ConDock hybrid scoring model predicts physically plausible 

ligand binding sites by combining information from ligand docking and surface conservation. 

Using multiple orthogonal sources of information avoids errors introduced by modeling, 

especially in a case where a crystal structure of the receptor is unavailable. Using this hybrid 

method, we identified a site in the extracellular cleft of GPER that has the potential to bind four 

known GPER ligands. Further optimization of hybrid scoring functions should yield significantly 

improved predictions. 

 

Methods 

Protein conservation 

Figure 7. Comparison of proposed ligand binding sites. Comparison of the ConDock ligand 

binding site (red) with that proposed by Mendez-Luna et al. (blue). Residues found in both 

sites are colored violet.  
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GPER amino acid sequences were acquired from the UniProt protein sequence 

database48. Only Swiss-Prot49 curated sequences were compared using the Align function of 

UniProt. The amino acid sequences aligned were from human (Homo sapiens), rat (Rattus 

norvegicus), mouse (Mus musculus), Rhesus macaque (Macaca mulatta), zebrafish (Danio 

rerio), and Atlantic croaker (Micropogonias undulatus). The multiple sequence alignment file 

was submitted to ConSurf43,44. ConSurf assesses conservation using Bayesian reconstruction of a 

phylogenetic tree. Each sequence position is scored from 0-9, where 9 indicates that the amino 

acid was retained in all of the organisms (Fig. S4). Values from ConSurf were mapped onto the 

receptor surface with Chimera50. 

  

Homology modeling and docking 

 The crystal structure of GPER has not yet been determined. We created a model using 

GPCR I-TASSER (Iterative Threading Assembly Refinement), among the most accurate 

homology modeling softwares customized for GPCRs36. GPCR I-TASSER modeled the GPER 

structure using templates from the ten closest related GPCR crystal structures (PDB 4mbs, 2ks9, 

1kpn, 1u19, 2ziy, 1kp1, 3odu, 4ea3, 4iaq, 2y00). The homology model was validated with 

ERRAT37. Coordinates for E2, G1, G15, and tamoxifen were downloaded from the ZINC ligand 

database51 and submitted to SwissDock38 for docking. SwissDock is a web interface to the 

EADock DSS45 engine, which performs blind, global (does not require targeting of a particular 

surface) docking using the physics based CHARMM22 force field52. The “FullFitness Score” 

calculated by SwissDock using clustering and the FACTS implicit solvent model53 was used as 

the “Energy Score” for our calculations. 
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𝐂𝐨𝐦𝐛𝐢𝐧𝐞𝐝 𝐂𝐨𝐧𝐃𝐨𝐜𝐤 𝐒𝐜𝐨𝐫𝐞 = (Conservation Score) ∗ (Energy Score) 

Combined analysis 

 SwissDock poses were manually screened for those binding sites located on or near the 

extracellular side of the protein. Ligand binding surfaces included residues within 3.5 Å from the 

docked ligand. The average conservation score of the amino acids that were highlighted served 

as the “Conservation Score” of that specific orientation (Fig. 8). The combined ConDock score is 

defined as the product of the Conservation and Energy Scores. As the Energy Score is a modified 

free energy function, a highly negative ConDock score is associated with a more probable ligand 

binding site. Binding sites predicted by ConDock results were compared with those predicted by 

CASTp46, SiteHound47, and Concavity33. For CASTp, SiteHound, and Concavity, ligand binding 

pockets were defined as residues within 4 Å of the selected probe/cluster. 

 

                                                 

𝐂𝐨𝐧𝐬𝐞𝐫𝐯𝐚𝐭𝐢𝐨𝐧 𝐒𝐜𝐨𝐫𝐞 =  
1

10

∑ (Amino Acid ConSurf Score)k
n
k=1

n
 

𝐄𝐧𝐞𝐫𝐠𝐲 𝐒𝐜𝐨𝐫𝐞 = SwissDock FullFitness Score 

 

Figure 8. Calculation of combined ConDock scores for ligand binding sites. The 

Conservation Score is calculated over the n residues in a binding site, indexed by k. 
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